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Abstract. We present an unconditionally energy stable and uniquely solvable finite
difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised
of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation mod-
eling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model
and describes two phase very viscous flows in porous media. The scheme is based on
a convex splitting of the discrete CH energy and is semi-implicit. The equations at the
implicit time level are nonlinear, but we prove that they represent the gradient of a
strictly convex functional and are therefore uniquely solvable, regardless of time step
size. Owing to energy stability, we show that the scheme is stable in the time and space
discrete ℓ∞(0,T;H1

h) and ℓ2(0,T;H2
h) norms. We also present an efficient, practical non-

linear multigrid method – comprised of a standard FAS method for the Cahn-Hilliard
part, and a method based on the Vanka smoothing strategy for the Brinkman part – for
solving these equations. In particular, we provide evidence that the solver has nearly
optimal complexity in typical situations. The solver is applied to simulate spinodal
decomposition of a viscous fluid in a porous medium, as well as to the more general
problems of buoyancy- and boundary-driven flows.

AMS subject classifications: 65M06, 65M12, 65M55, 76T99

Key words: Cahn-Hilliard equation, Stokes equations, Brinkman equation, finite difference meth-
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1 Introduction

1.1 Problem definition and background

Consider the Ginzburg-Landau energy of a binary fluid with constant, uniform mass
density [5]
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E(φ)=
∫

Ω

{

1

4ǫ

(

φ2−1
)2
+

ǫ

2
|∇φ|2

}

dx , (1.1)

where Ω⊂R
D, D=2 or 3, φ :Ω→R is the concentration field, and ǫ is a positive constant.

The phase equilibria are represented by the pure fluids φ =±1. The dynamical Cahn-
Hilliard-Brinkman equations we consider are

∂tφ=ǫ∇·(M(φ)∇µ)−∇·(φu) , (1.2)

−∇·[ν(φ)D(u)]+η(φ)u=−∇p−γφ∇µ , (1.3)

∇·u=0, (1.4)

where M(φ) is a mobility that incorporates the Peclet number; µ is the chemical potential

µ :=δφE=
1

ǫ
(φ3−φ)−ǫ∆φ ; (1.5)

γ>0 is a surface tension parameter; u is the fluid velocity; p is a pressure; ν(·)>0 is the
fluid viscosity; η(·)>0 is the fluid permeability; and D(u)=∇u+(∇u)T.

We assume that M, ν, η∈C∞, and M(x)≥M0>0, η(x)≥η0>0, and ν(x)≥ν0 >0, for
all x∈R. For example, we shall frequently use a regularized degenerate mobility of the
form

M(φ)=
1

Pe

√

(1+φ)2(1−φ)2+ǫ2≥ ǫ

Pe
>0, (1.6)

where Pe > 0 is the Peclet number, which might be dependent upon ǫ. We assume
that the system (1.2)-(1.4) is supplemented with the boundary conditions u|∂Ω = 0, and
∂nφ|∂Ω=∂nµ|∂Ω=0. The latter conditions represent local thermodynamic equilibrium on
the boundary. With this set of boundary conditions, the system (1.2)-(1.4) is mass conser-
vative and energy dissipative, and the dissipation rate is readily found to be [8,14,15,17]

dtE=−ǫ(M(φ)∇µ,∇µ)L2− 1

γ
(η(φ)u,u)L2− 1

2γ
(ν(φ)D(u),D(u))L2 ≤0. (1.7)

Eq. (1.3) is a generalized Brinkman equation [2] that incorporates a diffuse interface
surface tension force. The Cahn-Hilliard-Brinkman (CHB) system (1.2)-(1.4) was recently
proposed as a model for phase separation and coarsening of a binary fluid in a Brinkman
porous medium [18]. The authors showed the existence of a logarithmically slow coars-
ening regime that arises when the phase domains are comparable to the average pore
size. The system (1.2)-(1.4) is also closely related to models of tumor growth [20, 33, 34]
which include an additional mass source for volumetric growth. When the surface ten-
sion vanishes, i.e., γ= 0, the CHB system reduces to the Cahn-Hilliard equation [3]. A
generalized Stokes equation is obtained when η ≡ 0 in (1.3). The system (1.2)-(1.4) is a
simplified version of the model derived by Lee et al. [14,15], which they used to describe
gravity-driven, density-mismatched, two-phase flow. We remark that the CHB system
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is closely related to the Cahn-Hilliard-Navier-Stokes systems studied by [8, 12–17, 22, 24]
and many others. We will discuss this connection a bit more at the conclusion of the
paper.

Note that we specifically use the surface tension force formulation f=−γφ∇µ, which
was used by Feng [8] and others. This will be a vital point for the solvability of the
fully discrete scheme. However, at the continuous level, the form we use is equivalent to
others. For example, introducing a new pressure p̃ := p+γφµ, we find

−∇·[ν(φ)D(u)]+η(φ)u=−∇ p̃−γµ∇φ , (1.8)

which is the form used in [18, 22] and elsewhere.
In this paper, we propose and analyze a convex-splitting scheme for the CHB sys-

tem (1.2)-(1.4). We prove that the scheme is unconditionally stable and solvable, and we
present a practical and efficient multigrid method for solving the nonlinear system at
each time step.

1.2 A convex splitting scheme in time

In this section we describe a time-discrete scheme for the CHB system. The calcula-
tions here are meant to motivate those for the fully discrete scheme that we exhibit in
later sections. The scheme is based on a convex splitting approach [1, 6, 7, 27] that we
have used in earlier works [10, 21, 23, 28, 29, 35]. There are two important properties that
convex splitting schemes generally inherit, unconditional energy stability and uncondi-
tional unique solvability [7, 35]. However, convex splitting schemes are typically nonlin-
ear, which presents a challenge with respect to practical implementation. Later we will
show that nearly optimally efficient algorithms are available for solving such nonlinear
schemes.

Notice that the energy (1.1) can be written as the difference of two purely convex
pieces Ec−Ee with, for example,

Ec=
∫

Ω

{

1

4ǫ
φ4+

1

4ǫ
+

ǫ

2
|∇φ|2

}

dx , Ee =
∫

Ω

1

2ǫ
φ2dx . (1.9)

The key idea of the convex splitting schemes is to treat Ec implicitly, while treating Ee

explicitly in a time-discrete scheme. Hence, a first-order semi-implicit, convex splitting
scheme is as follows:

φk+1−φk = s∇·
(

ǫM
(

φk
)

∇µk+1−φkuk+1
)

, (1.10)

µk+1 :=δφEc(φ
k+1)−δφEe(φ

k)=
1

ǫ

(

φk+1
)3

− 1

ǫ
φk−ǫ∆φk+1 , (1.11)

−∇·
[

ν
(

φk
)

D

(

uk+1
)]

+η
(

φk
)

uk+1=−∇pk+1−γφk∇µk+1 , (1.12)

∇·uk+1=0, (1.13)
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where s>0 is the time step size, with the boundary conditions

∂nφk+1|∂Ω =∂nµk+1|∂Ω =0, u|∂Ω=0 . (1.14)

Theorem 1.1. The scheme (1.10)-(1.13) is uniquely solvable for any time step s> 0; mass con-
servative, i.e.,

(

φk+1,1
)

L2
=
(

φk,1
)

L2
, ∀k≥0;

and unconditionally energy stable, i.e.,

E
(

φk+1
)

≤E
(

φk
)

, ∀k≥0, (1.15)

for any time step s>0.

Proof. For brevity, we omit the proof for the unique solvability here, but refer to the proof
in Section 2 for the fully discrete scheme, which is based on tools from convex analysis.

Integrating (1.10) over Ω, thanks to (1.14), we derive immediately
(

φk+1,1
)

L2=(φk,1)L2 .

Next, we take the inner products of (1.10) with µk+1, of (1.11) with −(φk+1−φk) and of
(1.12) with (s/γ)uk+1, sum up the three relations and integrate by parts, we find that

E
(

φk+1
)

−E
(

φk
)

=−sǫ
(

M
(

φk
)

∇µk+1,∇µk+1
)

L2
− s

γ

(

η
(

φk
)

uk+1,uk+1
)

L2

− s

2γ

(

ν
(

φk
)

D

(

uk+1
)

,D
(

uk+1
))

L2

− 1

4ǫ

∥

∥

∥

∥

(

φk+1
)2

−
(

φk
)2
∥

∥

∥

∥

2

L2

− 1

2ǫ

∥

∥

∥
φk+1

(

φk+1−φk
)
∥

∥

∥

2

L2

− 1

2ǫ

∥

∥

∥
φk+1−φk

∥

∥

∥

2

L2
− ǫ

2

∥

∥

∥
∇φk+1−∇φk

∥

∥

∥

2

L2
. (1.16)

Thanks to the non-positivity of all terms on the right-hand-side, this implies

E
(

φk+1
)

≤E
(

φk
)

, (1.17)

regardless of the time step size s.

In the remainder of the paper we demonstrate that the convex-splitting framework
outlined in this section has an analog in the spatial discrete setting, specifically using
difference operators. In particular, the fully discrete scheme that we propose later for
the CHB system will be shown to be unconditionally energy stable and uncondition-
ally uniquely solvable. We also develop a practical and efficient nonlinear solver for the
scheme in this paper. In Section 2 we present the main results of our analyses, includ-
ing the unique solvability and discrete-energy stability of our scheme. In Section 3 we
present evidence that our multigrid solver, described later in Appendix B, is of nearly
optimal complexity. We also provide a convergence test for the scheme, showing that it
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is first order accurate in time and second order accurate in space. In Section 4 we use the
scheme to simulate spinodal decomposition, as modeled by the CHB system (1.2)-(1.4).
We also use our scheme to simulate two cases of driven flow. We give some concluding
remarks and suggest some future work in Section 5. In the first appendix, Appendix A,
we describe some details of the staggered grid finite difference space discretization that
we employ in the scheme. In the second appendix, Appendix B, we give some details of
the efficient nonlinear multigrid method for solving the semi-implicit scheme in time.

2 Fully discrete scheme and its stability analysis

In this section we describe and analyze our staggered grid finite difference scheme for
the CHB system (1.2)-(1.4). We refer the reader to Appendix A for a description of our
notation and for some useful results, such as the various summation-by-parts formulae
that are commonly used in the analyses.

2.1 The fully discrete convex splitting scheme

We begin by defining a fully discrete energy that is consistent with the continuous space
energy (1.1). In particular, define the discrete energy F :Cm×n→R to be

F(φ) :=
1

4ǫ
‖φ‖4

4+
1

4ǫ
− 1

2ǫ
‖φ‖2

2+
ǫ

2
‖∇hφ‖2

2 . (2.1)

It is straightforward to show that if φ∈Cm×n and n·∇hφ|∂Ω=0, the energies

Fc(φ) :=
1

4ǫ
‖φ‖4

4+
1

4ǫ
+

ǫ

2
‖∇hφ‖2

2 , Fe(φ) :=
1

2ǫ
‖φ‖2

2 (2.2)

are convex. Hence F, as defined in (2.1), admits the convex splitting F = Fc−Fe. The
gradients (discrete variations) of the respective energies are δφFc=

1
ǫ φ3−ǫ∆hφ and δφFe=

1
ǫ φ.

The fully-discrete scheme for the Cahn-Hilliard-Brinkman system is the following:
given φk ∈Cm×n, find the grid functions φk+1,µk+1, pk+1 ∈Cm×n, uk+1 ∈Eew

m×n, and vk+1 ∈
Ens

m×n such that

φk+1−φk= sǫ
[

dx

(

M
(

Axφk
)

Dxµk+1
)

+dy

(

M
(

Ayφk
)

Dyµk+1
)]

−s
[

dx

(

Axφkuk+1
)

+dy

(

Ayφkvk+1
)]

, (2.3)

µk+1 :=δφFc(φ
k+1)−δφFe(φ

k)=
1

ǫ

(

φk+1
)3

− 1

ǫ
φk−ǫ∆hφk+1 , (2.4)
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−γAxφkDxµk+1=Dx pk+1+η
(

Axφk
)

uk+1−2Dx

(

ν
(

φk
)

dxuk+1
)

−dy

{

ν
(

Aφk
)(

Dyuk+1+Dxvk+1
)}

, (2.5)

−γAyφkDyµk+1=Dypk+1+η
(

Ayφk
)

vk+1−2Dy

(

ν
(

φk
)

dyvk+1
)

−dx

{

ν
(

Aφk
)(

Dxvk+1+Dyuk+1
)}

, (2.6)

dxuk+1+dyvk+1=0. (2.7)

We enforce the solvability condition
(

pk+1
∥

∥1
)

=0 and the boundary conditions

n·∇hφk+1|∂Ω =n·∇hµk+1|∂Ω=0, uk+1|∂Ω=vk+1|∂Ω =0.

Once again, the reader is referred to Appendix A and [32,35] for a description of the finite
difference notation used here.

In order to make the calculations that follow more readable, let us define

φew :=Axφk , φns :=Ayφk ; (2.8)

Mew :=M(φew) , Mns :=M(φns) ; (2.9)

ηew :=η(φew) , ηns :=η(φns) ; (2.10)

νvc :=ν
(

Aφk
)

, νcc :=ν
(

φk
)

. (2.11)

We will use this notation throughout the remainder of the paper. Also, we point out that
the scheme simplifies in the case of constant viscosity. For instance, if ν≡1, Eqs. (2.5) and
(2.6) become

−γAxφkDxµk+1=Dx pk+1+ηewuk+1−Dx

(

dxuk+1
)

−dy

(

Dyuk+1
)

, (2.12)

−γAyφkDyµk+1=Dypk+1+ηnsvk+1−Dy

(

dyvk+1
)

−dx

(

Dxvk+1
)

, (2.13)

upon using our simplified notation and the discrete divergence-free condition Eq. (2.7).
Now we perform some calculations on the discrete Brinkman equations (2.5)-(2.7)

that will be used several times in the following sections. To simplify the notations, let us
make the notation replacements µk+1 →µα, pk+1 → pα, uk+1 →uα, and vk+1 → vα in (2.5)-
(2.7). Then, we suppose that the triples (uα,vα,pα), α=1,2, satisfy (2.5)-(2.7). Testing (2.5)
(written in terms of α=1) with u2 and testing (2.6) (written in terms of α=1) with v2 we
have

−γh2 [φewDxµ1‖u2]ew=h2 [Dx p1‖u2]ew+h2 [ηewu1‖u2]ew−2h2 [Dx(ν
ccdxu1)‖u2]ew

−h2
[

dy

{

νvc
(

Dyu1+Dxv1

)}
∥

∥u2

]

ew
, (2.14)

−γh2
[

φnsDyµ1

∥

∥v2

]

ns
=h2

[

Dyp1

∥

∥v2

]

ns
+h2 [ηnsv1‖v2]ns−2h2

[

Dy

(

νccdyv1

)
∥

∥v2

]

ns

−h2
[

dx

{

νvc
(

Dxv1+Dyu1

)}
∥

∥v2

]

ns
. (2.15)
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Using the various summation-by-parts formulae from Appendix A and dropping bound-
ary terms we have

γh2 (µ1‖dx (φ
ewu2))=−h2 (p1‖dxu2)+h2 [ηewu1‖u2]ew+2h2 (νccdxu1‖dxu2)

+h2
〈

νvc
(

Dyu1+Dxv1

)
∥

∥Dyu2

〉

, (2.16)

γh2
(

µ1

∥

∥dy (φ
nsv2)

)

=−h2
(

p1

∥

∥dyv2

)

+h2 [ηnsv1‖v2]ns+2h2
(

νccdyv1

∥

∥dyv2

)

+h2
〈

νvc
(

Dxv1+Dyu1

)∥

∥Dxv2

〉

. (2.17)

Adding the last two equations, and assuming the divergence-free condition (2.7) holds
for u2, v2, we find

γh2
(

µ1

∥

∥dx (φ
ewu2)+dy (φ

nsv2)
)

=h2 [ηewu1‖u2]ew+h2 [ηnsv1‖v2]ns+2h2 (νccdxu1‖dxu2)+2h2
(

νccdyv1

∥

∥dyv2

)

+h2
〈

νvc
(

Dyu1+Dxv1

)∥

∥Dxv2+Dyu2

〉

. (2.18)

2.2 Unconditional unique solvability

We first establish a lemma that will help prove solvability for (2.3)-(2.7). Let us define

C̊m×n :={φ∈Cm×n | n·∇hφ=0 and (φ‖1)=0} , (2.19)

C̊m×n :={φ∈Cm×n | (φ‖1)=0} . (2.20)

Note that dim(C̊m×n)=dim(C̊m×n); in fact these spaces can be identified in a natural way.
We also define the linear operator L(µα) : C̊m×n→C̊m×n via

L(µα) :=−sǫ
{

dx (MewDxµα)+dy

(

MnsDyµα

)

}

+s
{

dx (φ
ewuα)+dy(φ

nsvα)
}

, (2.21)

where, for a given grid function µα, the (staggered) grid functions uα ∈Eew
m×n, vα ∈Ens

m×n,

and pα∈C̊m×n are the unique solutions to the discrete Brinkman equations

−γφewDxµα=Dx pα+ηewuα−2Dx(ν
cc dxuα)−dy

{

νvc
(

Dyuα+Dxvα

)}

, (2.22)

−γφnsDyµα=Dypα+ηnsvα−2Dy

(

νcc dyvα

)

−dx

{

νvc
(

Dxvα+Dyuα

)}

, (2.23)

dxuα+dyvα=0, (2.24)

with homogeneous Dirichlet boundary conditions imposed on uα and vα.

Lemma 2.1. Let φew∈Eew
m×n , φns∈Ens

m×n be given. Then, for any φ∈C̊m×n, there exists a unique

µ∈C̊m×n that solves L(µ)=φ.
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Proof. The unique existence of the staggered grid variables uα, vα, and pα (for any µα)
is a classical result for the simple Stokes case, i.e., ν ≡ 1, η ≡ 0. The arguments can be
straightforwardly extended for the discrete Brinkman equations so we omit the details
here. Hence L is well-defined. Assuming that µ is a solution of L(µ)=φ, the necessity
of (φ‖1)=0 follows from a simple summation-by-parts calculation utilizing the homoge-
neous boundary conditions. We omit this calculation as well.

To prove the lemma, it suffices to show that L is SPD restricted to C̊m×n. To show
symmetry we test (2.21) (written in terms of α=2) with µ1 and sum by parts to obtain

h2(L(µ2)‖µ1)=sǫh2
{

[MewDxµ2‖Dxµ1]ew+
[

MnsDyµ2

∥

∥Dyµ1

]

ns

}

+sh2
(

dx (φ
ewu2)+dy (φ

nsv2)
∥

∥µ1

)

. (2.25)

Combining this last result with the calculation (2.18) we have

h2(L(µ2)‖µ1)=sǫh2
{

[MewDxµ2‖Dxµ1]ew+
[

MnsDyµ2

∥

∥Dyµ1

]

ns

}

+
h2

γ

{

[ηewu1‖u2]ew+[ηnsv1‖v2]ns

}

+
2h2

γ

{

(νcc dxu1‖dxu2)+
(

νcc dyv1

∥

∥dyv2

)

}

+
h2

γ

〈

νvc
(

Dyu1+Dxv1

)
∥

∥Dxv2+Dyu2

〉

. (2.26)

Thus h2 (L(µ2)‖µ1)=h2 (L(µ1)‖µ2) and the operator is symmetric. Setting µ1=µ2=µ in
the last result, we have

h2 (µ‖L(µ))=sǫh2
{

[MewDxµ‖Dxµ]ew+
[

MnsDyµ
∥

∥Dyµ
]

ns

}

+
sh2

γ

{

[ηewu‖u]ew+[ηnsv‖v]ns

}

+
2sh2

γ
(νcc dxu‖dxu)+

2sh2

γ

(

νcc dyv
∥

∥dyv
)

+
sh2

γ

〈

νvc
(

Dyu+Dxv
)
∥

∥Dxv+Dyu
〉

≥sǫM0‖∇hµ‖2
2

≥0, (2.27)

from which we conclude that L is positive semi-definite. Now (µ‖L(µ))=0 only when
Dxµ=0 and Dyµ=0 at every edge-centered point. But, the only way that this can happen is
if µ is a constant function. With the restriction that µ is a mean zero function, we conclude
that µ≡0. Hence (µ‖L(µ))=0 only when µ≡0, which implies that L is SPD.
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We equip the spaces C̊m×n and C̊m×n with the inner product

(φ1‖φ2)L−1 :=
(

φ1

∥

∥

∥
L−1(φ2)

)

=
(

L−1(φ1)
∥

∥

∥
φ2

)

, (2.28)

for any φ1,φ2∈C̊m×n∪C̊m×n.

Theorem 2.1 (unique solvability). The scheme (2.3)-(2.7) is uniquely solvable for any time
step-size s>0 and is discretely mass conserving, i.e., (φk+1−φk‖1)=0.

Proof. The proof is very similar to that of [32, Theorem 2]. In particular, one can show
that the scheme (2.3)-(2.7) is equivalent to δφG(φk+1)=0, where δφ is the discrete variation
with respect to the grid variable φ, i.e., the gradient. G(φ) is the strictly convex, coercive
functional

G(φ) :=
h2

2

(

φ−φk
∥

∥

∥
φ−φk

)

L−1
+Fc(φ)−h2

(

φ
∥

∥

∥
δφFe(φ

k)
)

=
h2

2

(

L−1
(

φ−φk
)
∥

∥

∥
φ−φk

)

+Fc(φ)−h2
(

φ
∥

∥

∥
δφFe(φ

k)
)

(2.29)

defined over the set (hyperplane) of admissible functions

A=

{

φ∈Cm×n

∣

∣

∣
(φ‖1)=

(

φk
∥

∥

∥
1
)

}

. (2.30)

We omit the details.

2.3 Unconditional stability

Theorem 2.2 (energy stability). The scheme (2.3)-(2.5) is unconditionally (strongly) energy
stable, meaning that for any time step-size s>0,

F
(

φk+1
)

≤F
(

φk
)

. (2.31)

Moreover, for any positive integer N, we have

F
(

φN
)

+sǫM0

N

∑
k=1

∥

∥

∥
∇hµk

∥

∥

∥

2

2
+

sη0

γ

N

∑
k=1

∥

∥

∥
uk
∥

∥

∥

2

2
+

sν0

2γ

N

∑
k=1

∥

∥

∥
Dh

(

uk
)
∥

∥

∥

2

2
≤F

(

φ0
)

, (2.32)

where
∥

∥

∥
uk
∥

∥

∥

2

2
:=h2

[

uk
∥

∥

∥
uk
]

ew
+h2

[

vk
∥

∥

∥
vk
]

ns
(2.33)

and

1

2

∥

∥

∥
Dh

(

uk
)
∥

∥

∥

2

2
:=2h2

(

dxuk
∥

∥

∥
dxuk

)

+2h2
(

dyvk
∥

∥

∥
dyvk

)

+h2
〈

Dyuk+Dxvk
∥

∥

∥
Dxvk+Dyuk

〉

. (2.34)
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Proof. Testing Eq. (2.3) with µk+1 and using (2.21) we have

h2
(

φk+1−φk
∥

∥

∥
µk+1

)

=−h2
(

L
(

µk+1
)
∥

∥

∥
µk+1

)

. (2.35)

Testing Eq. (2.4) with φk+1−φk, using (2.1), summing-by-parts, and dropping boundary
terms we find

h2
(

φk+1−φk
∥

∥

∥
µk+1

)

=F
(

φk+1
)

−F
(

φk
)

+
1

4ǫ

∥

∥

∥

∥

(

φk+1
)2

−
(

φk
)2
∥

∥

∥

∥

2

2

+
1

2ǫ

∥

∥

∥
φk+1

(

φk+1−φk
)
∥

∥

∥

2

2

+
1

2ǫ

∥

∥

∥
φk+1−φk

∥

∥

∥

2

2
+

ǫ

2

∥

∥

∥
∇hφk+1−∇hφk

∥

∥

∥

2

2
. (2.36)

Subtracting Eq. (2.36) from (2.35) and rearranging terms we have

F
(

φk+1
)

−F
(

φk
)

=−h2
(

L
(

µk+1
)∥

∥

∥
µk+1

)

− 1

4ǫ

∥

∥

∥

∥

(

φk+1
)2

−
(

φk
)2
∥

∥

∥

∥

2

2

− 1

2ǫ

∥

∥

∥
φk+1

(

φk+1−φk
)
∥

∥

∥

2

2

− 1

2ǫ

∥

∥

∥
φk+1−φk

∥

∥

∥

2

2
− ǫ

2

∥

∥

∥
∇hφk+1−∇hφk

∥

∥

∥

2

2
. (2.37)

Now, according to (2.27), we find

h2
(

µk+1
∥

∥

∥
L
(

µk+1
))

=sǫh2
[

MewDxµk+1
∥

∥

∥
Dxµk+1

]

ew
+sǫh2

[

MnsDyµk+1
∥

∥

∥
Dyµk+1

]

ns

+
sh2

γ

[

ηewuk+1
∥

∥

∥
uk+1

]

ew
+

sh2

γ

[

ηnsvk+1
∥

∥

∥
vk+1

]

ns

+
2sh2

γ

(

νcc dxuk+1
∥

∥

∥
dxuk+1

)

+
2sh2

γ

(

νcc dyvk+1
∥

∥

∥
dyvk+1

)

+
sh2

γ

〈

νvc
(

Dyuk+1+Dxvk+1
)
∥

∥

∥
Dxvk+1+Dyuk+1

〉

≥sǫM0

∥

∥

∥
∇hµk+1

∥

∥

∥

2

2
+

sη0

γ

∥

∥

∥
uk+1

∥

∥

∥

2

2
+

sν0

2γ

∥

∥

∥
Dh

(

uk+1
)∥

∥

∥

2

2
. (2.38)

The result (2.32) now follows upon summing the above from k=0 to N−1.

The next three lemmas, proved in [32, 35], will be needed later. The discrete Sobolev
norms ‖·‖1,2 and ‖·‖1,2 are defined in the appendix.

Lemma 2.2. Suppose that φ∈Cm×n. Then

F(φ)≥C0‖φ‖2
1,2−

3LxLy

4ǫ
, (2.39)

where C0=min
(

ǫ−1,ǫ
)

/2.
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Lemma 2.3. Suppose that φ∈Cm×n and n·∇hφ|∂Ω=0. Then

‖φ‖6≤C2‖φ‖1,2 , (2.40)

where C2 depends upon Lx and Ly.

Lemma 2.4. Suppose that φ∈Cm×n and n·∇hφ|∂Ω=0. Then,

‖φ‖∞≤C3‖φ‖2,2 , C3 :=2

√

max

{

1

LxLy
,
Lx

Ly
,
Ly

Lx
,
LxLy

2

}

. (2.41)

We prove below that the scheme is stable in various discrete norms.

Theorem 2.3. Let Φ(x,y) be a smooth function on Ω, where Ω=(0,Lx)×(0,Ly), with homoge-
neous Neumann boundary conditions. Set φ0

i,j :=Φ(xi,yj). Suppose E is the continuous energy

(1.1) and φk
i,j∈Cm×n is the kth solution of the scheme (2.3)-(2.5). Then

∥

∥

∥
φk
∥

∥

∥

1,2
≤
√

E(Φ)+C4LxLy

C0
=: C5 , (2.42)

where C4>0 and does not depend on either s or h. More specifically, with s·N=T, we have

‖φ‖
ℓ∞(0,T;H1

h)
:= max

1≤k≤N

∥

∥

∥
φk
∥

∥

∥

1,2
≤C5 , (2.43)

‖∇hµ‖
ℓ2(0,T;ℓ2) :=

√

√

√

√s
N

∑
k=1

‖∇hµk‖2
2≤
√

C0

ǫM0
C5=: C6 , (2.44)

‖u‖
ℓ2(0,T;ℓ2) :=

√

√

√

√s
N

∑
k=1

‖uk‖2
2≤
√

γC0

η0
C5=: C7 , (2.45)

‖Dh(u)‖ℓ2(0,T;ℓ2) :=

√

√

√

√s
N

∑
k=1

‖Dh(uk)‖2
2≤
√

2γC0

ν0
C5=: C8 , (2.46)

‖φ‖
ℓ2(0,T;H2

h)
:=

√

√

√

√s
N

∑
k=1

‖φk‖2
2,2≤C9 , (2.47)

where C9>0 depends upon T and Φ, but is independent of s and h.

Proof. The techniques used to prove (2.43)-(2.46) are similar to those in the proof of [32,
Theorem 5] and the details are skipped. To prove (2.47), we begin by testing Eq. (2.4) with
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∆hφk+1 and sum by parts.

ǫ
∥

∥

∥
∆hφk+1

∥

∥

∥

2

2
=h2

(

∇hµk+1
∥

∥

∥
∇hφk+1

)

+
h2

ǫ

(

(

φk+1
)3
∥

∥

∥

∥

∆hφk+1

)

+
h2

ǫ

(

∇hφk
∥

∥

∥
∇hφk+1

)

≤1

2

∥

∥

∥
∇hµk+1

∥

∥

∥

2

2
+

1

2

∥

∥

∥
∇hφk+1

∥

∥

∥

2

2
+

1

2ǫ

∥

∥

∥
φk+1

∥

∥

∥

6

6
+

ǫ

2

∥

∥

∥
∆hφk+1

∥

∥

∥

+
1

2

∥

∥

∥
∇hφk

∥

∥

∥

2

2
+

1

2

∥

∥

∥
∇hφk+1

∥

∥

∥

2

2
. (2.48)

Then using (2.40) and (2.43)

ǫ

2

∥

∥

∥
∆hφk+1

∥

∥

∥

2

2
≤1

2

∥

∥

∥
∇hµk+1

∥

∥

∥

2

2
+

1

2ǫ

∥

∥

∥
φk+1

∥

∥

∥

6

6
+

3

2
C2

5 ≤
1

2

∥

∥

∥
∇hµk+1

∥

∥

∥

2

2
+

1

2ǫ
C6

2

∥

∥

∥
φk+1

∥

∥

∥

6

1,2
+

3

2
C2

5

≤1

2

∥

∥

∥
∇hµk+1

∥

∥

∥

2

2
+

1

2ǫ
C6

2C6
5+

3

2
C2

5 . (2.49)

Summing and using (2.43) and (2.44) gives the result.

Remark 2.1. Combining this last result with Lemma 2.4 naturally leads to

‖φ‖
ℓ2(0,T;ℓ∞) :=

√

√

√

√s
N

∑
k=1

‖φk‖2
∞≤C10 , (2.50)

where C10>0 depends upon T and Φ, but is independent of s and h.

Remark 2.2. All of the results from this section can be easily extended to the cases where
periodic boundary conditions or a mixture of periodic and physical boundary conditions
are assumed.

3 Numerical convergence study

In this section we discuss aspects of the practical numerical solution of the scheme (2.3)-
(2.7) by using the nonlinear FAS multigrid method given in Appendix B. We present
some convergence tests and perform some sample computations. The first set of tests we
perform gives evidence that the multigrid solver is robust and converges with nearly op-
timal complexity. In another test we provide evidence that suggests our convex-splitting
scheme is convergent – in other words, numerical solutions converge to the PDE solu-
tions – as s and h→0.

3.1 Convergence and complexity of the multigrid solver

To demonstrate the convergence and near optimal complexity (with respect to the grid
size h) of the solver we provide evidence that the multigrid convergence rate is nearly
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independent of h. (The reader is referred to Appendix B for a description of the multi-
grid algorithm.) To this end, five separate tests, which are similar to those carried out
in [11,32] for Cahn-Hilliard [11] and Cahn-Hilliard-Hele-Shaw [32] multigrid solvers, are
performed. For the tests we take the initial data

φ0
i,j=

[

1−cos
(

4xiπ
3.2

)]

·
[

1−cos
(

2yjπ

3.2

)]

2
−1, (3.1)

and we use the parameters Lx = Ly = 3.2. We fix the temporal step size at s= 1.0×10−3

and report results at the 20th time step, i.e., at the final T=2.0×10−2. We vary the spatial
step size from h=3.2/32 to h=3.2/512 as indicated in the test results. There is only one
tunable parameter in our nonlinear multigrid solver, namely λ, the number of multigrid
smoothing sweeps, as defined [32, Appendix A]. Based on our experience, as well as
established wisdom [25], we expect that the optimal value of λ should be about 5. Our
experiments confirm this.

The stopping tolerance for the multigrid solver is taken to be ‖R(φ)‖2,⋆≤ τ = 1.0×
10−8, where the norm and the residual R(φ) are similar to those defined in [32, Appendix

Table 1: The number of multigrid iterations required to reduce the norm of the residual below the tolerance
τ = 1.0×10−8. The iteration counts are made at the 20th time step (k = 20) using the fixed time step size

s= 1.0×10−3. The parameters for the test are given in the text and in the tables. The initial data are given
by Eq. (3.1). The precise residual values for Tests 1 and 2 are shown in Fig. 1. Using the multigrid smoothing
parameter λ= 2 we observe, for a variety of parameter sets, that the required number of iterations is nearly
independent of h.

Test 1 Test 2
ǫ 2.0×10−1 ǫ 1.0×10−1

γ 2.0ǫ γ 2.0ǫ
λ 2 3 4 5 λ 2 3 4 5

3.2/32 6 5 4 4 3.2/32 5 4 4 4
3.2/64 6 5 5 5 3.2/64 6 5 5 4

h 3.2/128 8 6 5 5 h 3.2/128 7 6 5 5
3.2/256 10 8 6 5 3.2/256 9 7 6 5
3.2/512 14 10 7 6 3.2/512 12 9 7 6

Test 3 Test 4
ǫ 5.0×10−2 ǫ 5.0×10−2

γ 4.0ǫ γ 8.0ǫ
λ 2 3 4 5 λ 2 3 4 5

3.2/32 6 5 4 4 3.2/32 6 5 5 4
3.2/64 7 6 5 5 3.2/64 7 6 5 5

h 3.2/128 9 7 6 5 h 3.2/128 10 8 6 6
3.2/256 12 9 7 6 3.2/256 13 9 7 6
3.2/512 17 11 8 6 3.2/512 17 12 9 7
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A]. The number of multigrid iterations required to reduce the norm of the residual below
the tolerance τ is given in Table 1 for various choices of ǫ, γ, λ, and h. As can be seen
in Table 1, using the multigrid smoothing parameter λ= 5 we observe, for a variety of
parameter choices, that the required number of iterations is nearly independent of h. The
detailed residual values for Test 3 from Table 1 are given in graphical form in Fig. 1. For
the case λ= 5 note that the norm of the residual is reduced by approximately the same
factor each time a multigrid iteration is executed, regardless of h. This is a typical feature
of multigrid when it is operating with optimal complexity [11, 25]. With λ≤4, we do not
observe a similar feature. Significantly more multigrid iterations are required for smaller
values of h.

3.2 Convergence of the scheme as s,h→0

Now we present the results of a test that suggest our scheme (2.3)-(2.7) is convergent
as s,h → 0. The initial data are given by Eq. (3.1) and the parameters are Lx = Ly = 3.2,
ǫ= 2.0×10−1, γ= 2.0ǫ, and T = 4.0×10−1, where T is the final time. We expect that, at
best, the global error in φ is et=T =O(s)+O(h2). Thus, if we choose a refinement path of
the form s=Ch2, we have e=O(h2), which is straightforward to confirm. We need only
check that the global error is reduced by a factor of 4 when h is reduced by a factor of 2.
In particular, we use the refinement path† s= 0.4h2. The full details of the convergence
test are described in [10, Section 6.1], and for brevity we do not reproduce them here. The
stopping tolerance for the solver is again taken to be τ=1.0×10−8. The results of the test
are reported in Table 2, and they give evidence that e=O(h2) is indeed the case. In other
words, a global error of the form e=O(s)+O(h2) is consistent with the test results. These
results are comparable to those for the Cahn-Hilliard-Hele-Shaw system studied in [32].

Table 2: Errors and convergence rates of the convex-splitting scheme (2.3)-(2.5). Here the calculations are
carried out for the variable φ only. Parameters are given in the text, and the initial data are defined in Eq. (3.1).

The refinement path is s= 0.4h2. Hence the results suggest global first-order convergence is attained, which
was expected.

Grid sizes 162−322 322−642 642−1282 1282−2562

Error 7.6239×10−3 1.7582×10−3 4.3425×10−4 1.0833×10−4

Rate 2.082 2.012 2.002

4 Applications

In this section we apply the scheme presented in the last section to a couple of practical
examples.

†The reader should keep in mind that the choice of this refinement path has nothing to do with any time
step restriction for stability or solvability. Recall that we can show that the scheme is unconditionally energy
stable and unconditionally uniquely solvable.
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Figure 1: The reduction in the norm of the residual per V-cycle iteration at time t= 2.0×10−2 (20 full time
steps with step size s=1.0×10−3). Parameters are given in the text and the initial data are given in Eq. (3.1).
We show three cases, λ=3, 4, and 5 for Test 3 represented in Table 1. The results show a nearly h-independent
reduction in the residual for the λ=5 case, though there is some deterioration in the convergence rate as h→0.

4.1 Spinodal decomposition and energy dissipation

Here we provide a couple of simulations of spinodal decomposition. We demonstrate
energy dissipation at the numerical level and we show the effect of different values of the
parameter γ. A similar test was given in [32] for the Cahn-Hilliard-Hele-Shaw equation,
that is where the flow is given by Darcy’s law. The results of the test are shown in Figs. 2
and 3, and the parameters are M(φ)=

√

(1+φ)2(1−φ)2+ǫ2, s=0.005, h=6.4/256, ǫ=0.03,
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γ = 0 γ = 20ε γ = 40ε

t = 1

t = 4

t = 12

t = 20

Figure 2: Phase separation and coarsening of a binary fluid with constant, uniform density. We show the
filled contour plots of φ at various times. White means φ≈ 1, black, φ ≈−1. The parameters are M(φ) =
√

(1+φ)2(1−φ)2+ǫ2, s=0.005, h=6.4/256, ǫ=0.03, γ=4.0ǫ, φ̄=−0.05, η≡0, and ν≡1. The same initial
data are used for all simulations. The chosen mobility limits the amount of diffusional coarsening, with respect
to the case M=1, since M=ǫ≪1 in the pure phases. The systems with larger excess surface tension, γ, tend
to “straighten” their interfaces at a faster rate. This is reflected in the overall coarsening rates, as suggested in
Fig.3.

γ=4.0ǫ, η≡0, and ν≡1. The average composition is φ̄=−0.05. Initially, φ(xi,yj,0)=φ̄+zi,j,
where zi,j ∈ [−0.05,0.05] are random. After an initial rapid phase separation, the chosen
mobility limits the amount of diffusional coarsening, with respect to the case M=1, since
M=ǫ≪1 in the pure phases. In this system coarsening is dominated by curve shortening
via surface diffusion. See for example [4]. The systems with larger excess surface tension,
γ, tend to “straighten” their interfaces at a faster rate. Coarsening rates are typically tied
to the energy dissipation rates. Note that the correlation between higher values of γ and
higher coursing rates is reflected in Fig. 3. We point out that, regardless of the parameter
values of the space or time step sizes that the energy is always non-increasing in time.
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Figure 3: The computed discrete energies, F, plotted in log-log scale as functions of time (solid lines) for the
three simulations in Fig. 2. The dashed lines are plots of the fit functions 4.08t−0.20 (γ=0), 3.74t−0.28 (γ=20ǫ),
and 3.50t−0.32 (γ= 40ǫ), t∈ [1,20] to avoid the phase separation regime. Clearly systems with higher excess
surface tension γ tend to coarsen faster. Note that wall effects become more influential at later times.

4.2 Buoyancy-driven flows

To simulate buoyancy-driven flow, we modify the Brinkman flow equation (1.3) as fol-
lows:

−∇·[ν(φ)D(u)]+η(φ)u+∇p=−γφ∇µ+b , (4.1)

where b is a buoyancy term that depends on the mass density. We assume that the mass
density depends on φ, i.e., ρ=ρ(φ), and we employ a Boussinesq type approximation:

b=−b(φ)k̂ , b(φ)=χ(φ−φ0) , (4.2)

where φ0 is a constant (usually the average value of φ), and χ is a constant. Hence, the
corresponding scheme that we use for the buoyancy-driven flow is (2.3)-(2.7) with (2.6)
replaced by

−γAyφkDyµk+1−b
(

Ayφk
)

=Dy pk+1+η
(

Ayφk
)

vk+1−2Dy

(

ν
(

φk
)

dyvk+1
)

−dx

{

ν
(

Aφk
)(

Dxvk+1+Dyuk+1
)}

. (4.3)

The simulation of the first buoyancy-driven flow is shown in Fig. 4. The numerical and
physical parameters are s= 0.005, h= 6.4/256, ǫ= 0.03, γ= 4.0ǫ, φ0 = φ̄=−0.05, χ= 10,
η≡0, and ν≡1. We take the mobility to be

M(φ)=
√

(1+φ)4(1−φ)4+ǫ2 , (4.4)

so that M= ǫ in the pure phases, φ=±1. The mobility is
√

1+ǫ2 ≈ 1 on the level curve
φ=0. As before, a mobility of this type greatly limits the amount of diffusional coarsening
in a system. Thus, most of the domain coarsening in these systems is driven by the
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t = 1

η = 0 η = 1

t = 5

t = 10

t = 15

t = 20

Figure 4: Phase separation of a binary fluid with variable density in a porous medium. Shown are filled
contour plots of φ at various times. White means φ ≈ 1, black, φ ≈ −1. The parameters are M(φ) =
√

(1+φ)4(1−φ)4+ǫ2, s = 0.005, h = 6.4/256, ǫ = 0.03, γ = 4.0ǫ, φ̄ =−0.05, b(φ) = 10(φ−φ̄), and ν ≡ 1.
Here the black fluid phase has greater mass density than the white. The left column shows the case η ≡ 0
(Stokes flow), the right column, the case η≡1 (Brinkman flow). As before, the chosen mobility tends to limit
the amount of diffusional coarsening.

fluid flow. The average composition is φ̄=−0.05, and initially, φ(xi,yj,0)= φ̄+zi,j, where
zi,j∈ [−0.05,0.05] are random. Here the black fluid is heavier than the white fluid. After a
very rapid phase separation process – which is similar to what was observed in the initial
stages of the simulations in Fig. 2 – the black phase sinks and the white phase rises. The
fluids mix in complicated ways as this process occurs. Note that the Stokes case (η≡0, left
column, Fig. 4) is qualitatively similar to the Brinkman case (η≡1, right column, Fig. 4).
It does appear that individual particles in the Brinkman case have smaller shape factor –



C. Collins, J. Shen and S. M. Wise / Commun. Comput. Phys., 13 (2013), pp. 929-957 947

that is, they are rounder and more compact – than corresponding particles in the Stokes
case.

As a second test of buoyancy-driven (Stokes) flow, we consider the case of a single
bubble rising in a rectangular box. The parameters are M(φ)=0.1

√

(1+φ)4(1−φ)4+ǫ2,
s=0.005, h=2/256, ǫ=0.01, γ=10.0ǫ, φ0=−0.05, b(φ)=20(φ−φ0), η≡0, and ν≡1. The
results of the test are given in Fig. 5. As expected, the bubble rises, reaching an elliptical
shape, and then deforms as it approaches the upper boundary.

t = 0 t = 10

t = 70t = 60

t = 50t = 40t = 30

t = 20

t = 80

Figure 5: A rising bubble. Shown are filled contour plots of φ at various times. White means φ≈1, black, φ≈−1.

The parameters are M(φ) = 0.1
√

(1+φ)4(1−φ)4+ǫ2, s= 0.005, h = 2/256, ǫ= 0.01, γ= 10.0ǫ, φ̄=−0.05,
b(φ)=20(φ−φ̄), η≡0, and ν≡1.
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4.3 Boundary-driven flows

The last case we consider is that of boundary-driven flow. Specifically, we simulate the
deformation of a particle in shear flow. The PDE model is given in Eqs. (1.2)-(1.4), how-
ever, we modify the boundary conditions as follows. Let u=(u,v) and Ω=(0,Lx)×(0,Ly).
We assume that all fields are periodic in the x direction, and we set at y= 0 and y= Ly,
∂yφ=∂yµ=0, and v=0. For the first component of the velocity vector, u=σ at y=0, and
u=−σ at y = Ly, where σ > 0 is the shear rate. The scheme is the same as before. We
only modify the numerical boundary condition (A.16) to accommodate the shear flow,
and, of course, we modify all the boundary conditions, in a standard way, to allow for
periodicity.

The results of two simple shear-flow simulations are reported in Figs. 6 and 7. In both
tests, an initially round drop is suspend in the very center of box in which a shear flow
is imposed via the boundary. The parameters are M≡1, s=0.001, h=6.4/256, Lx =12.8,
Ly=6.4, ǫ=0.03, γ=50.0ǫ, η≡0, and ν≡1. Here we only consider Stokes flow. The shear
rates are σ=2 in Fig. 6 and σ=1 in Fig. 7.

t = 1 t = 20

t = 40 t = 60

t = 80 t = 160

Figure 6: A suspended, initially round drop in shear flow. We show filled contour plots of φ, where white
indicates φ≈1, black, φ≈−1. The parameters are M≡1, s=0.001, h=6.4/256, Lx =12.8, Ly=6.4, ǫ=0.03,
γ=50.0ǫ, σ=2, η≡0, and ν≡1. The right and left boundary conditions are taken to be periodic.

In Fig. 6, the shear rate is relatively modest, with respect to the surface tension. The
particle is stretched, as expected, reaches a critical length, and then begins to retract. As
it does, it rotates into the center line y= Ly/2, where the flow velocity is zero. In Fig. 7,
where the shear rate is half that of the simulation in Fig. 6, a similar response of the
particle to the flow is observed. Only here, as expected, the deformation of the drop is
considerably less.
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t = 80 t = 40 t = 20 t = 1

Figure 7: A suspended, initially round drop in shear flow. We show the φ=0 level sets at four time snap shots.
The parameters are M≡1, s=0.001, h=6.4/256, Lx=12.8, Ly=6.4, ǫ=0.03, γ=50.0ǫ, σ=1, η≡0, and ν≡1.
Note the shear rate is half that in Fig. 6. The right and left boundary conditions are taken to be periodic.

5 Concluding remarks

In this paper we presented and analyzed a finite difference scheme for the Cahn-Hilliard-
Brinkman system of equations. In particular, we proved that our scheme is uniquely
solvable and energy stable, without any conditions on the time size s or space step size
h. The scheme is first-order accurate in time and second-order accurate in space. We
presented a nonlinear multigrid method – based on a Vanka smoothing strategy for the
Brinkman equation and a now standard multigrid strategy for the Cahn-Hilliard equa-
tion [32] – for solving the resulting algebraic equations. We showed that in some typi-
cal cases the convergence of our nonlinear multigrid solver can be near optimal with a
suitable smoothing parameter. This is similar to the situation observed in [32] for the
Cahn-Hilliard-Hele-Shaw equation.

This work builds upon our previous work on developing unconditionally energy sta-
ble schemes for the Cahn-Hilliard equation [22, 23], the Cahn-Hilliard-Hele-Shaw equa-
tion [9, 32], and others [10, 28–30, 35]. The methods described herein can be immedi-
ately applied to the case where the Brinkman equation is replaced by a time-dependent
Stokes/Brinkman equation of the form

∂tu−∇·[ν(φ)D(u)]+η(φ)u=−∇p−γφ∇µ . (5.1)

We plan to extend our scheme for the full Cahn-Hilliard-Navier-Stokes equations, es-
pecially for the situation where the mass densities are so significantly different that the
Boussinesq approximation is no longer valid [24].

While we have only considered a first-order scheme in time, it is also possible to
construct second-order (in time) convex-splitting schemes. For example, a second-order
scheme in strong form is as follows:

φk+1−φk = s∇·
(

ǫM
(

φ̃k+ 1
2

)

∇µk+ 1
2 −φ̃k+ 1

2 uk+ 1
2

)

, (5.2)

µk+ 1
2 =

1

2ǫ

[

(

φk+1
)2

+
(

φk
)2
]

φk+ 1
2 − 1

ǫ
φ̃k+ 1

2 −ǫ∆φk+ 1
2 , (5.3)

−∇·
(

ν
(

φ̃k+ 1
2

)

D

(

uk+ 1
2

))

+η
(

φ̃k+ 1
2

)

uk+ 1
2 =−∇pk+ 1

2 −γφ̃k+ 1
2 ∇µk+ 1

2 , (5.4)
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with ∇·uk+1/2=0, and where φk+1/2:=(1/2)φk+1+(1/2)φk, φ̃k+1/2:=(3/2)φk−(1/2)φk−1,
and φ−1 := φ0. This scheme is more difficult to analyze than the preliminary first-order
scheme described herein. But, as suggested by our previous work [10, 21], we believe
that all results established in this paper can be extended to this second-order scheme.
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A Finite difference discretization on a staggered grid

For simplicity, let us assume that Ω=(0,Lx)×(0,Ly). Here we use the notation and re-
sults for cell-centered functions from [32, 35]. The reader is directed to those references
for more complete details. We begin with definitions of grid functions and difference op-
erators needed for our discretization of two-dimensional space. Let Ω=(0,Lx)×(0,Ly),
with Lx = m·h and Ly = n·h, where m and n are positive integers and h > 0 is the spa-
tial step size. Define pr :=(r−1/2)·h, where r takes on integer and half-integer values.
For any positive integer ℓ, define Eℓ = {pr | r = 1/2,··· ,ℓ+1/2}, Cℓ = {pr | r = 1,··· ,ℓ},
C
ℓ
={pr ·h | r=0,··· ,ℓ+1}. Define the function spaces

Cm×n={φ : Cm×Cn→R}, Cm×n={φ : Cm×Cn→R} , (A.1)

Cm×n={φ : Cm×Cn→R}, Cm×n={φ : Cm×Cn→R} , (A.2)

Eew
m×n={u : Em×Cn→R}, Ens

m×n={v : Cm×En →R} , (A.3)

Eew
m×n={u : Em×Cn→R}, Ens

m×n={v : Cm×En →R} , (A.4)

Vm×n={ f : Em×En→R} . (A.5)

We use the notation φi,j := φ(pi,pj) for cell-centered functions, those in the spaces Cm×n,
Cm×n, Cm×n, or Cm×n. In component form east-west edge-centered functions, those in the
spaces Eew

m×n or Eew
m×n, are identified via ui+1/2,j :=u(pi+1/2,pj). In component form north-

south edge-centered functions, those in the spaces Ens
m×n, or Ens

m×n, are identified via ui+1/2,j:=
u(pi+1/2,pj). The functions of Vm×n are called vertex-centered functions. In component
form vertex-centered functions are identified via fi+1/2,j+1/2 := f (pi+1/2,pj+1/2).

We will need the weighted 2D grid inner-products (·‖·), [·‖·]ew, [·‖·]ns that are de-
fined in [32, 35]. In addition to these, we will use the 2D grid inner product

〈 f‖g〉=1

4

m

∑
i=1

n

∑
j=1

(

fi+ 1
2 ,j+ 1

2
gi+ 1

2 ,j+ 1
2
+ fi+ 1

2 ,j− 1
2
gi+ 1

2 ,j− 1
2

+ fi− 1
2 ,j+ 1

2
gi− 1

2 ,j+ 1
2
+ fi− 1

2 ,j− 1
2
gi− 1

2 ,j− 1
2

)

, f , g∈Vns
m×n . (A.6)
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We will also need the following one-dimensional inner-products:

(

f
⋆,j+ 1

2

∣

∣

∣
g
⋆,j+ 1

2

)

=
m

∑
i=1

fi,j+ 1
2
gi,j+ 1

2
,

(

fi+ 1
2 ,⋆

∣

∣

∣
gi+ 1

2 ,⋆

)

=
n

∑
j=1

fi+ 1
2 ,jgi+ 1

2 ,j , (A.7)

where the first is defined for f , g∈Ens
m×n, and the second for f , g∈Eew

m×n; and

[

u
⋆,j+ 1

2

∣

∣

∣
v
⋆,j+ 1

2

]

=
1

2

m

∑
i=1

(

ui− 1
2 ,j+ 1

2
vi− 1

2 ,j+ 1
2
+ui+ 1

2 ,j+ 1
2
vi+ 1

2 ,j+ 1
2

)

, (A.8)

[

ui+ 1
2 ,⋆

∣

∣

∣
vi+ 1

2 ,⋆

]

=
1

2

n

∑
j=1

(

ui+ 1
2 ,j− 1

2
vi+ 1

2 ,j− 1
2
+ui+ 1

2 ,j+ 1
2
vi+ 1

2 ,j+ 1
2

)

. (A.9)

which are both defined for u,v∈Vm×n. See, for example, [35, Section 2.1].
The reader is referred to [32, 35] for the precise definitions of the edge-to-center dif-

ference operators dx :Eew
m×n→Cm×n and dy :Ens

m×n→Cm×n; the x−dimension center-to-edge
average and difference operators, respectively, Ax, Dx : Cm×n →Eew

m×n; the y−dimension
center-to-edge average and difference operators, respectively, Ay, Dy :Cm×n →Ens

m×n; and
the standard 2D discrete Laplacian, ∆h : Cm×n → Cm×n. In addition to these, we also
need some operations involving vertex-centered functions. The center-to-vertex average
A :Cm×n→Vm×n is defined component-wise as

Aφi+ 1
2 ,j+ 1

2
=

1

4

(

φi,j+φi+1,j+φi,j+1+φi+1,j+1

)

, i=0,··· ,m+1, j=0,··· ,n+1. (A.10)

The edge-to-vertex differences are defined as follows: Dx:Eew
m×n→Vm×n is defined component-

wise as

Dxvi+ 1
2 ,j+ 1

2
=

1

h

(

vi+1,j+ 1
2
−vi,j+ 1

2

)

, i=0,··· ,m+1, j=0,··· ,n , (A.11)

and Dy :Ens
m×n→Vm×n is defined component-wise as

Dyui+ 1
2 ,j+ 1

2
=

1

h

(

vi+ 1
2 ,j+1−vi+ 1

2 ,j

)

, i=0,··· ,m+1, j=0,··· ,n . (A.12)

In this paper we use grid functions satisfying homogeneous Neumann boundary con-
ditions. Specifically, we shall say the cell-centered function φ∈ Cm×n satisfies homoge-
neous Neumann boundary conditions if and only if

φm+1,j=φm,j, φ0,j=φ1,j, j=1,··· ,n , (A.13)

φi,n+1=φi,n, φi,0=φi,1, i=0,··· ,m+1. (A.14)

We use the notation n·∇hφ = 0 to indicate that φ satisfies (A.13) and (A.14). Now, let
u∈Eew

m×n. We say that u=0 on the boundary if and only if

um+ 1
2 ,j =0, u 1

2 ,j=0, j=1,··· ,n , (A.15)

Ayui+ 1
2 ,n+ 1

2
=0, Ayui+ 1

2 , 1
2
=0, i=0,··· ,m . (A.16)
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Likewise, let v∈Ens
m×n. We say that v=0 on the boundary if and only if

vi,n+ 1
2 ,=0, vi, 1

2
=0, i=1,··· ,m , (A.17)

Axvm+ 1
2 ,j+ 1

2
=0, Axv 1

2 ,j+ 1
2 ,=0, j=0,··· ,n . (A.18)

We will also use combinations of homogeneous Dirichlet and periodic boundary condi-
tions, or homogeneous Neumann and periodic boundary conditions in some instances,
though we suppress the precise definitions.

We will use the grid function norms defined in [32, 35]: for φ∈Cm×n, 1≤ p<∞,

‖φ‖p :=

(

h2
m

∑
i=1

n

∑
j=1

∣

∣φi,j

∣

∣

p

)1/p

and ‖φ‖∞ =max
1≤i≤m
1≤j≤n

∣

∣φi,j

∣

∣. (A.19)

For any φ∈Cm×n, we define

‖∇hφ‖2 :=
√

h2 [Dxφ‖Dxφ]ew+h2
[

Dyφ
∥

∥Dyφ
]

ew
, (A.20)

and we need the following discrete Sobolev norms: ‖·‖0,2 :=‖·‖2,

‖φ‖1,2=
√

‖φ‖2
2+‖∇hφ‖2

2 , ‖φ‖2,2=
√

‖φ‖2
1,2+‖∆hφ‖2

2 . (A.21)

Using the definitions given in this appendix and in [32, 35], we obtain the following
summation-by-parts formulae:

Proposition A.1 (summation-by-parts). If φ∈Cm×n∪Cm×n and f ∈Eew
m×n then

h2 [Dxφ‖ f ]ew=−h2 (φ‖dx f )−h
(

Axφ 1
2 ,⋆

∣

∣

∣
f 1

2 ,⋆

)

+h
(

Axφm+ 1
2 ,⋆

∣

∣

∣
fm+ 1

2 ,⋆

)

, (A.22)

and if φ∈Cm×n∪Cm×n and f ∈Ens
m×n then

h2
[

Dyφ
∥

∥ f
]

ns
=−h2

(

φ
∥

∥dy f
)

−h
(

Ayφ
⋆, 1

2

∣

∣

∣
f
⋆, 1

2

)

+h
(

Ayφ
⋆,n+ 1

2

∣

∣

∣
f
⋆,n+ 1

2

)

. (A.23)

If f ∈Vm×n and g∈Ens
m×n then

h2 ·[dx f‖g]ns=−h2 ·〈 f‖Dxg〉−h·
[

Axg 1
2 ,⋆

∣

∣

∣
f 1

2 ,⋆

]

+h·
[

Axgm+ 1
2 ,⋆

∣

∣

∣
fm+ 1

2 ,⋆

]

, (A.24)

and if f ∈Vm×n and g∈Eew
m×n then

h2 ·
[

dy f
∥

∥g
]

ew
=−h2 ·

〈

f
∥

∥Dyg
〉

−h·
[

Axg
⋆, 1

2

∣

∣

∣
f
⋆, 1

2

]

+h·
[

Axg
⋆,n+ 1

2

∣

∣

∣
f
⋆,n+ 1

2

]

.
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Proposition A.2 (discrete Green’s first identity). Let φ,ψ∈Cm×n. Then

h2 [Dxφ‖Dxψ]ew+h2
[

Dyφ
∥

∥Dyψ
]

ns

=−h2 (φ‖∆hψ)−h
(

Axφ 1
2 ,⋆

∣

∣

∣
Dxψ 1

2 ,⋆

)

+h
(

Axφm+ 1
2 ,⋆

∣

∣

∣
Dxψm+ 1

2 ,⋆

)

−h
(

Ayφ
⋆, 1

2

∣

∣

∣
Dyψ

⋆, 1
2

)

+h
(

Ayφ
⋆,n+ 1

2

∣

∣

∣
Dyψ

⋆,n+ 1
2

)

. (A.25)

Proposition A.3 (discrete Green’s second identity). Let φ,ψ∈Cm×n. Then

h2 (φ‖∆hψ)

=h2 (∆hφ‖ψ)+h
(

Axφm+ 1
2 ,⋆

∣

∣

∣
Dxψm+ 1

2 ,⋆

)

−h
(

Dxφm+ 1
2 ,⋆

∣

∣

∣
Axψm+ 1

2 ,⋆

)

−h
(

Axφ 1
2 ,⋆

∣

∣

∣
Dxψ 1

2 ,⋆

)

+h
(

Dxφ 1
2 ,⋆

∣

∣

∣
Axψ 1

2 ,⋆

)

+h
(

Ayφ
⋆,n+ 1

2

∣

∣

∣
Dyψ

⋆,n+ 1
2

)

−h
(

Dyφ
⋆,n+ 1

2

∣

∣

∣
Ayψ

⋆,n+ 1
2

)

−h
(

Ayφ
⋆, 1

2

∣

∣

∣
Dyψ

⋆, 1
2

)

+h
(

Dyφ
⋆, 1

2

∣

∣

∣
Ayψ

⋆, 1
2

)

. (A.26)

We remark that these formulae have straightforward extensions to three dimensions.

B Multigrid solver

The nonlinear multigrid solver for our Cahn-Hilliard-Brinkman scheme (2.3)-(2.7) is sim-
ilar in many respects to that described for the Cahn-Hilliard-Hele-Shaw problem in our
previous paper [32, Appendix A]. The primary difference is that in the present case we
decouple the smoothing operator. We first perform a relaxation on the Cahn-Hilliard
equations (2.3) and (2.4); then we relax the flow equations (2.5)-(2.7) separately. Specifi-
cally, in the proposed smoother, for each grid cell (i, j) we update the unknowns φk+1

i,j and

µk+1
i,j first using a nonlinear Gauss-Seidel method, similar to what is described in [32, Ap-

pendix A]. Then we update the five variables uk+1
i±1/2,j, vk+1

i,j±1/2, and pk+1
i,j using a Vanka-

type smoothing strategy [19, 25, 26, 31] with the updated values for φk+1
i,j and µk+1

i,j . Note

that u and v are edge-centered variables and this contributes to the complication of the
method.

Here we give the full details of the Vanka smoothing strategy and refer the reader
to [32, Appendix A] for the remaining details of the solver. To simplify the discussion,
we drop the time superscript k+1 on the unknowns u, v, p, and µ in (2.5)-(2.7). And, as
before, we define the known grid functions

νcc :=ν
(

φk
)

, νvc :=ν
(

Aφk
)

, φew :=Axφk , φns :=Ayφk , (B.1)

and

ηew :=η(φew) , ηns :=η(φns) , (B.2)
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where we have dropped the superscript k. We write the flow equations (2.5)-(2.7) in the
form

Nu =Su , Nv =Sv , Np =Sp , (B.3)

where

Nu :=−2Dx (ν
ccdxu)−dy

[

νvc
(

Dyu+Dxv
)]

+ηewu+Dx p+γφewDxµ , (B.4)

Nv :=−2Dy

(

νccdyv
)

−dx

[

νvc
(

Dxv+Dyu
)]

+ηnsv+Dy p+γφnsDyµ , (B.5)

Np :=−dxu−dyv , (B.6)

and, in this case, Su = Sv = Sp = 0. The discussion that follows simplifies significantly in
the case of constant viscosity. For example, when ν≡1, we have

Nu :=−Dx(dxu)−dy

(

Dyu
)

+ηewu+Dx p+γφewDxµ ,

Nv :=−Dy

(

dyv
)

−dx (Dxv)+ηnsv+Dy p+γφnsDyµ ,

upon using the divergence-free condition. We will not pursue this simplification here
any further.

In component form, Eqs. (B.4)-(B.4) are written as

Nu
i+ 1

2 ,j
=−2Dx (ν

ccdxu)i+ 1
2 ,j−dy

[

νvc
(

Dyu+Dxv
)]

i+ 1
2 ,j
+ηew

i+ 1
2 ,j

ui+ 1
2 ,j

+Dx pi+ 1
2 ,j+γφew

i+ 1
2 ,j

Dxµi+ 1
2 ,j

=− 2

h2

[

νcc
i+1,j

(

ui+ 3
2 ,j−ui+ 1

2 ,j

)

−νcc
i,j

(

ui+ 1
2 ,j−ui− 1

2 ,j

)]

− 1

h2

[

νvc
i+ 1

2 ,j+ 1
2

(

ui+ 1
2 ,j+1−ui+ 1

2 ,j

)

−νvc
i+ 1

2 ,j− 1
2

(

ui+ 1
2 ,j−ui+ 1

2 ,j−1

)]

− 1

h2

[

νvc
i+ 1

2 ,j+ 1
2

(

vi+1,j+ 1
2
−vi,j+ 1

2

)
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, (B.7)

and
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2
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(
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(
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(

vi+1,j+ 1
2
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(
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(
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+
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Now define
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(
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(

vi+1,j+ 1
2
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, (B.9)

Ru,w :=− 2

h2

[

νcc
i,j ui+ 1

2 ,j+νcc
i−1,jui− 3

2 ,j

]

− 1

h
pi−1,j+

γ

h
φew

i− 1
2 ,j

(
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(
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(
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Furthermore, we define

au,e :=2
(

νcc
i+1,j+νcc

i,j

)

+νvc
i+ 1

2 ,j+ 1
2
+νvc

i+ 1
2 ,j− 1

2
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h2 , (B.13)

au,w :=2
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av,n :=2
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av,s :=2
(

νcc
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2
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i− 1
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2
+ηns
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h2 . (B.16)

Putting everything together, the five equations

Nu
i± 1

2 ,j
=Su

i± 1
2 ,j

, Nv
i,j± 1

2
=Sv

i,j± 1
2

, N
p
i,j =S

p
i,j (B.17)
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are equivalent to the 5×5 the matrix equation


















au,eh−2 0 0 0 − 1
h
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h
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h
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h

− 1
h

1
h − 1

h
1
h 0





































ui+ 1
2 ,j

ui− 1
2 ,j

vi,j+ 1
2

vi,j− 1
2
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

















=


















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i+ 1

2 ,j
−Ru,e

Su
i− 1

2 ,j
−Ru,w

Sv
i,j+ 1

2

−Rv,n

Sv
i,j− 1

2

−Rv,s

S
p
i,j



















. (B.18)

The Vanka smoothing strategy requires the solution (inversion) of the preceding 5×5
linear system (B.18), which we represent as Aw = b, for each cell (i, j), 1 ≤ i ≤ m, and
1 ≤ j ≤ n. There is a rather simple formula for the solution of system (B.18). See, for
example, [31].
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