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Abstract. Numerical solutions of a non-Fickian diffusion equation belonging to a hy-
perbolic type are presented in one space dimension. The Brownian particle modelled
by this diffusion equation is subjected to a symmetric periodic potential whose spatial
shape can be varied by a single parameter. We consider a numerical method which
consists of applying Laplace transform in time; we then obtain an elliptic diffusion
equation which is discretized using a finite difference method. We analyze some as-
pects of the convergence of the method. Numerical results for particle density, flux
and mean-square-displacement (covering both inertial and diffusive regimes) are pre-
sented.
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1 Introduction

In this paper we shall present numerical solutions of a non-Fickian diffusion equation
in the presence of a symmetric periodic potential in one space dimension. Let us briefly
recall that the familiar Fickian diffusion equation for a particle density n(ξ,τ), in the
presence of a potential V(ξ) reads

∂n

∂τ
(ξ,τ)=D

∂2n

∂ξ2
(ξ,τ)+

1

mγ

∂

∂ξ

[
dV

dξ
(ξ)n(ξ,τ)

]
, (1.1)
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where ξ is the space variable, τ is time, γ is a friction parameter and D = kBT/mγ is
the diffusion coefficient, m being the mass of the Brownian particle whose overdamped
(diffusive) dynamics is well described by (1.1); kB is the Boltzmann’s constant and T the
temperature of the fluid.

The equation of our study is

1

γ

∂2n

∂τ2
(ξ,τ)+

∂n

∂τ
(ξ,τ)=D

∂2n

∂ξ2
(ξ,τ)+

1

mγ

∂

∂ξ

[
dV

dξ
(ξ)n(ξ,τ)

]
. (1.2)

Both equations, (1.1) and (1.2) can be derived from an underlying kinetic equation, e.g.
the phase-space Kramers equation [9]

∂ f

∂τ
+

p

m

∂ f

∂ξ
− dV

dξ

∂ f

∂p
=γ

∂

∂p
(p f )+mkBTγ

∂2 f

∂p2
, (1.3)

where f (ξ,p,τ) is the probability density function for the position component ξ and mo-
mentum component p of the Brownian particle.

Eq. (1.2) in the absence of a potential field is sometimes referred to as the telegrapher
equation although we shall call it a non-Fickian diffusion equation. We refer to [9] for
a derivation of (1.2) from (1.3). It may be noted that for times larger than 1/γ, the first
term on the left hand side of (1.2) can be neglected and the Fickian regime is regained.
Eq. (1.1) in the absence of a potential field leads to the well known result for the mean
square displacement [11]

< ξ2(τ)>=2Dτ. (1.4)

In the presence of a flexible symmetric potential, it was shown in [9] that < ξ2(τ)> does
not necessarily behave linearly with time. Eq. (1.2) retains some short time inertial be-
haviour of a Brownian particle and at long time results in a diffusive behaviour. The
velocity v= dξ/dτ of a Brownian particle is not well defined in the diffusive regime for
which (1.1) is applicable. Since (1.2) is applicable in an inertial regime, the velocity can
be calculated with (1.2). Quite recently the instantaneous velocity of a Brownian particle
has been experimentally investigated [12, 13, 18]. This provides an additional motivation
for studying (1.2). There is also a recent paper [5] which models transport of ions in insu-
lating media through a non-Fickian diffusion equation of the type discussed in our work.
In [5] the non-Fickian diffusion equation is referred to as a hyperbolic diffusion equation.

To solve our problem we consider a numerical method based on a finite difference
discretization and time Laplace transform. The latter is suitable for long times and also
for solutions that are not necessarily smooth in time. It may be noted that iterative meth-
ods in time, including implicit methods such as the Crank-Nicolson [8], which allow a
choice of large time steps, usually take too long to compute the solution.

The paper is organized as follows. In Section 2 we present the model problem in di-
mensionless variables. In Section 3 we describe a numerical method based on the time
Laplace transform which is suitable for long time integration and also for solutions which
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are not very smooth. In Section 4 the convergence properties of the algorithm are stud-
ied. In Section 5 we present the behaviour of the solution to the non-Fickian diffusion
equation, the flux and the mean square displacement. We conclude the paper, in Section
6, with a summary and outlook.

2 The model and physical quantities

In our studies we consider three quantities of physical interest. These are the particle
density n(ξ,τ), the current density (flux) j(ξ,τ) and the mean square displacement
< ξ2(τ)>. The current density is not normally studied. However, since we are dealing
with a non-Fickian diffusion equation we have decided to consider j(ξ,τ) as well. For
the Fickian case and in the absence of any potential, j(ξ,τ) is related to n(ξ,τ) through
j =−D(∂n/∂ξ). This is not so in the non-Fickian case for which the relation between
j(ξ,τ) and n(ξ,τ) is more involved.

Let us consider the non-Fickian diffusion equations for particle density and the flux

1

γ

∂2n

∂τ2
+

∂n

∂τ
=− 1

mγ

∂

∂ξ
(Pn)+D

∂2n

∂ξ2
, (2.1)

j+
1

γ

∂j

∂τ
=−D

∂n

∂ξ
− 1

mγ
Pn, (2.2)

with n(ξ,τ) as the density of the Brownian particles. P is the force acting on the particle
due to the potential field V, i.e.,

P=−dV

dξ
.

We consider a symmetric periodic potential field, as previously studied in [6], [9]
and [14]. It reads

V(ξ;α)=
1

J0(iα)
eαcosξ−1, (2.3)

where J0 is the Bessel function of the first kind and zero order and i is the imaginary unit.
In order to illustrate the flexible form of this single-parameter potential we have plotted,
Fig. 1, the potential (2.3), for two values of the parameter, α=1 and α=16.

Our model consists of Eqs. (2.1) and (2.2), and the potential field V(ξ;α) given by (2.3).
For later purpose we introduce the following dimensionless parameters

n=
n

n0
, x=

ξ√
D/γ

, t=τγ, (2.4)

where n0 is a reference particle density (concentration). The dimensionless forms of (1.2)
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Figure 1: Potential field V(x;α). Left: α=1; Right: α=16.

and (2.2) can be written as

∂2n

∂t2
+

∂n

∂t
=− ∂

∂x
(Pn)+

∂2n

∂x2
, (2.5)

j+
∂j

∂t
=−

√
D
√

γ
∂n

∂x
+γP(x)n, (2.6)

with

P(x)=− 1

m
√

Dγ3

dV

dx
. (2.7)

3 Numerical method

We consider equations (2.5) and (2.6) with the following initial conditions

n(x,0)=
1

L
√

π
e−x2/L2

,
∂n

∂t
(x,0)=0, (3.1)

j(x,0)=
1

L
√

π
e−x2/L2

(√
D
√

γ

L2
2x+γP(x)

)
, (3.2)

where

P(x)=− 1

m
√

Dγ3

dV

dx
, V(x;α)=

1

J0(iα)
eαcosx−1.

The boundary conditions are given by

lim
x→∞

n(x,t)=0, lim
x→−∞

n(x,t)=0, (3.3)

lim
x→∞

j(x,t)=0, lim
x→−∞

j(x,t)=0. (3.4)
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In this section we describe a numerical method to solve the problem (2.5)-(2.6). Our
approach can be pursued in three steps. First, we apply the Laplace transform to (2.5)-
(2.6) in order to remove the time dependent terms and we obtain an ordinary differen-
tial equation in x that also depends on the Laplace transform parameter s. Secondly,
we solve the ordinary differential equation thus obtained, by using a finite difference
scheme. Lastly, using a numerical inverse Laplace transform algorithm we obtain the
final approximate solution.

3.1 Spatial discretization

Our numerical method is facilitated if we apply time Laplace transform to Eq. (2.5) and
obtain the ordinary differential equation

d2ñ

dx2
−λsñ−

d

dx
(Pñ)=−(1+s)n(x,0), (3.5)

where λs = s2+s; s is a complex variable and ñ is the Laplace transform of n defined by

ñ(x,s)=
∫ ∞

0
e−stn(x,t)dt. (3.6)

Now, assume we have a space discretization xi = a+i∆x, i = 0,··· ,N. Let η̃i(s), i =
0,··· ,N represent the approximation of ñ(xi,s) in the Laplace transform domain. The
outflow boundary is such that η̃N(s) = 0, for all s and N sufficiently large, which is ac-
cording to the physical boundary condition.

To derive the numerical method we consider central differences to approximate the
first derivative and the second derivative of Eq. (3.5). We obtain, for a fixed s, the finite
difference scheme given by

η̃i−1(s)−2η̃i(s)+ η̃i+1(s)

∆x2
−λsη̃i(s)−

Pi+1η̃i+1(s)−Pi−1η̃i−1(s)

2∆x
=−(1+s)n(xi,0), (3.7)

for i=1,··· ,N−1, where Pi=P(xi).
Therefore, we obtain the linear system

K(s) ̃(s)= b̃(s) , (3.8)

where K(s) = [Ki,j(s)] is a band matrix of size N−1×N−1 with bandwidth three and

̃(s)= [η̃1 (s),··· ,η̃N−1(s)]
T. The matrix K(s) has entries of the form

Ki,i−1(s)=
1

∆x2
+

Pi−1

2∆x
, (3.9a)

Ki,i(s)=− 2

∆x2
−λs, (3.9b)

Ki,i+1(s)=
1

∆x2
− Pi+1

2∆x
, (3.9c)
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and b̃(s) contains boundary conditions being represented by

b̃(s)=




−(1+s)n(x1,0)
−(1+s)n(x2,0)

...
−(1+s)n(xN−2,0)
−(1+s)n(xN−1,0)



+




−K1,0(s)η̃0(s)
0
...
0

−KN−1,N(s)η̃N(s)




. (3.10)

To compute the flux, we apply the Laplace transform to Eq. (2.6), that is,

(1+s) j̃=−
√

D
√

γ
dñ

dx
+γP(x)ñ+ j(x,0), (3.11)

where j̃ is the Laplace transform of the flux j. The last step is to determine an approximate
solution ηi (t) and ji(t) of n(xi,t) and j(xi,t) respectively, which is obtained from η̃i (s) and

j̃i (s) by using a Laplace inversion numerical method.

3.2 Laplace transform inversion

In this section, we determine an approximate solution ηi (t) from η̃i (s) by using a Laplace
inversion numerical method. For the sake of clarity we omit the index i, denoting η̃i (s)
by η̃(s).

A formally exact inverse Laplace transform of η̃(s) into η(t) is given through the
Bromwich integral [15]

η(t)=
1

2πi

∫ β+i∞

β−i∞
estη̃(s)ds, (3.12)

where β is such that the contour of integration is to the right-hand side of any singularity
of η̃(s). However, for a numerical evaluation the above integral is first transformed to an
equivalent form

η(t)=
1

π
eβt
∫ ∞

0
Re
{

η̃(s)eiωt
}

dω, (3.13)

where s = β+iω [1, 15, 16]. The integral is now evaluated through the trapezoidal rule
[1, 7], with step size π/T, and we obtain

η(t)=
1

T
eβt

[
η̃(β)

2
+

∞

∑
k=1

Re

{
η̃

(
β+

ikπ

T

)
e

ikπt
T

}]
−ET, (3.14)

for 0< t < 2T and where ET is the discretization error. It is known that the infinite se-
ries in this equation converges very slowly. To accelerate the convergence, we apply the
quotient-difference algorithm, proposed in [2], and also used in [16], to calculate the se-
ries in (3.14) by the rational approximation in the form of a continued fraction. Under
some conditions we can always associate a continued fraction to a given power series.
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We denote v(z) the continued fraction

v(z)=d0/(1+d1z/(1+d2z/(1+···))) (3.15)

associated with the power series in (3.14). For z=eiπt/T,

v(z)=
η̃(β)

2
+

∞

∑
k=1

η̃

(
β+

ikπ

T

)
zk, (3.16)

and the coefficients dp’s of (3.15) are obtained by recurrence relations from the coefficients

η̃
(

β+ ikπ
T

)
, that is, denoting η̃k the coefficients η̃

(
α+ ikπ

T

)
, let

e
(k)
0 =0, q

(k)
1 = η̃k+1/η̃k, k=0,1,··· . (3.17)

From the recurrence relations,

e
(k)
p +q

(k)
p = e

(k+1)
p−1 +q

(k+1)
p , k=0,1,··· , p=1,2,··· , (3.18)

q
(k)
p+1e

(k)
p =q

(k+1)
p e

(k+1)
p , k=0,1,··· , p=1,2,··· , (3.19)

we obtain the coefficients dp’s,

d0= η̃0, d2p−1=−q
(0)
p , d2p=−e

(0)
p , p=1,2,··· . (3.20)

Let the M-th partial fraction be denoted by v(z,M). Therefore

v(z)=v(z,M)+EM
F ,

where EM
F is the truncation error. Then

η(t)=
1

T
eβtRe

{
v(z,M)+EM

F

}
−ET.

The approximation for η(t) is denoted by η(t) and given by

η(t)=
1

T
eβtRe{v(z,M)}.

4 Convergence of the numerical method

In this section we discuss the convergence of the numerical method chosen to compute
an approximate solution to Eq. (2.5). Let us denote by ẼS the error associated with the
spatial discretization, that is,

ñ(xi,s)= η̃i(s)+ ẼS(xi,s). (4.1)
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The next errors come from the numerical inversion of Laplace transform, where the
Laplace inverse transform of η̃i(s) is, as described in the previous section, the solution

η i(t)=
1

T
eβtRe

{
v(z,Mi)+EM

F (xi,t)
}
−ET(xi,t), (4.2)

where ET is the error associated with the trapezoidal approximation and EM
F is the trun-

cation error associated with the continued fraction. Note that for each xi the algorithm
chooses a Mi and therefore for each xi we have a different value of the approximation of
the continued fraction, v(z,Mi). Therefore from (4.1)-(4.2) we have

n(xi,t)=
1

T
eβtRe

{
v(z,Mi)+EM

F (xi,t)
}
−ET(xi,t)+ES(xi,t),

where ES(xi,t) is the inverse Laplace transform of the error ẼS(xi,s).

4.1 Approximation errors ET and EF

The error ET that comes from the integral approximation using the trapezoidal rule, ac-
cording to Crump [7], is

ET =
∞

∑
n=1

e−2nβTn(xi,2nT+t).

Assume now that our function is bounded such as |n(xi,t)|≤ eσt, for all xi. Note that, in
this case the Laplace transform ñ(s), Eq. (3.6), is defined for Re(s)>σ and therefore β on
(3.12) must be β>σ. Therefore the error can be bounded by

ET ≤eσt
∞

∑
n=1

e−2nT(β−σ)=
eσt

e2T(β−σ)−1
, 0< t<2T.

It follows that by choosing β sufficiently larger than σ, we can make ET as small as de-
sired. For practical purposes and in order to choose a convenient β we use the inequality
which bounds the error

ET ≤eσt−2T(β−σ).

If we want to have the bound ET≤bT then by applying the logarithm in both sides of the
previous inequality we have

β≥σ
2T+t

2T
− 1

2T
ln(bT).

Assuming σ≥0 we can write

β≥σ− ln(bT)

2T
.

In our example we consider σ=0. In practice the trapezoidal error ET is controlled by the
parameter β we choose.
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The second error, EM
F , comes from the approximation of the continued fraction given

by (3.16). This error is controlled by imposing a tolerance TOL such as

|v(z,M)−v(z,M−1)|<TOL,

in order to get the approximation ηi(t) given by

ηi(t)=
1

T
eβtRe{v(z,Mi)}, (4.3)

where Mi changes according to which xi we are considering.
In order to understand better how to control the trapezoidal error with the parameter

β and how the tolerance TOL affects the error, we present a test example which is an
analytically exactly solvable model. We assume P constant and Fickian diffusion

∂n

∂t
=−P

∂n

∂x
+D

∂2n

∂x2
, x∈ ]0,∞[, t>0. (4.4)

The initial condition is
n(x,0)=0 (4.5)

and the boundary conditions are

n(0,t)=N0, n(∞,t)=0. (4.6)

It will be noted that we are now considering a semi-infinite geometry. We note the differ-
ence between this test case and our original unbound problem. We choose this test exam-
ple for two reasons: Firstly, Eq. (4.4) can be analytically exactly solved by first applying
the time-Laplace transform and then through the inverse Laplace transform. Secondly,
this example is chosen to compare the convergence aspects of the Laplace inversion algo-
rithm without spatial discretization.

If we apply the Laplace transform to this problem we obtain

ñ(x,s)=N0
1

s
eP/2D−x

√
(P/2D)2+s. (4.7)

The analytical solution is given by

n(x,t)=
N0

2

(
erfc

[
x−Pt

2
√

Dt

]
+ePx/Derfc

[
x+Pt

2
√

Dt

])
. (4.8)

In Figs. 2 and 3, for N0=1, P=2, t=1 and 0≤ x≤12, we plot the following errors,

EF = max
1≤i≤N−1

|v(z,Mi)−v(z,Mi−1)|, (4.9)

EG = max
1≤i≤N−1

|n(xi,t)−ηi(t)|. (4.10)
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Figure 2: Error EF and EG for N0=1, P=2, t=1, 0≤ x≤12 and β=−ln(10−6)/2T with T=20 and different
values of TOL. The global error is controlled by the parameter β.
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Figure 3: Error EF and EG for N0=1, P=2, t=1, 0≤x≤12 and β=−ln(10−10)/2T with T=20 and different
values of TOL. The parameter β is chosen such that the global error is not affected.

We choose the interval 0≤ x ≤ 12 in order to avoid the influence of the right numerical
boundary condition in the numerical computations, that in this case is n(12,t)=0.

The error EF is related with the error EM
F since we control EM

F by controlling EF with
the tolerance TOL. Figs. 2 and 3 show how the parameter β, given by β=−ln(10−6)/2T
in Fig. 2 and β =−ln(10−10)/2T in Fig. 3, affects the global convergence. Note that in
Fig. 2 the precision does not go further than 10−6. The global error of Figs. 2 and 3 is not
affected by the spatial error ES since we apply the Laplace inversion algorithm directly
in (4.7).

The Laplace inversion algorithm approximates the value of the infinite series using a
truncated continued fraction and this truncation is done by choosing an Mi for each xi.
This Mi is chosen according to which value of the tolerance TOL we consider. To show
an example with a region involving a very steep gradient, let us consider the problem
which consists of Eq. (2.5), for P=2, with initial conditions n(x,0)=0 and ∂n

∂t (x,0)=0 and
boundary conditions n(0,t) = 1 and n(∞,t) = 0. We show in Fig. 4 the variations of Mi
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Figure 4: Number of iterations M for P= 2, t= 1, TOL= 1/N2, and β=−ln(10−10)/2T with T= 20. Left:
Approximate solution; Right: Number of iterations for each xi.

and it is clear the algorithm concentrates the high values of M in the region that presents
steep gradients.

4.2 Spatial discretization error ẼS(xi,s)

We now turn to the discretization error ẼS(xi,s), defined in (4.1) (our main problem), and
prove that it is of second order. Let us denote the differential operator L given by

Lñ=
d2ñ

dx2
−λsñ−

d

dx
(Pñ).

We also denote by Lπ the operator associated with the spatial discretization, given by

Lπñ(xi,s)=
ñi−1(s)−2ñi(s)+ñi+1(s)

∆x2
−λsñi(s)−

Pi+1ñi+1(s)−Pi−1ñi−1(s)

2∆x
,

where ñi(s) denotes the exact solution at ñ(xi,s). The local truncation error is given by

Te(xi,s)= Lπ ñ(xi,s)−Lñ(xi,s).

For a fixed s, we make a Taylor expansions of the functions ñ and P around the point xi.
We obtain, for a sufficiently smooth ñ,

Ki,i−1(s)ñi−1(s)+Ki,i(s)ñi(s)+Ki,i+1(s)ñi+1(s)+(1+s)n(xi,0)

=
d2ñi

dx2
(s)−λsñi(s)−

d

dx
(Pñ)i(s)+(1+s)n(xi,0)

+

[
−1

6
P′′′

i ñi(s)−
1

2
P′′

i

dñi

dx
(s)− 1

2
P′

i

d2ñi

dx2
(s)− 1

6
Pi

d3ñi

dx3
(s)+

1

12

d4ñi

dx4
(s)

]
∆x2

+O(∆x3),
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where P′,P′′,P′′′ denotes the derivatives of P (unlike in the previous test example P is
now not a constant). From this result we can conclude that, for ñ(.,s)∈C4(R), we have

||Te||∞ = max
2≤i≤N

|Te(xi,s)|≤ c∆x2.

By denoting Ẽi= ẼS(xi,s), i=1,··· ,N−1 we have

LπẼi =Te(xi,s),

that is,

K(s)Ẽ(s)=Te(s).

If ||K−1(s)||∞ ≤C then |Ẽi|≤C||Te ||∞. Since the matrix K(s) is not an M-matrix [19,20], it
is not easy to prove analytically the inverse of K(s) is bounded. This difficulty is related
to the set of values of the parameter λs, given by

λs = s2+s=β2+β−ω2+iω(2β+1), ω=
kπ

T
, k=1,··· ,M,

where M defines the set of values in the Laplace domain, since for ω2
>β2+β the complex

λs has negative real part. However, it is easy to see numerically that for a fixed T, where T
defines the stepsize of the trapezoidal rule used to approximate the integral (3.13), as we
refine the space step, the value ||K−1(s)||∞ does not change significantly. We also observe
that ||K−1(s)||∞ is larger for values of |s| close to zero, indicating that the convergence can
be slower for these values, as can be observed in Fig. 5.

Additionally we observe that we have a similar phenomenon to the so-called pollu-
tion effect [3] observed for the Helmholtz equation and high wavenumbers where the dis-
cretization space step has to be sufficiently refined to avoid numerical dispersion. Also
in this context it is observed that if we have a complex number as a coefficient in the
equation, which is our case with λs, the imaginary part acts as an absorption parameter,
which seems to allow us to better control the solution by decreasing the solution mag-
nitude [10]. Following what is reported in literature [3, 4, 17], a useful rule observed for
an adjustment of the space step is to force some relation between T and the ∆x. For our
problem a similar condition is

ω∆x≤ 2π

10
. (4.11)

This leads to (M/T)∆x≤ 2/10, with M=maxi Mi, where Mi is the iteration for each xi,
as given in (4.3).

We have discussed the consistency and stability of the numerical method. Regarding
the accuracy of the numerical method, additionally to the truncation errors, let us look
at the condition number of the matrix K(s), cond(K), that determines how accurately we
can solve the system (3.8). The condition number of the matrix K(s) is affected by the val-
ues of T and N as we can observe in Figs. 6 and 7. We can infer from these figures that the
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Figure 5: Infinity norm of the matrix K−1(s) for N=1000. We have considered P(x) with α=1. Left: T=80;
Right: T=800.
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Figure 6: Condition number for the matrix K(s) for T=30. We have considered P(x) with α=1. Left: N=50;
Right: N=500.
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Figure 7: Condition number for the matrix K(s) for T=50. We have considered P(x) with α=1. Left: N=50;
Right: N=500.

condition number of the matrix K increases if we increase T or N. Usually one must al-
ways expect to loose log10(cond(K)) digits of precision in computing the solution, except
under very special circumstances. Since we are working with double precision numbers,
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about 16 decimal digits of accuracy, caution is advised when the condition number is

much greater than 1/
√

10−16, which in general does not happen for our problem. The
condition number of order 106 is reached for very large values of T and N, such as, both
larger than 105. We plotted the results for α=1, although for different values of α we have
similar results.

4.3 Numerical tests

In order to illustrate the full feature of the numerical method, we consider two test prob-
lems. We will show that the order of convergence of the numerical method is second
order as predicted by the theoretical analysis. Additionally we will compare the compu-
tational efficiency with classical methods, such as, the Crank-Nicolson (CN).

The computational cost of the Laplace algorithm [2] for inverting the function η̃i(s)
is O(M2

i ) and therefore the total cost for the Laplace transform inversion is O
(

∑
N
i=1 M2

i

)
.

The computational cost for solving the linear system of equations resulting from the finite
difference discretization is approximately O

(
MN

)
, where we define M as the average

of {Mi,i=1,··· ,N}. Therefore, the total cost of the numerical method that uses inverse
Laplace transforms and a finite difference discretization (Laplace FD) is approximately

O
(

N

∑
i=1

M2
i +MN

)
≈O

(
(M

2
+M)N

)
.

Since we expect O(M) to be much smaller than O(N), we also expect the computational
cost of Laplace FD method to be much less than the computational cost of numerical
methods like Crank-Nicolson (CN) where the computational cost is O

(
N2
)
. We will see

this indeed happens in the two examples we present bellow, which consist of a Fickian
and a non-Fickian problem.

In order to measure the gain in efficiency, we consider the variable Gain given by

Gain=
# operations CN −# operations Laplace FD

max{# operations CN,# operations Laplace FD} .

First, we consider the Fickian problem (4.4)-(4.6), whose exact solution is given by
(4.8). In Table 1 and Fig. 8 we show the global error (4.10), for N0=1, P=2, t=1 and dif-
ferent values of the space step. We also present, for the Laplace FD method, the parameter
T chosen, the number of iterations M=maxi Mi, the average of the Mi’s, denoted by M
and the rate of convergence. We observe that the Laplace FD method is more efficient
than the CN method. The advantage of the Laplace FD method in the computational cost
increases with N, that is, as ∆x decreases.

In Table 2 and Fig. 9 we increase the time to t=20 and for the CN method we consider
the same timestep ∆t we have considered previously for the results obtained in Table 1.
As expected, the efficiency of Laplace FD method is more evident as shown by the values
of the variable Gain. We also note that the computational cost of the inverse Laplace



516 A. Araújo et al. / Commun. Comput. Phys., 13 (2013), pp. 502-525

Table 1: Fickian case: Global error (4.10) for P = 2, t = 1, 0 ≤ x ≤ 10, TOL = 1/N3, β =−ln(10−16)/2T,
∆t=∆x/10.

∆x CN Laplace FD Rate T M M Gain

10/128 0.2567×10−3 0.2549×10−3 3 14 9 29.7%

10/256 0.6427×10−4 0.6601×10−4 2.0 3 16 11 48.4%

10/512 0.1608×10−4 0.1615×10−4 2.0 3 18 13 64.5%

10/1024 0.4019×10−5 0.4063×10−5 2.0 3 20 15 76.5%

10/2048 0.1001×10−5 0.1018×10−5 2.0 3 21 17 85.1%

Table 2: Fickian case: Global error (4.10) for P = 2, t= 20, 0≤ x ≤ 70, TOL = 1/N3, β=−ln(10−16)/2T,
∆t=∆x/70.

∆x CN Laplace FD Rate T M M Gain

70/128 0.3116×10−2 0.3210×10−2 30 12 8 97.2%

70/256 0.7788×10−3 0.8620×10−3 1.9 30 13 10 97.9%

70/512 0.1949×10−3 0.1886×10−3 2.2 30 14 12 98.5%

70/1024 0.4651×10−4 0.4675×10−4 2.0 30 16 13 99.1%

70/2048 0.1218×10−4 0.1229×10−4 1.9 30 16 15 99.4%

Table 3: Fickian case: Global error (4.10) for P = 2, t= 20, 0≤ x ≤ 70, TOL = 1/N3, β=−ln(10−16)/2T,
∆t=20∆x/70.

∆x CN Laplace FD Rate T M M Gain

70/128 0.3589×10−2 0.3210×10−2 30 12 8 43.8%

70/256 0.8991×10−3 0.8620×10−3 1.9 30 13 10 57.0%

70/512 0.2249×10−3 0.1886×10−3 2.2 30 14 12 69.5%

70/1024 0.5622×10−4 0.4675×10−4 2.0 30 16 13 82.2%

70/2048 0.1506×10−4 0.1229×10−4 1.9 30 16 15 88.3%

transform algorithm is reduced. This can be easily seen by looking at the values of M and
M in Tables 1 and 2. In Table 3, we also consider t=20 but we increase the timestep ∆t.
The Laplace FD method is now slightly more accurate and is still with less computational
effort than the CN method.

Now, we turn to the non-Fickian problem given by the telegraph equation,

∂n

∂t
+

∂2n

∂t2
=D

∂2n

∂x2
, x∈ ]0,2π[, t>0, (4.12)

with initial conditions

n(x,0)=sin(
x

2
),

∂n

∂t
(x,0)=−1

2
sin(

x

2
), (4.13)

and boundary conditions
n(0,t)=0, n(2π,t)=0. (4.14)
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Figure 8: Fickian case (Table 1). Left: Global error; Right: Total cost.
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Figure 9: Fickian case (Table 2). Left: Global error; Right: Total cost.
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Figure 10: Fickian case (Table 3). Left: Global error; Right: Total cost.

We can easily obtain the analytical solution given by

n(x,t)= e−
t
2 sin(

x

2
). (4.15)

As for the Fickian case, we present in Table 4 and Fig. 11, the global error (4.10) for t=1
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Table 4: Non-Fickian case: Global error (4.10) for t = 1, 0 ≤ x ≤ 2π, TOL = 1/N3, β =−ln(10−16)/2T,
∆t=∆x/(2π).

∆x CN Laplace FD Rate T M M Gain

2π/128 0.3420×10−5 0.4864×10−5 5 19 18 -66.3%

2π/256 0.8551×10−6 0.7019×10−6 2.8 4 19 18 -25.2%

2π/512 0.2138×10−6 0.2893×10−6 1.3 4 21 20 18.0%

2π/1024 0.5357×10−7 0.6196×10−7 2.2 3 20 19 62.9%

2π/2048 0.1339×10−7 0.1509×10−7 2.0 3 24 21 77.4%
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Figure 11: Non-Fickian case (Table 4). Left: Global error; Right: Total cost.
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Figure 12: Non-Fickian case (Table 5). Left: Global error; Right: Total cost.

and different space steps. The solution of this problem is smoother than the solution of
the previous problem which has an initial discontinuity in the corner (x,t)=(0,0). In this
case the CN method behaves better than previously. However, the Laplace FD method
is still more efficient, specially if we look for higher order accuracy. Furthermore, we
observe in Table 5 and Fig. 12 that if we increase the time to t= 3, the superiority of the
Laplace FD method is also more evident.

It will be noted that our main problem is unbounded. But with at least one zero
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Table 5: Non-Fickian case: Global error (4.10) for t = 3, 0 ≤ x ≤ 2π, TOL = 1/N3, β =−ln(10−16)/2T,
∆t=∆x/(2π).

∆x CN Laplace FD Rate T M M Gain

2π/128 0.1218×10−4 0.1044×10−4 10 16 15 29.2%

2π/256 0.3044×10−5 0.3368×10−5 1.6 10 18 17 55.5%

2π/512 0.7610×10−6 0.7942×10−6 2.1 10 20 19 72.7%

2π/1024 0.1907×10−6 0.1895×10−6 2.1 10 23 22 82.0%

2π/2048 0.4767×10−7 0.5053×10−7 1.9 10 27 26 87.7%

boundary condition for each, the two test examples (Fickian and non-Fickian), although
semi-bounded and bounded respectively, can be computationally viewed as similar to
our main problem. We observe from the previous results that we obtain second order
convergence as predicted by the theoretical analysis for the main problem.

5 Numerical results for n(x,t), j(x,t) and <x2(t)>

To do the numerical experiments we consider the equations

∂2n

∂t2
+

∂n

∂t
=− ∂

∂x
(Pn)+

∂2n

∂x2
, (5.1)

j+
∂j

∂t
=−∂n

∂x
+Pn, (5.2)

for

P(x)=−dV

dx
and V(x;α)=

1

J0(iα)
eαcosx−1.

For α= 1, the potential is smoother compared with α= 16, as it is shown in Fig. 13.
In Fig. 13 we observe that P(x) for α= 1 changes between −1 and 1, whereas for α= 16
changes between −20 and 20 and the change is not smooth. Our method can deal very
well with both cases.
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Figure 13: Potential P(x). Left: α=1; Right: α=16.
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We consider the initial conditions,

n(x,0) =
1

L
√

π
e−x2/L2

,
∂n

∂t
(x,0)=0, (5.3)

j(x,0) =
1

L
√

π
e−x2/L2

(
1

L2
2x+P(x)

)
, (5.4)

and the boundary conditions are given by

lim
x→∞

n(x,t)=0 and lim
x→−∞

n(x,t)=0.

Note that the stationary solution of the problem is given by

nst(x)=Nr exp(−V(x)),

where Nr is a normalization value.
For α = 1 we show in Figs. 14 and 15 the behaviour of the solution as we increase

time from t= 1 until t= 500. The peak starts to split into two and then we have several
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Figure 14: Particle density n(x,t) for α= 1. Left: Curve for instant of time t= 1; Right: Curve for instant of
time t=3.
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Figure 15: Particle density n(x,t) for α=1. Left: Curve for instant of time t=100; Right: Curve for instant of
time t=500.
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waves forming that goes to the right and left. The domain where the function is not zero
becomes larger as we travel in time. For that reason the computational domain increases
considerably which requires more computational effort regarding the discretization in
space. For an iterative method where we need to consider a discretization in time, it
would require more computational effort for long times as we need to iterate in time
whereas the Laplace transform has the advantage of not iterating in time and therefore it
is the same if we compute the solution for short times or long times.

In Fig. 16 we plot the flux for α=1, as it evolves from t=0 to t=1 and in Fig. 17 as it
evolves from t=5 to t=30.
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Figure 16: Density flux j(x,t) for α=1. Left: Curve for instant of time t=0; Right: Curve for instant of time
t=1.
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Figure 17: Density flux j(x,t) for α=1. Left: Curve for instant of time t=5; Right: Curve for instant of time
t=30.

A quantity of physical interest in diffusion problems is the mean square displacement
defined by

< x2(t)>=
∫ ∞

−∞
[x2n(x,t)]dx.

For the Fickian case, < x2(t)> is linear in t for all times in the absence of a potential.
Now we would like to present calculations of < x2(t)> for the non-Fickian diffusion. At
short times, and in the presence of a potential, the mean square displacement, < x2(t)>,
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Figure 18: Mean square displacement for α=1; Left: Curves for t∈ [0,2]; Right: Curves for t∈ [5,30].
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Figure 19: Particle density n(x,t) for α=16. Left: Curve for instant of time t=1; Right: Curve for instant of
time t=2.
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Figure 20: Particle density n(x,t) for α= 16. Left: Curves for instant of times t= 500 (−), t= 1000 (−−);
Right: Curve for instant of time t=5000 (−).

shows a t2 behaviour, see Fig. 18. This is due to inertial effects which are captured by a
non-Fickian diffusion equation.

For α=16 we show the evolution of the solution in the first instants of time. We see the
solution presents very steep gradients and the method is able to give accurate solutions.
First we observe how the wave split for t=1 and t=2 in Fig. 19.

Next in Fig. 20 we observe the behaviour for very large times. It is interesting to see
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Figure 21: Particle density n(x,t) for α=16. Curves for instant of time t=5000 (−−); t=10000 (−).

how the Laplace method is able to give very quickly solutions for very large times. An
iterative numerical method in time, it would take a large amount of time to run experi-
ments for such long times such as t=5000 or t=10000 as we can see in Fig. 21. The flux
for α=16 is plotted in Fig. 22.
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Figure 22: Density flux for α=16. Left: Curve for instant of time t=0; Right: Curve for instant of time t=1.

6 Summary and outlook

In this paper we have presented a numerical solution of a non-Fickian diffusion equation
which is a partial differential equation of the hyperbolic type. This equation is of physi-
cal interest in the context of Brownian motion in inertial as well as diffusive regimes. In
our model the Brownian particle is subjected to a symmetric periodic potential of flex-
ible shapes (generated with a single variable parameter) which can lead to harmonic,
anharmonic or a confining potential for the particle.

Instead of introducing discretization in both space and time variables we dealt with
the time-derivatives through time Laplace transform and obtained an ordinary differen-
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tial equation in space variable. This equation was then solved with a finite-difference
scheme, leading to a discretized approximate solution for ñ(x,s); the solution is approx-
imate due to discretization and is still formally exact in the Laplace domain s. The next
step consisted of numerical Laplace inversion to obtain an approximation to the origi-
nal solution n(x,t). We show that the full method is second order accurate; this finding
receives additional support from two test examples considered in Section 4. One may
be able to consider further improvement. A major advantage of using the time Laplace
transform is that we can compute the approximate solution for long times accurately
and quickly. Any iterative numerical method would take too long to compute the solu-
tion for similar times even if we consider an unconditionally implicit numerical method
which will allow large time steps. Additionally, our algorithm takes into consideration
the smoothness of the solution; in other words the computational effort is higher in the
regions where the solution has steep gradients. Another merit of the method is that it
can be easily generalized to higher spatial dimensions. It would be of interest to consider
an application of the method to numerically solve the Kramers equation which is a more
involved partial differential equation than the non-Fickian diffusion equation.
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