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Abstract. The present paper provides a numerical investigation of the decoherence ef-
fect induced on a quantum heavy particle by the scattering with a light one. The time
dependent two-particle Schrodinger equation is solved by means of a time-splitting
method. The damping undergone by the non-diagonal terms of the heavy particle
density matrix is estimated numerically, as well as the error in the Joos-Zeh approxi-
mation formula.
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1 Introduction

Quantum decoherence is nowadays considered as the key concept in the description of
the transition from the quantum to the classical world (see e.g. [6,7,9,19,20,22,24]).

As it is well-known, the axioms of quantum mechanics allow superposition states,
namely, normalized sums of admissible wave functions are once more admissible wave
functions. It is then possible to construct non-localized states that lack a classical inter-
pretation, for instance, by summing two states localized far apart from each other. The
observable mark of such a quantum mechanical superposition state is the presence of
interference fringes in the probability distribution associated to the state (see e.g., [11]).
We stress that this phenomenon does not have a classical explanation: classically, a prob-
ability distribution evolving freely in the phase space of a single particle follows the free
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Liouville equation, so, by linearity, two colliding probability densities sum up without
creating an interference pattern.

Nonetheless, at human scale no interference is revealed, so the question arises, on
how does the interference pattern disappear. Such a phenomenon is called decoherence
and its explanation lies in the fact that macroscopic objects undergo a continuous inter-
action with an external environment (such as air molecules, fields), which causes the loss
of the phase relations between the different states in the superposition. Thus, the state
of the system becomes a statistical mixture in which the quantum effects are suppressed.
In this sense, the system loses its quantum nature and then its state admits a classical
interpretation.

Understanding decoherence is important not only in the foundations of quantum me-
chanics, but also in applied physics. For example, in quantum computation (QC), elec-
tron spin resonance (ESR), and nuclear magnetic resonance (NMR) it is of paramount
importance to preserve the quantum behaviour, so decoherence is not desired and efforts
are made in order to avoid it [27,29]. On the other hand, in quantum interference effect
transistors (QulET) decoherence is exploited to control the quantum current flow [28].
In such devices, decoherence acts like a switch to modulate the current flow, the device
being switched “off” in the completely coherent state and “on” when interference disap-
pears.

We remark that the transition from the quantum to the classical regime due to deco-
herence is different from the semi-classical limit, where the classical behaviour is recov-
ered exploiting the smallness of Planck’s constant. Let us stress three main differences to
this regard: first, decoherence requires an open system, i.e. a system that interacts with
an environment; second, decoherence acts at the length-scale of the interference pattern,
whereas a typical semi-classical procedure consists in evaluating a macroscopic observ-
able on a fast oscillating probability distribution; third, decoherence is a dynamical effect:
it grows with time, whereas the semi-classical limit can be performed in the stationary
framework too. Furthermore, at least qualitatively, /1 plays no role in the mechanism of
decoherence: nevertheless, from a quantitative point of view, in many models of physical
relevance the time-scale of the decoherence owes its shortness to the smallness of 7 (see
e.g. [24]). Even though in this paper  acts as a constant, we keep writing it explicitly in
formulas, in view of possible future investigation on a more precise determination of the
decoherence rate.

In spite of its recognized relevance, there are still few rigorous results on decoherence,
both from the analytical [1-3,8,10,12,14,15] and the numerical [5] point of view.

The aim of this paper is to investigate numerically the mechanism of decoherence
on the simplest model in which it takes place, namely a heavy particle that scatters a
light one. Therefore, the system we monitor is a quantum particle and the environment
is another quantum particle, considerably lighter than the first one. The two particles
interact with each other via a repulsive potential and, due to the low mass-ratio, the light
particle is scattered away while the heavy particle remains almost unperturbed. It turns
out that, at leading order in the mass ratio, the only effect of the interaction on the heavy
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particle is the destruction of the interference pattern.

We would like to point out here that, even though the small mass ratio had already
been employed in the well-known Born-Oppenheimer approximation [18], a different
physical situation is described in the present study, as no bound states are present and the
interaction between the particles can be described as an instantaneous scattering process.

The analytical study of the one dimensional, two-body problem in the small mass
ratio and with a zero-range potential was performed in [14]. In [2] the analysis was ex-
tended to the three-dimensional case in the presence of a fairly general interaction, and
in [3] a model with an arbitrary number of heavy particles interacting with an arbitrary
number of light ones was investigated. The present paper provides a numerical resolu-
tion of the 2D time-dependent Schrodinger equation. As a further step, such a resolution
is exploited in order to describe the dynamics of the two-particle system in the hypothesis
of small mass ratio.

In order to summarize our results, we need to be more specific and to anticipate the
content of Section 2. Consider the case of a particle of mass M, initially lying in the
quantum superposition of two localized and separated “bumps”, i.e. described by a
wave function like

—iPyX iPX

$o(X):=po(X—Xp)e " +@o(X+Xo)e

where Py >0, Xo> 0. The function ¢g can be thought of as a Gaussian (as we shall do in
(2.4)). The two bumps are moving against each other.

If the particle does not interact with the external environment, then at time f=MX/ Py
(corresponding to the time when the two bumps completely overlap) the probability of
finding the particle at a position X reads

pliee (1 X) =2 <1—|—cos (2%){)) ( [UM(f)qoo} (X)

where UM represents the free Schrodinger evolution for the heavy particle (the precise
definition will be given in (2.7)). The presence of opposite phases in the two components
yields an oscillating term that describes an interference pattern composed of alternating
fringes of high and low probability density, embodied in the term cos (Z%HX ).

On the other hand, according to a widely accepted heuristics, if the same particle
interacts with another particle of smaller mass, then the dynamics becomes more compli-
cated and the quantity given in (1.1) can be replaced (in a suitable approximation) by

pinteracting (7 ) _ (1 1 Acos (21;_HX>> ‘ [uM (t) 4’0] (X)

where the presence of a constant factor 0 < A <1 shows that the interference fringes
are damped. We stress that A depends on the chosen interaction potential and on all
parameters in the model and in the initial data. The rigorous results in [2,3,14] show that
formula (1.2) is a correct approximation up to an error

Error <C(ve+oy),

7

2
’ (1.1)

2
’ (1.2)
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where the small parameter ¢ is the ratio between the mass of the light particle and the
mass of the heavy one and oy is the width of the bumps in the initial state of the heavy
particle (see Eq. (2.4)).

We stress that the small mass ratio hypothesis is the key assumption in order to get a
density distribution like in (1.2), in which decoherence is the only physical effect. This means
that, due to such a hypothesis, one can completely neglect energy exchange between the
two particles and other effects of deformation and of repulsion of the wave packets. In
other words, dissipative phenomena occur on a longer time scale, typical of decoherence
of Brownian particles (see e.g. [7]).

Our numerical results complete the cited theoretical analysis, in the sense that we
explicitly evaluate the decoherence coefficient A, analyze its dependence on the strength
of the interaction, and estimate the constant C in the error, up to now only implicitly
known.

To this aim, we extract numerically a regime in which decoherence is the dominating
effect, while dissipation can be neglected. Furthermore, we show that, at least with our
choice of a potential, this purely decoherent regime is already reached when the mass
ratio is of the order of 1073, The result in [3], although rigorous, does not permit such
evaluation due to the presence of an unknown constant in the error estimate.

Our results can be summed up as follows: first, we show that, at least for our model,
the Joos-Zeh approximation is effective for values of the mass ratio of the order of 103
(small, but not extremely small), which is the order of magnitude of the mass ratio of
nucleons and electrons. Second, we found that such approximation is no longer valid as
the interaction becomes too strong. Third, we found that, as the strength of the interaction
increases the most important effect beyond decoherence lies in the repulsion of the two
bumps: quite surprisingly, we hardly see a deformation of the probability profile in our
experiments.

The strongest limitation of our results is that, at this stage, they correspond only to
a particular two-body model. A further step shall be to extract the physical relevant
parameters from the interaction potential and to extend the present results to a wider
class of models.

In particular, the theoretical analysis can be extended to the case of an environment
made of many light particles. In this case, the physics involved would remain basically
unchanged, but the resulting coefficient A would increase with the number of light parti-
cles, and thus of interactions. Roughly speaking, in the presence of an environment made
of N light particles lying initially in the same state and interacting with the heavy particle
in the same fashion, a coefficient Ay = AN is expected to be found instead of A in (1.2)
(see [3]).

However, with the present numerical model the possibility of considering several
light particles is definitely out of reach. This is due to the fact that the wave function
depends on the position variable of all particles, which leads to high dimensional systems
as the number of particles significantly increases. In the forthcoming paper [4] a different
and efficient model will be considered, permitting to treat multiple collisions with no



R. Adami and C. Negulescu / Commun. Comput. Phys., 12 (2012), pp. 85-108 89

additional numerical effort.

Anyway, the physics involved in this simple model is by no way different from the
physics of a heavy particle in an environment of many light particles: the amount of
decoherence yielded by many collisions is nothing but the resultant of the amount of
decoherence produced by any single collision. So, any theoretical analysis of the so-
called collisional decoherence must start from the analysis of a two-body problem and
involves the study of a two-particle scattering (see e.g. [19,21]).

The outline of this paper is the following. In Section 2 we state the mathematical
problem and introduce the Joos-Zeh approximation for the two-body wave function, that
holds in the small mass-ratio regime. Furthermore, we define the decoherence coefficient
A. In Section 3 we present the numerical scheme employed for the resolution of the 2D
time-dependent Schrédinger equation and comment on the obtained numerical results.
In particular, we investigate the behaviour of the decoherence coefficient A as a function
of the strength of the interaction. In Section 4 we sketch, at a qualitative level, a different
insight on decoherence, as suggested by the analysis of the dynamics in the classical
two-particle configuration space. A detailed numerical analysis of the chosen numerical
scheme will be given in the forthcoming paper [23].

2 Model problem and mathematical study

21 The dynamics

We analyze the dynamics of a quantum system composed of a heavy and a light particle,
interacting with each other. We consider the heavy particle as the “system”, and monitor
the decoherence induced on it by the light one, that plays the role of the “environment”.
According to the axioms of non-relativistic quantum mechanics, the evolution of the
two-particle wave function ¢ (t,x,X) is driven by the time-dependent Schrédinger equa-
tion
2 52
—mAxtp(t,x,X) - %szp(t,x,x) +aV(|x—=X]|)w(t,x,X), (2.1)

where t denotes the time variable, x is the spatial coordinate of the light particle, and X is
the spatial coordinate of the heavy particle. The symbols M and m represent the masses
of the heavy and the light particle, respectively, so m < M, and 7 is the reduced Planck’s
constant. The parameter « € R™ shall in the sequel modulate the strength of the particle
interaction.

The potential V is chosen in Gaussian form, namely

1 _2
e 2?2, oc€R" and rcR. (2.2)
V2o

Notice that V is positive and regular; such a choice implies that we are analyzing a scat-
tering regime, i.e. the interaction is repulsive and no bound states are present.

ihatgl)(t,x,X) =

V(r):=
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We assume that at the initial time ¢ =0 the wave function of the two-particle system
reads

$(0.2,X) =o(xX) = (go(X—Xo)e 1" +go(X+Xa)e I )xo(x).  23)

The initial condition (2.3) is taken in factorized form, i.e. at time zero the two particles
are assumed to be uncorrelated. The two functions ¢g and g are Gaussian wave packets

:B Xi 1 - (ksz)z —iPpx
Po(X):=—rr—— (27()1/4\/0_ “h XO(X)3:W6 YioeTh o, (2.4)
with B€R™ chosen so that the initial condition satisfies || || 2(r2) = 1.
Let us remark that —P; /m is the group velocity of the light particle wave function,
whereas —Py/M and Py /M are the group velocities of the two wave packets that com-
pose the state of the heavy particle.

2.2 Interference

As it is widely known, the physical interpretation of i (t,x,X), known as the Born’s rule,
states that the quantity [y (t,x,X)|>dxdX represents the probability to find at time ¢ the
light particle in the volume dx around the position x, and the heavy particle in the volume
dX around X.

From the two-particle wave function ¢(t,x,X) one can get the physically significant
one-particle densities py (f,x) and py(t,X), related respectively to the light and to the
heavy particle, by an integration on the degree of freedom of the other particle, namely

o]

o1(bx):= /°° (b, X)PdX,  ou(tX):= / (%, X) Pdx. 2.5)

In Fig. 1 we show the initial density function of the heavy particle, i.e. py(0,X).
If there is no interaction between the two particles (i.e. if x =0 in (2.1)), then the
dynamics of the heavy particle is described by the free 1D Schrédinger equation

2
i3 (t,X) = —2h—Aqu(t,X), (£X) € (0,T) xR,

1PHX

@(t=0,X)=qo(X—Xop)e +§00(X+Xo) ,

whose solution reads

1PHX

P2t
(P(t X)—e 12Mh e h

P

+e~ Zthe h (L{M( )q)o)(X—i—Xo—PHt/M), (2.6)

(UM () o) (X —Xo+ Pt/ M)

where we introduced the unitary free Schrodinger group UM (t), whose action is

+oo /
(UM(t) =/ 2mht MUK (XY dX. 2.7)




R. Adami and C. Negulescu / Commun. Comput. Phys., 12 (2012), pp. 85-108 91

25

Py/M —Py/M
s <~
20f
150
<
= 1of
sl
0 | |
I !
XO XO

L L L L L L L L L
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
X

Figure 1: Initially, the heavy particle is given under the form of two wave-packets moving against each other.
Here is plotted the corresponding probability density function.

Applying the Born’s rule to (2.6) one finds the following evolution of the heavy particle
density function
2 2
o1 (%) := | (UM (£)g0) (X = Xo+Put/ M) | +| UM (£) o) (X+ X~ Puat/ M)

—1—2Re[e’ZiPTHX(L{M(t)q)o)(X—Xo—i—PHt/M)(L{M(t)qoo)(X+Xo—PHt/M)]. (2.8)

At time = XIQF]IVI, which corresponds to the complete overlap of the two heavy particle

bumps, the probability density reads

on(£,X)=2 <1+cos(2%HX)> ( UM B0 (X) (2 (2.9)
Let us stress that the last term in (2.8) as well as the term cos(Z%HX) in (2.9) describe
the appearance of the interference pattern in the density function of the heavy particle,
in the region where the two bumps overlap (see Fig. 2 (left)). This is the fully quantum
mechanical picture.

It is not immediate to understand which is the classical counterpart of (2.9). Indeed,
it is well-known that no classical free evolution can reproduce the quantum evolution of
the probability densities of both the position and the momentum for the heavy particle
(see e.g. [17]). Nevertheless, there exists a classical distribution in the phase space that
reproduces the quantum evolution of a single Gaussian bump. We interpret the sum of
two such distributions as the classical counterpart of the quantum free evolution of our
two-bump initial data. Since it evolves by the free Liouville equation, that is linear, no
interference can arise and we can understand

2

pic(tX) = | @Y (1)90) (X Xo+Put/ M)| | @™ (0)g0) (X-+ Xo— Pt /M), 210)
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Figure 2: Left: Interference pattern: quantum superposition of the two bumps in the probability density of the
heavy particle. Right: Classical superposition of the two bumps in the probability density of the heavy particle.
Notice the difference in the scale of the vertical axes.

2

as the classical correspondent of (2.9). Eq. (2.10) implies pg,c(f,X) =2 (UM (t) o) (X)|",
as plotted in Fig. 2 (right).

We investigate numerically in this paper how the interaction with the light particle
induces the decay of the last term in (2.8) and, consequently, how the interference pattern

is lowered. This is the so-called “decoherence effect”.

2.3 Decoherence according to Joos-Zeh

The physical mechanism at the origin of decoherence has been described in a famous
paper by Joos and Zeh [22]. In this paper, the environment is modeled as a gas of many
light particles, and a repulsive force acts between the heavy particle and each light parti-
cle. The dynamics of such many-particle system is then depicted as a sequence of binary
collisions.

Owing to the difference in the mass of the particles involved, in any such collision the
state of the heavy particle remains basically unchanged while the light particle is scat-
tered away. If the initial state of the heavy particle is the superposition of two localized
“bumps”, as in (2.3), then the light particle is scattered separately by both bumps, giving
rise to two scattered waves. Moreover, as the two bumps are localized at different points,
the respective scattered waves of the light particle cannot be equal.

As a net effect of the presence of two different scattered wave functions of the light
particle, associated each to the corresponding bump of the heavy particle, the collisions
provide a sensible modification of the probability density of finding the heavy particle at
a fixed point: in particular, the presence of the fringes becomes less evident, i.e. decoher-
ence occurs.

Applying the Joos-Zeh hypothesis to our model translates into assuming that, at time
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. XOM

, the probability density of the heavy particle reads

2
) (2.11)

pn,z(1,X)=2 <1+Acos(21;l—HX)> ‘ [LIM( )q)o} (X)

where A is the decoherence coefficient that measures the attenuation of the interference
fringes. Indeed, by (2.11), it appears that for A =1 the approximation coincides with
the fully quantum case, while for A =0 the purely classical case is recovered. The case
0 <A <1 corresponds to an intermediate situation, where interference is only partially
suppressed.

The mathematical derivation of the approximation (2.11) was provided in [3]. Follow-
ing the line of this paper, we introduce the “mass ratio” parameter e:= §; <1 and modify
the problem defined in (2.1)-(2.4) rescaling the potential by the factor ¢ ~!. The rescaled
Schrédinger equation writes now

2 2
am ¥ (b X) =5

Theorem 1.1. in [3] establishes that, for fixed T >0, the solution ¥, (t,x,X) of (2.12),(2.2)-
(2.4) can be approximated for all times t € [0,T] by

ihat (%, X) = — A X) S V(|x XDt X).  (2.12)

o (tx,X)
M\/_ 400 M- x/)2 PHx/ +00  Me(x—/)2 . , , ) )
~ 2mint / e go(X' = Xo)e / ez Q7N(X ) xo(x)dx' dX

+o0 /2 / O Me(x—2/)2
+/ eI o (X' 4+ Xo e P”X/ ¢ QT (X ) xo(x)dx dX! |, (2.13)

—00

and the error can be estimated as follows

19°(t) =Dl 2wy <Crve, VEE[0,T], (2.14)

where the constant Cr >0 depends on T, on the initial data (2.3) and on a suitable norm
of the interaction potential a V.

In (2.13) the symbol Q) (X’) denotes the Moller wave operator for the interaction
given by a potential V centered at the point X’, defined by (for more details see [26])

Q4 (X)) p:=lime* "B HVE—X)]ot ooty (2.15)
e—0
where we used the small mass ratio, namely m =eM.

Roughly speaking, the role of Q! (X’) is to map the initial wave function of the light
particle into the corresponding “scattered” state. In other words, in the small mass ratio
approximation the whole interaction between the two particles occurs at time zero, and
is completely described by the action of () (X”). The motion of the heavy particle is then
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governed by the free Hamiltonian, but the initial state must be replaced by the scattered
state.

A further approximation can be introduced, that consists in neglecting the width of
the bumps of the initial wave function of the heavy particle. To this aim, assume that the
wave packet ¢p is concentrated around its centre, i.e. oy in (2.4) is small. Then, one can
replace Q4 (X') by Q4 (Xp) in the first summand of the r.h.s. of (2.13), and by Q. (—Xo)
in the second one. As a consequence, one can approximate 5 () by

lPi(f x,X)
M +oo M(X-X M(x-X')? ‘ L,/)Z )

“+00 /2 . +oo | e(x—x)2
_|_/ elM(szX q)O(X’—i-XO)l T dX’/ elM(th : Q7N (—Xo)xo(x)dx'|, (2.16)

—00 —00

and the related error reads
195 (8) = ()| 12(r2) < Craoy | V'||l2, VEE[0,T], (2.17)

as one can easily prove refining Proposition 3.2 of [3] and applying it to the present special
case with initial data (2.3), (2.4) and potential (2.2).

Notice that the function ¢ () is the sum of two factorized states, so it exhibits a re-
markably simpler structure than 5(t).

Computing now the heavy particle probability density corresponding to (2.16), yields

3 (1X) 2= | UM (1)) (X~ X+ Prat/ M) |+ | @ (1)q0) (X4 Xo— Pt/ )|

+2Re [Ae_ZiPTHX(uM(t)goo)(X—XO—I—PHt/M)(L{M(t)(po)(X—i—Xo—PHt/M)] , (2.18)

where the decoherence coefficient A is given by

A::/:o Q71 (Xo)xo(x) Q7 H(—Xo) xo(x) dx. (2.19)

Remark now that formula (2.18) at time ¢ =1 is nothing but the Joos-Zeh approximation
(2.11). By the definition (2.19) it appears that the decoherence coefficient A depends on
the initial wave function ) of the light particle, on the interaction potential V, and on the
initial distance 2X( between the centres of the two bumps of the heavy particle.

Let us observe here that the Cauchy-Schwarz inequality implies |A| <1, so the inter-
ference fringes are diminished as compared to the non-interacting case (2.8). Indeed, for
t=t the probability density (2.18) gives the profile of Fig. 3.

Before entering in the details of our numerical resolution, let us stress once again the
relevant difference between the evolution equations (2.1) and (2.12), i.e. the rescaling of
the potential by the factor e~!. At a first glance this factor could seem quite unphysi-
cal. Nonetheless, it plays a fundamental role in the occurrence of the decoherence effect,



R. Adami and C. Negulescu / Commun. Comput. Phys., 12 (2012), pp. 85-108 95

— -3
m=2*10"" t=X M /P,
70

Quantum picture

Decoherent picture
601 7 Ta=2110®

= = Classical picture

50

40

PX)

30F

=

20

=

101

\,

0 =N I I I
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 004 0.06 008 0.1
X

Figure 3: Partially decoherent superposition of the two heavy particle bumps.

isolating it from other phenomena like dissipation, repulsion or deformation of the wave-
packet envelope. Notice that, without introducing such a rescaling, in the limit e — 0 the
scattering of the light particle would carry no effect on the heavy particle.

We stress once again that, on a qualitative level, there is no difference between this
case and the case with many light particles. In the latter, decoherence would arise stronger,
being dependent on the number of interactions between the heavy and the light particles.
As already explained in the introduction, due to the numerical difficulties in considering
several light particles, related to the dimensionality of the model, we shall focus on the
two-body problem.

3 Numerical resolution

This section is concerned with the numerical resolution of the two-particle time-dependent
Schrodinger problem

ihatzp:—%Axtp—%A,ﬂ/}-ﬁ—%v(!x—X|)X[O,Tim](t)1p, for (x,X)eQ,t>0,
9, P(t,x,X)=0 on 90, xQx; IxP(t,x,X)=0 on Q,xd0x, (3.1)
P(0,x,X)=19o(x,X), for (xX)eQ,

where () =), xQx is a bounded simulation domain with boundary 002 = (), x QxU
0, x0d0x. The obtained numerical simulation results are presented and analyzed. In
particular, the decoherence coefficient A(«) is computed as a function of the strength of
the interaction between the particles and the resulting Joos-Zeh approximation formula
is compared with the numerical solution.

Before entering into the details of our numerical method, let us comment on some
relevant questions we had to face when performing the simulations.
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Even though in the idealized physical experiment the two particles evolve in
the whole R xR position space, numerically we are forced to solve the two-particle
Schrodinger equation on a bounded simulation domain (). Thus, we are led to impose
boundary conditions. In order to simplify the numerical resolution of problem (3.1), we
choose homogeneous Neumann boundary conditions, the particles being thus reflected
once having reached the boundary o). On the other hand, absorbing boundary condi-
tions, which would permit the particles to get in and out of the simulation domain, would
be more realistic from a physical point of view, but would considerably complicate the
numerical resolution. Furthermore, in this first work we choose to focus on the decoher-
ence effect produced by a single collision between the heavy and the light particle. This
fact shall permit us to avoid the implementation of artificial (or absorbing) boundary con-
ditions and to get precise results even when using Neumann boundary conditions. Let
us comment on this, in particular on the choice of Tj,; and of the other parameters.

According to Joos and Zeh, in the regime of pure decoherence the evolution of the
bumps in the heavy particle probability density is approximately free, as far as the bumps
do not overlap. Thus, the evolution consists of two phenomena: first, the centres of the
bumps move with velocity =Py /M; second, each bump spreads at a time rate propor-
tional to M. Since we are interested in measuring the progressive disappearance of the
interference fringes, the width oy of the initial wave packet of the heavy particle has to
be chosen sufficiently large, in order to distinguish several fringes inside it, while the
mass M of the heavy particle must be chosen in such a manner that there is no important
diffusion within the simulation time [0,T]. The final time T is fixed in such a manner to
permit one overlap of the heavy-particle bumps.

On the other hand, due to the small mass ratio hypothesis m = eM, the light parti-
cle disperses on a time scale of order ¢, thus in the time interval [0,T] the light particle
should be pushed outside the simulation domain. Nonetheless, due to the choice of ho-
mogeneous Neumann boundary conditions, the probability density of the light particle is
reflected when touching the boundary and remains inside the simulation domain, where
it keeps interacting with the heavy particle and perturbing its evolution. Clearly, this
phenomenon is an artefact of our choice of boundary conditions (2.1). In order to face
this problem, we notice that, due to the fast dispersion of the light particle, the collision
between the two particles is completed in a time interval of duration Tj,,; ~e.

This fact can be easily proved as follows: first, we fix a threshold J of the acceptable er-
ror. Then, we consider the following well-known identity involving the Meoller operator
071 (Xo) (see e.g. formula (2.24) in [2])

t, ot

Ut (=2) ROV CX0) ) — 071 (Xo)xo

— [TUM (=) V(.= Xp)eB (- ATEVEX0) o,
t/e

The previous identity shows that, if one considers the heavy particle as a fixed scatterer
located at X, then the evolution of the light particle can be approximated by the action
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of the operator Q! (Xp) for sufficiently large values of t/e.
In other words, the interaction between the two particles can be considered as com-
plete after a time T;,; if for any ¢ > T},;; one has

OOUM<_S)V<. _Xo)eis<fﬁA+%V(~7Xo))X0ds
t/e

<. (3.2)
2

Since in (3.2) the time t always appears with the factor ¢!, the interaction time Tj,; must
be of order e.

Therefore, we shall switch the interaction potential on during a short time Tj,;; ~ ¢
only, by introducing the factor x(or,, (t) in (3.1). Thus, for > Tj;; the evolution of the
probability density py associated to the heavy particle is free and hence unperturbed by
the further presence of the light particle within the simulation domain. We observe, by
the way, that the evolution of the light particle after the collision is of no interest for us.

It remains to discuss the role of the Neumann boundary conditions. As already
stressed, they make our numerical model different from the starting problem (2.1). The
choice was dictated by the fact that absorbing or transparent boundary conditions on the
variable x of the light particle would make the norm of the two-particle wave function
vanish as the light particle is spreading out of the simulation domain, leading to the loss
of all information concerning the heavy particle.

Besides, in order to preserve the symmetry between the two bumps we chose as ini-
tial data xo of the light particle a Gaussian wave packet whose centre does not move, en-
dowed with a width o, small enough to ensure that it is scattered in a sensitively different
way by the two bumps of the heavy particle. As a consequence, the Fourier transform
Xo of xo is quite spread around the origin, so unavoidably there are fast components of
Xo that have the time to be reflected by the boundary and therefore to interact more than
once with the heavy particle. On the other hand, the low frequency components of ) do
not meet the heavy particle at all during the time interval [0, Tj;¢]. Therefore, the numer-
ical experiments do not reproduce a single scattering event between the two particles,
but rather a complicate interaction of duration T;,; where the role of the boundaries is
relevant. We evaluate such a role in the forthcoming paper [4], where a faster numerical
scheme shall allow repeated experiments on larger domains.

Anyway, the Joss-Zeh hypothesis remains effective, for it requires the validity of the
scattering regime, which is true for our numerical model too since the asymptotic evolu-
tion of the system is free.

3.1 Time-splitting method

The resolution of the Schrédinger equation (3.1) is rather delicate due to multi-scale ef-
fects. As stressed in Sections 1 and 2, we can single the decoherence effect out as far as
we push the quantity e:=m /M towards zero. However, for too small values of ¢, prob-
lem (3.1) becomes highly anisotropic, implying severe numerical problems. Two different
time scales occur, the slow time scale of the heavy particle and the fast time scale of the
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light one. Very fine space and time meshes are then required in order to catch the rapid
evolution and guarantee good numerical approximations. These fine grids lead then nec-
essarily to high numerical costs, making the choice of the numerical method an essential
step in the resolution of (3.1).

Three different methods to solve (3.1) are compared in detail in [23] from the point of
view of the numerical analysis, including issues like error estimates and convergence. It
turns out that the most advantageous method, the one we employ here, is the Peaceman-
Rachford splitting method, which is second order accurate in both time and space and
furthermore unconditionally stable in the L>-norm. Let us now present this method. For
more details, we refer the reader to [23].

Let =0, xQx=[—L,L| x [—H,H] be the simulation domain, [0,T]| the time interval
and let us discretize these spaces as follows

_LIX]S"'SxiS"'-xN:L, _H:X1§‘§XJS“XM:H,

Let us moreover suppose, for simplicity, that the chosen discretizations are homoge-
neous, with the corresponding space/time steps hy >0, hx >0, At > 0. In the following,
Z. shall denote the approximation of l/)(tn,xi,Xj).

Then, starting from the initial condition 1/)0, the idea is to treat the two directions
separately. We advance first a half-time step 7= 4! and solve for each fixed x € Q) the 1D
stationary equation

DAy 2 (B sy )y EAg, forall XeQy, 63
oxy"t1/2(x,X)=0, forall Xe€odQy,

in order to get ¢"*1/2(x,-). Afterwards, we advance a further half-time step to find
" +1(.,X), for each fixed X € Qy, via

%Axlpwrl_i_ <% o %V) anJrl — %anJrl/Z_ %Axl/)n+l/2, forall x€Q,., (3 4)
9" (x,X)=0, forall x€0dQ,.

One of the advantages of this procedure is that it decomposes the initial 2D Schrodinger
problem (3.1) in two 1D sub-problems (3.3)-(3.4), which significantly accelerates the nu-
merical resolution of our problem. Indeed, instead of solving (for example with a Crank-
Nicolson scheme) one very large linear system (corresponding to a 2D problem), we shall
solve several small linear systems via the Peaceman-Rachford scheme. This shall also
permit considerable savings in memory. Moreover, another crucial advantage is that this
procedure separates the two different time-scales, permitting thus different treatments
for the two sub-problems.
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Introducing now the following operators

h

e . 2 2
A= ZMAX’ A:D(A)CL (Q)—L*(Q),
__ n . 2 2 —
Bi=—5 -Ay+-—V, B:D(B)CLY(Q)—1*(Q), G:=A+B,

with D(A) and D(B) their definition domains, we can rewrite the semi-discrete system
(3.3)-(3.4) as follows
(I+iTA)Y" /2= (I—itB)y",
(3.5)
(I+itB)yp" = (I—iTA)yp" /2,

Discretizing now the continuous, unbounded operators A and B in space, by means of a
standard second order method, leads to a set of tridiagonal linear systems to be solved in
order to get the unknowns 1,DZ Denoting by Any resp. By the matrices approximating
respectively A and B, the fully numerical scheme, called Peaceman-Rachford scheme,
simply writes

P = (I+itByym) T (I—itAnm) (I+iTAnm) L (I—itBym) 9", VneN. (3.6)

The choice of the time and space discretization steps hy, hx, T is guided by the next
convergence result, proved in [23].

Theorem 3.1 (Convergence). The scheme (3.6) is unconditionally stable and second order ac-
curate in time and space. In particular the error between the exact solution { and the numerical
solution is given by

(812

x 2
|Pum((tn))— 9" |2 < Cty, [€—3+ <(AX)2+ (Ax)

€

> ||llJ0HH4(Q)] , (3.7)

where Py is the projection of the exact solution on the space grid and e =m /M. Moreover, this
scheme is conserving the probability density up to a small error, which means

" [l2=119°]]2 (1+0((At)2>>, VYneN.

&2

As one can observe from the error estimate (3.7), if we let m — 0, then we are forced
to choose more and more refined meshes, in particular Ax — 0 and At — 0, in order to get
accurate results. This is rather restrictive from a numerical point of view and alternative
methods have to be adopted. From a mathematical point of view, the 2D time-dependent
Schrodinger equation is singularly perturbed for m — 0. Boundary layers or multiple
scale problems may occur, such that adapted methods have to be used to compute the
solution in a precise manner. Work in this direction is for the moment in preparation [4].
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Table 1: Parameters used in the numerical simulations.

L=H 2%1071 N=M 401
T 1.92%102 K 120%400+1
h 1 Py 3.4xM
M 100 Xo 5%10~2
m; 1¥1073, 1=1,---,6 Pr,x 0
Tine | 1%48%1077, 1=1,---,6 | ocy=o01 1072
3 1.47%1072 ® 0,---,40%10?

3.2 Numerical results

In this section we present the numerical results obtained with the Peaceman-Rachford
splitting method (3.6) for the resolution of (3.1). In Table 1 we summarize the parameters
we used. The performed numerical experiment show that the chosen grid is sufficiently
fine to capture the decoherence effect accurately, as further refinements do not change
significantly the evaluation of the decoherence coefficient A (see Fig. 6). Moreover, we
found a range of values of m and « for which the limit ¢ — 0 is likely to be found, in the
sense that, for fixed «, varying m in this range leaves A essentially untouched. Let us go
into more details.

The different curves of Fig. 4 portray the interference pattern of the probability den-
sity py(£,X) of the heavy particle at collision time f:= XoM /Py, for m =2%10~3 and
different values of the strength « € R™ of the potential (2.2). The decoherence effect can
be clearly observed in the figures, as the interference pattern is more and more reduced.

In Fig. 5 (left), we plotted the decoherence coefficient A(«) as a function of the inter-
action strength for three different masses m. The values of A(«) are obtained as follows:
first, we solved the Schrédinger equation (3.1) up to time t=f and evaluated W, (f,x,X).
Then, we computed pp um(f,X), integrating over the light particle variable x. At this
stage, as we are in the small mass ratio regime 0 <m/M <1, we assume that py ,,,» can
be approximated by the Joos-Zeh formula (2.11) and evaluating at X =0 we compute

Aw) = - Pl EX=0)
2| UM (F)go] (X=0)

Now, inserting the quantity A(«a) in the Joos-Zeh approximation (2.11), we compare in
Fig. 5 (right) o, num (£, X) and pg jz (£,X) over the whole domain Q.

We plotted the curve A(«) for three different value of the mass m -i.e. for three differ-
ent values of e- in order to verify whether the asymptotic regime ¢ — 0 had been singled
out. If so, then the decoherence would remain the same as the mass becomes smaller
and smaller. This is indeed the case for m =2%10"3 and m =3%103, but the curve corre-
sponding to m =103 is rather different. The reason for this disagreement is made clearer
by Fig. 6, where we plotted the L2-relative error between py(f,-) and a reference solution
PH,ref(f,+) obtained by an implementation on a much finer space-time grid. What can be
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Figure 4. Decoherence effect on the heavy particle due to the interaction with the light particle. We plot
the probability density of the heavy particle at t:= XoM/Py for different values of the strength a >0 of the
interaction. In correspondence to the largest tested value of a, i.e. «=4000, the maximal overlap between the
two bumps is attained at a time significantly larger than £. This means that for such a strong interaction the
Joos-Zeh approximation fails.

observed is that for the chosen grid of N =M =401 space points and K=120+400+1 the
test cases with m; =1072 are not precise. In fact, as e—0, one has to choose finer and finer
grids in order to keep the same accuracy, as we have to cope with a highly anisotropic
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Figure 5: Left: The decoherence coefficient A(a). Right: The relative error between the numerical solution
pr(£,X) and the Joos-Zeh approximation pyz(f,X).
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computed on a refined grid.

2, where ppy,.¢(F,+) is a reference solution

or multi-scale problem. As a consequence, the plots presented in Fig. 4 correspond to
my=2x 10-3.

One can also observe that. as « increases, the three curves become more distant from
one another. In order to explain this phenomenon, we recall that in the approximation ;,
introduced in (2.16) there is a source of error which is increasing in « and independent
of ¢, as estimate (2.17) shows. This means that for large values of « we cannot expect to
remain in the asymptotic regime, nor even that such a regime exists.

In order to investigate the actual existence of such a regime one should push ¢ further
towards zero, but then numerical errors would arise and possibly take the overhand, as
detailed above. As a consequence, we can argue that this source of numerical error plays
a role also in the straight curve in Fig. 5 for & around 3000. In this range of values of the
interaction such error adds to the Joos-Zeh approximation error.
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Besides, it is worth remarking that for « >3000 the maximal overlap of the two bumps
in the probability density of the heavy particle is not verified for t =t, but later. Further-
more, the time of maximal overlap increases with the strength « of the interaction, even
though the overall profile of the probability density remains close to the one of a purely
decoherent state. This phenomenon can be explained as follows: first, as already noticed,
if the interaction is not too strong, then the Joos-Zeh approximation is effective and thus
the only effect of the interaction on the heavy particle is the occurrence of decoherence.
Second, if the strength of the interaction overcomes a certain threshold, then the Joos-
Zeh approximation is no longer valid, but the shape of the probability density is not lost:
what happens is that the two heavy bumps are slowed down, so that it results that the
main effect beyond decoherence is the repulsion between the bumps. This is not a trivial
point, as repulsion could be expected to emerge together (or later than) the destruction
of the shape of the probability density.

We then conclude that we verified the validity of an approximation of the type Joos-
Zeh for the model (3.1) in the regime a <10, m <3-10~3, neglecting the numerical errors
which arise for m <10~3.

4 Understanding decoherence in the configuration space of the
two-particle system

In order to analyze the occurrence of decoherence, in the previous sections we followed
the traditional approach that consists in computing the decrease of the non-diagonal
terms of the density matrix of the heavy particle. As shown in Section 2.3, this is equiv-
alent to describing the disappearance of the interference fringes. In other words, we
focused on the open system “heavy particle”.

On the other hand, decoherence can be discerned also by following the evolution
of the two-body wave function ¢(f,x,X), namely, analyzing the dynamics of the closed
system given by the heavy and the light particle together. Quite surprisingly, in such
a framework the occurrence of decoherence has a clear origin and an effective pictorial
representation.

The two plots in Fig. 7 portray the real part and the square of the modulus of the two-
particle initial data yy. Notice that the probability density concentrates in two bumps
near the points x =0, X = 1+Xy. Notice also that as the light particle has no velocity, no
oscillations occur in the x-direction on the left figure.

Let us first consider the non-interacting (free) evolution (i.e. V =0). The two heavy
bumps start moving towards each other along the vertical direction. Obviously, such
a dynamics preserves the “left-right symmetry” ¢ (t,x,X) = ¢(t,—x,X) inherited by the
initial wave function, as shown in the two lower plots of Figs. 8 and 9. As a consequence,
at time f = MX/ Py, the overlap between the two components of the wave function is
perfect, so that the effect of the composition of the phases becomes maximal: in particular,
the peaks of the modulus squared of the wave function are emphasized and there are
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regions where the same modulus squared is zero (namely, the dark regions in the fourth
picture in Fig. 9).

Let us now consider the interacting case. The upper part of Figs. 8 and 9 shows that
the left-right symmetry is broken. Such an effect is put in best evidence in Fig. 10, where
the difference between the real part of the wave function in the interacting case and in the
non-interacting case is plotted. Notice in particular that, due to the repulsive character
of the interaction, the “upper” bump is moved towards the right region of the picture,
while the “lower” bump is shifted to the left. The same comments apply to Fig. 11.
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As a consequence, at time f the two bumps cannot overlap perfectly, therefore the
composition of the phases of the two bumps is not so effective and, as a result, the in-
terference is attenuated. In particular, a comparison between the second and the fourth
picture in Fig. 9 shows that the maxima of the modulus squared of the wave function are
lower and the dark regions are less extended than in the non-interacting case. In other
words, decoherence has occurred.

In order to better underline the relationship between this insight of decoherence and
the attenuation of the interference computed in Section 3, we recall that the plots in Fig. 4
correspond to a one-particle representation, that is obtained integrating the two-particle
probability density over the light-particle variable x. Therefore, the plots in Fig. 4 can be
interpreted as follows: if one considers the heavy particle variable X only, then the two
bumps seem to overlap completely. In fact, the presence of the light particle introduces
another degree of freedom, represented by the variable x. If the two particles interact with
each other, then the two bumps becomes far apart along such variable x, so their overlap
is only apparent. We remark that this description of the phenomenon of decoherence
coincides with the mechanism singled out in the context of the Bohmian interpretation of
quantum mechanics [13, 16].

5 Conclusion

We presented in this paper the results of numerical simulations that show the decoher-
ence effect induced on a heavy particle by the repulsive interaction with a light one.
To this aim, the 2D time-dependent Schrédinger equation has been solved via a time-
splitting scheme. The obtained results are helpful to complete the analytical study, pre-
sented in previous works [2,3]. In particular, through the numerical exploration a suitable
range is found, where the approximations used in the cited papers holds true. A more
realistic model, describing multiple collisions, shall be the objective of a future work.
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