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Abstract. The shapes of vesicles formed by lipid bilayers with phase separation are
governed by a bending energy with phase dependent material parameters together
with a line energy associated with the phase interfaces. We present a numerical method
to approximate solutions to the Euler-Lagrange equations featuring triangulated sur-
faces, isoparametric quadratic surface finite elements and the phase field approach for
the phase separation. Furthermore, the method involves an iterative solution scheme
that is based on a relaxation dynamics coupling a geometric evolution equation for the
membrane surface with a surface Allen-Cahn equation. Remeshing and grid adaptiv-
ity are discussed, and in various simulations the influence of several physical parame-
ters is investigated.
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1 Introduction

The basic components of cell boundaries and organelles are bilayers consisting of phos-
pholipids that spontaneously form when introduced into an aqueous environment in ap-
propriate concentration. Vesicles or bags formed by such biomembranes show a great va-
riety of shapes and have been attracting interest from various fields. First, the geometry
and composition are conjectured to contribute to and interact with cell processes. Second,
the lipid bilayers possess intricate mechanical properties which partially are solid-like,
namely they reveal a stiffness against stretching and bending, but are unable to sustain
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shear stress and so also behave like a viscous fluid within each of the monolayers. Math-
ematicians finally are attracted by the geometric properties of the membrane but also by
the patterns that phases within the membrane may form. Such phase separation phe-
nomena are due to the different types of lipids of which the membrane consists. Here
we wish to consider computational simulations and modeling in the context of a partial
differential equation model which couples the geometric equation for the membrane sur-
face to a diffusion equation on the surface which defines the surface phase separation.
We begin by describing the model.

The classical biomembrane mechanics theory developed in [10, 27, 32] models the

vesicle boundary as a hypersurface on which the following elastic energy functional is
defined:

fCEH(F)Z/rI;—K(K—Ks)ZJF/Fkgg- (1.1)

Here, the mean curvature (sum of the principal curvatures) of the membrane is denoted
by x and the Gaussian curvature by ¢ and k, > 0 (bending rigidity) and k; (Gaussian
bending rigidity) are material dependent elasticity parameters while the number x; is
known as the spontaneous curvature. A lateral phase separation due to a decomposition
of the different lipid molecules has been observed and recently been made visible [5,6,43].
Line tension is observed at the phase interfaces and in [34,35] an energy functional of the
form
2 k(i) . .
Fat(Cm) =Fo(Cm)+ At =1 ([ 50 [ Kg)+ [o a2)
i=1 7T i

was proposed. The two-phase membrane, I'=I"1 UI'; Uy, consists of two smooth, not nec-
essarily connected surfaces I'; with a common boundary 7y which is the phase interface.
The constant parameter & denotes the energy density of the interfacial energy. An intri-
cate issue is the smoothness across the phase interface. As in [35], Section I1.B, we assume
a C! surface which means that the external unit normal of the enclosed vesicle domain is
continuous. This assumption is motivated by the fact that the lipid bilayer should be in-
tact across the interface. However, higher order derivatives in general are discontinuous.
For instance, we will see that the mean curvature is subject to a jump condition in equilib-
rium. But we want to mention that C° surfaces may be considered [33], motivated from
the pictures in [6] which, on a macroscopic scale, reveal kinks at the phase interfaces.

In order to deal with the line energy we consider a phase field approach and introduce
an order parameter c¢ to distinguish the two phases. The states c= —1 and c=1 then
correspond to the two phases and the phase interfaces are replaced by thin layers across
which ¢ changes is value rapidly but smoothly. To achieve this we replace the line energy
F1 by a Ginzburg-Landau energy of the form

For(Te)= [o(5IVrel+29(c): 13)

The function ¥(c) := (1—c?)2/2 is a double-well potential with minima in ¢ =1 and
c = —1 which favors the two phases. Denoting by v the external unit normal to I' and
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by P:=I—v®v the projection to the tangential space, the surface gradient of the order
parameter is defined by Vrc:=PVc. The gradient term ¢|Vrc|? in (1.3) acts as a penalty
term which avoids rapid changes of ¢ whilst the term ¢(c) /€ favors the values £1 of the
order parameter. Here ¢ is a small length scale such that the thickness of the interfacial
layers scales with ¢. Finally, the coefficient ¢ is related to the line energy coefficient & by

4
o= 3(7. (1.4)
The phase field approach has been successfully applied in various fields, see [11, 14].
In the context of two-phase membranes, the idea of replacing the line energy by the
Ginzburg-Landau energy dates back to the early 90s [1,36,42].
The phase dependent physical parameters in (1.2) become functions of the order pa-
rameter c and we choose them to be of the form

K, if 1<c,
1), .2 1) _4(2)
ke() =1 Kx ;k" K 4k" c(3—c?), if —1<c<1, (1.5)
K2 if c<—1,

and analogously for x;(c) and k¢ (c). Other sufficiently smooth monotone interpolations
between —1 and 1 may be used. The total membrane energy in this diffuse interface
model then reads

]'—DI(F,C) =Fmc (F,C) -1-]-"Gc(l“,c) +.FGL(F,C)
= [k -0+ [Kelg+ [ (FI9reP+29(0)). o

In this study we discuss a numerical method to compute equilibrium two-phase
membrane shapes, subject to certain side conditions. Our approach is based on the sur-
face phase field model. That is we look for local minimizers of the energy (1.6) and con-
sider ¢ as an approximation parameter. In the limit as e—0 we recover the sharp interface
model 1.2, [25]. We use relaxation dynamics consisting of the equations (1.7a) and (1.7b)
below which correspond to an L, gradient flow dynamics of the energy (1.6) where the
variation of the energy is carefully derived in [25]:

vy = —Ar (ke(c) (k—x5(c))) — ’Vrv‘sz(C)OC—KS(C))+1kK(C) (K—Ks(c))zic

2
—Vr- (kg (c) (kI+Vrv)Vre) —l-asVrc@Vrc:Vrv+0<§|vrc]2+%1p(c)>x
- Y AibrC, (1.7a)
i€l
ewofc=— % (K —1 (c))zk;(c) +ki(c) (k—1xs(c) ) xs(c) — gk ()
+e0Arc— Z1//(c) =Y 6:C;, (1.7b)

€ ieT
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where v, is the normal velocity, w >0 a kinetic coefficient and 9} c=0;c+v,v-Vc is the ma-
terial derivative of c along the trajectories defined by the velocity field v, v, v denoting the
unit normal on I'. Furthermore, the A; are Lagrange multipliers for possible constraints
which here are denoted by C;(T',c) =0, i € Z where 7 is an abstract index set. We have
constraints on the total area ||, on integrals of the form [.k(c) and on the volume of the
domain enclosed by I' in mind. The notation érC; stands for the variation with respect
to the surface I', and similarly 6.C; is the variation with respect to c. Note that with re-
spect to the time scale for the evolution of the membrane surface we have taken a time
scale defined by w for the evolution of the phase interface on the membrane surface be-
cause of the appearance of € on the left hand side of (1.7b). This follows from the usual
asymptotics for the Allen-Cahn equation.

Our numerical approach is based on approximating the membrane with a triangu-
lated surface and the surface fields by finite element functions. A suitable time discretiza-
tion leads to an iterative method to calculate equilibrium configurations as steady states
of the time dependent relaxation dynamics which couples a geometric evolution equa-
tion of Willmore-flow type for the membrane surface I' to an advected surface Allen-Cahn
equation for the phase field variable c.

In order to do this we require a variational formulation of the equations. The follow-
ing fundamental geometric equation

Arx=xv (1.8)

which links the mean curvature « of the surface I to the identity map x:I' =T is extremely
useful. Observing that we may write v,v = (d;x-v)v for the velocity of I we easily see
that the surface evolution equation (1.7a) in fact is a first order in time and a fourth order
in space equation. But thanks to the splitting into two second order equations (1.7a) and
(1.8) we are only required to use H! conforming finite element spaces in their variational
formulation.

We now make some comments about our numerical approach and the contributions
of this paper:

e Our method combines the efficiency of triangulated surfaces for approximating the
motion of hypersurfaces with the topological flexibility and algorithmic convenience of
the phase field method to deal with the lateral phase separation.

e The surface is approximated using a union of curvilinear triangles using a quadratic
isoparametric description over a base polyhedral surface with flat triangular faces. In
order to evolve the discrete surface from the known old time level to the new time level,
we parameterize the surface at the new time level over the surface at the old time level
so that no global parameterization over a fixed domain is required. This means, unless
we remesh, we use a fixed connectivity of vertices for the triangulation of the surface and
we calculate the new positions of the triangle nodes given the current ones. Besides gain-
ing higher order approximation we use isoparametric quadratic surface finite elements
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(SFEs) rather than linear finite elements as in [24] in order to obtain a better approxima-
tion of the shape operator (or Weingarten map) Vrv. We refer to [15,31] for a discussion
of the approximation of geometric quantities with Lagrange SFEs.

e We use a semi-implicit discretization in time where only the terms to highest order
and the Lagrange multipliers are taken implicitly. It results in a linear system whose
variables comprise the Lagrange multipliers and at each node of the triangulation the
values of the position vector of the new triangulation, the approximated mean curvature
and the value of the phase field variable. The resulting system has a linear saddle point
structure for the nodal positions and mean curvature nodal values coupled to a nonlinear
system involving the Lagrange multipliers and a linear system for the phase field nodal
values. We solve by factorizing the main matrix associated with the linear operator for
the variables other than the Lagrange multipliers, solve a few linear systems depending
on the number of Lagrange multipliers, and then perform a quasi-Newton iteration to
compute the solution including the Lagrange multipliers.

e The surface phase field equation is solved using a finite element method on the trian-
gulated surface generated by the approximation of the geometric surface equations. Thus
the method is a variant of the evolving surface finite element method introduced in [22].

e We use a formulation in which the nodes of each element move with both a normal
and tangential velocity. This is in contrast to the method in [24] ( based on [20]) for the
membrane evolution which evolves vertices purely in the normal direction. Here the
time discrete normal velocity is obtained by a consistent discretization of the geometric
surface equations but it also generates motion in the tangential direction which has some
mesh smoothing properties. This formulation is based on the ideas in [3]. This method
is less prone to grid distortion than the approach presented in [24]. We have found that
mesh smoothing becomes a more desirable feature of a numerical scheme when the de-
formations are very strong which may happen, for example, when the initial surface is far
from an equilibrium. Nevertheless for large deformations this tangential vertex motion
may not be sufficient. For this reason we employ the global remeshing method presented
in [21].

e In this paper we consider phase dependent material parameters whereas [24] is more
restrictive with respect to the material parameters by requiring constant k, and k, as well
as ks =0.

e For efficiency and accuracy we adaptively refine and coarsen the grid to ensure that
the interfacial layers associated with the phase field variable are resolved by the mesh
and that the strongly curved regions contain sufficient numbers of nodes.

e Besides presenting a computational tool we use it to:
— Study the influence of the line tension parameter.

— Investigate the impact of having differing Gaussian curvature bending rigidities.
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- Investigate the stabilization of multiple rafts on vesicles with a sphere like topology.

— Compute non-spherical vesicles with multiple domains.

Finally we refer to other computational work.

e In this paper we compute quite general configurations. However for axisymmetric
vesicle equilibrium shapes ode solvers are sufficient [35]. In this work we use a for-
mulation which allows the use of H! conforming finite elements whereas in [28,38] H?
conforming finite elements with C! ansatz functions are used to define a discrete energy
which is minimized using a black box conjugate gradient solver. In some cases this led
to distorted meshes. In some simulations in [38] this was overcome by taking additional
mesh regularization energies into account but convergence of the associated regularizing
forces to zero in the long term could not be guaranteed.

e One might envisage a purely sharp interface numerical approach in which the surface
is approximated by a triangulation and the phase boundaries on the surface are approx-
imated by evolving piecewise linear or curvilinear curves, c.f. [4]. The evolution would
then be defined by the sharp interface equations formulated in [25]. It is an open chal-
lenge to formulate computational sharp interface approaches which will handle topolog-
ical changes. On the other hand phase field equations or diffuse interface models are well
established in the flat situation for approximating or modeling energetic interfaces and
has been used to describe the membrane itself, see [41] (for a method for vesicles close
to a sphere), [16,17,44] and [37]. This approach can handle topological changes of the
surface itself which may be a useful feature. In such models it is important to understand
how the phase field formulation handles the dependence of the energy on Gauss curva-
ture as the integral of the Gauss curvature is no longer an invariant of the evolution. Also
topological changes of the membrane itself require severe rearrangements of the lipid
molecules so that the validity of continuum phase field models may be questioned for
such phenomena.

For the problem under consideration, provided there is no topological change of the
surface, since the problem of computing the hypersurface involves a higher dimension
than computing the (one- dimensional) phase interfaces we deem it advantageous to use
the parametric approach together with, for instance, surface finite elements, in order to
approximate the surface. This requires substantially fewer degrees of freedom than the
phase field approach or level set methods, see the discussion in [14]. In our approach we
use a surface phase field model which is useful with respect to the intra-membrane phase
separation since it allows the study the appearance and stability of configurations with
multiple domains (or rafts) of one phase in another matrix phase.

We end the introduction with an outline of the paper. In the next section we present
the variational formulation of the evolution problem and precisely state the constraints.
Also the energy and Euler-Lagrange equations in the sharp interface limit as ¢ — 0 are
stated. We then introduce the SFEs and proceed with the spatial discretization in Section
3. Also mesh adaption and mesh regularity are discussed. In the final section we present
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and discuss results of significant numerical experiments. This includes a convergence
study in ¢ (including grid refinement), investigating the effect of varying the magnitude
of the line tension and the Gaussian bending rigidities, the stabilization of multiple raft
domains on sphere like vesicles and a study of non-sphere like vesicles. We indicate how
the computational approach may be used to calculate phase diagrams.

For the implementation of the numerical schemes the finite-element software AL-
BERTA [39] has been employed, for solving the linear systems we have made use of the
software UMFPACK [13], and for the visualization of vesicle shapes we used ParaView
http://paraview.org/.

2 Modeling

2.1 Vesicles and constraints

We consider vesicles formed by lipid bilayers and define admissible phase field surfaces
for the membrane energy (1.6) to be the smooth boundary I' =0 of a bounded domain
Q C R3 (the vesicle domain) together with a smooth field c:I' = IR, the order parameter
or phase field variable.

The vesicle encloses a given volume denoted by V, such that the areas of the two
phases are prescribed; we denote them by A;, i=1,2 (we refer to [40], Section 2.4.4 for the
physically relevant regime). In the context of the phase field model, the area constraints
are taken into account with the help of the function

1, if 1<,
1

h(c)= Ec(3—c2), if —1<c<1,
-1, if c<—1.

Again other monotone interpolations between —1 and 1 may be used. As & — 0 one
expects that [ hi(c) — |I'1|—|T'2| where I';, i =1,2, are the domains of the two phases in
the sharp interface limit, see Section 2.3. This motivates the conservation of [./(c) and
IT|=|T'1|+|T2| instead of |T'1| and |T'»|. We remark that this approach has been successfully
applied previously in the context of Allen-Cahn systems on flat domains, c.f. [29]. The
constraints read

Ca(T,c)=0, (2.1a)
Ce(T,c)=0 (2.1b)

in terms of the functionals
Ca(T,0):=|T|— (A1 +As),  Ce(T,c):= /r h(c)— (A1 — Ay). 2.2)

Defining the functional
CV(F,c)::|Q|—V:%/x-v—V (2.3)
r
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the volume constraint reads
Cy(T,c)=0. (2.4)

2.2 Gradient flow dynamics

Calculation of the variation of the energy (1.6) and the constraint functionals (2.2) and
(2.3) is based on deforming the membrane and changing the order parameter along the
trajectories associated with the deformation. Given a smooth normal vector field w=wv:
I'—R® and a smooth function 77:T — R we set

I(1):={x(7):=x+T1w(x)v(x)|xel},
c(1):T(t) =R, c(t,x(1)):=c(x)+1H(xX).

The variation of the membrane energy is defined by

(6Fpi(T,c),(w,n))= %}_DI(F(‘)/C('))

=0

and similarly for the constraint functionals Cy, C4 and C..
We now define the relaxation dynamics by a weighted L? gradient flow. We consider
the inner product

Mo (@), ()i(Te)) = [ (oo-+ewn),

where w > 0 is a kinetic coefficient. It yields a time scale which may speed up or slow
down the phase separation in comparison with the membrane surface relaxation. The
scaling in € is such that the resulting Allen-Cahn equation for the order parameter c on
the evolving surface I approximates a forced geodesic curvature in the sharp interface
limit as e = 0 in analogy to the phase field approximation of mean curvature flow in flat
domains, [14,29].

Problem 2.1 (Gradient Flow Dynamics). Suppose that an initial phase field surface (T?,c?),
% enclosing a domain QY is given such that |Q°| =V, [T = A;+A; and froh(co) =

A1—A,. Find a family {(T'(£),c(t))}tejo,0) With (I'(0),c(0)) = (I%c%) and functions A; :

[0,00) = R, i €Z, such that at each time t € [0,00)

Moo ((0u(t),07¢(t)), (w,n); (T(t),c(t)))
=—(6Fpi(T(t),c(t)),(w,n)) =Y Ai(£)(8C:(T(t),c(t)),(w,n)) (2.5)

i€l

for all deformations (w, ) of (I'(t),c(t)) and such that 0=C;(T'(¢),c(t)), i€Z, at each time
te[0,00).
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The variations of the contributions to Fp; and of the constraints can be computed as
presented in [25] and we confine ourselves to just stating the resulting formulae:

(8 FueT,0), (w01)) = [ (5 k=xle) PRile) —he(e) (6= (0))L(c) )1

[ (B (kel©) (e s (€) +Frv () (6=, 0)) ) w

r
+ [ (= 3hele) (ks (0))w, 63)
(6Fcc(T,e),(w,n))= / (8kg (c))n+ / Vr k’()(K1+VrV)VrC)> (2.6b)

<(S./TGL(F,C),(ZU,17)>:/F(—UgAFC+;¢ (C))W

-I-/ (—Uevrc@)Vrc:Vrv—a(§|vrc|2+%1])(C)>K>w, (2.6¢)

(5Cy (T,0), / v, 2.6d)
(6Ca(T,c),(w 17)> /—Kw, (2.6e)
(5C(T,c), / i (c)n—h(c 2.6)

The strong equations (1.7a), (1.7b) emerge directly from (2.5).

2.3 Related sharp interface model

An asymptotic analysis of the stationary equations of (1.7a) and (1.7b) with constraints
has been performed in [25]. For completeness we state the limiting problem as ¢ — 0.

Admissible membranes surfaces I'=I'; UyUI'; for the membrane energy Fs; are spec-
ified below (1.2). Recall that I'y and I'; are smooth, not necessarily connected hypersur-
faces with smooth boundaries coinciding with  which consists of a finite number of
smooth curves and locally around y the surface I' can be parametrized by a C! map.

Limits of quantities on <y that may be discontinuous carry an upper index of the form
(M or ?) depending on whether 1 is approached from I'; or ', and by [] g; = ()@ —(H®
we denote the jump across 7. Furthermore, by u we denote the outer co-normal of I';
and by T a unit tangential vector field along 7 such that (T,u,v) is positively oriented.
Fig. 1 gives an impression of the situation where <y consists of one curve only and T
topologically is a sphere.

In a tube around ¢, these vector fields (T,u,v) may be extended to I' and then are
continuous across v since I is a C! surface. The curvature quantities h, ;= —7-Vrvt and
hg:=—p-VrvT are continuous but /i, := —pu- Vrvpu may be discontinuous across 7. Let us
also remark that x =h, +h, and g=h,h,— hé.
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Figure 1: Sketch of a two-phase membrane with vectors T, # and v as occurring in the shape interface model
in Section 2.3.

Problem 2.2 (Sharp Interface Equilibrium Equations). Find a two-phase membrane I' =

I'1UyUT; and find Lagrange multipliers Ay, AS) and /\f) such that

Ozk,g)Ar,.K-l-k,(f)|Vriv|2(K—Ks(i))—%k,g)(x—xs(i))zx—l-)\v—)\g)x, on T, i=12, (27a)

2

0= [kK(hv-l-hp—Ks)-l—kghv}El;, on 1, (2.7b)
0= [k Vr(hy +1y)] (1) -+ [eg] () V- T— 0, on 7, (2.7¢)
0= [%K(hv—l—hp—KS)Z—i—kg(hvhp—hfl)] i;

— [y +hy =) +eghy ) ) g +[A4] 7). on 7, 2.7d)
0=[0[-V, (2.7¢)
0=, 4, i=1,2. 2.7f)

An asymptotic analysis of the stationary equations of (1.7a), (1.7b) with constraints
(2.1a), (2.1b) and (2.4) has been performed in [25], too and in the limit as ¢ — 0 the above
Euler-Lagrange equations emerge.

2.4 Variational formulation

We aim for employing the method described in [3] in order to approximate the geometric
evolution equation (1.7a). Note that we may write v, = 0;x-v for the membrane normal
velocity, recalling that x(t) denotes the identity map on the evolving surface I'(t). We
then multiply (1.7a) with a test function x :I' — R and integrate over I'. The first and
fourth term on the right hand side may be integrated by parts and further evaluated, for
instance

/F—Ar(kK(c)(K—KS(C)))X:/rVr(kK(c)(K—Ks(c)))-Vr)(

:/rk;((C)VFK-Vr)(—l—k:((C)VrC-VrX(K—KS(C))—kK<C)K;<C)VrC'Vr)(.
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The first one of these terms and the third one of (1.7a) may be put to the left hand side.
For fields &:T —R® and ¢, x:T — R let us now define the forms

Nz = [2ox
CT R P)i= [ Kele) V- Trx+ hle) (x—r(c) o,
B(F,K,Vrv,c;)()::/rk;(c)(x—xs(c))Vrc-Vr)(—kK(c)K;(c)Vrc-Vr)(
+ [ =1V v Phe() (r—rs(€))+ (k4 () (kI+Vrv)) Vie- Vi
—i—/raevrc@)Vrc:Vrvx—l—a(glvrclz—l—%lp(c))w{,
L= [ KEx)= [ - HTxex)= [ —xh(o)x
Then a weak formulation of (1.7a) reads

N (T,v;0ix,x) —C(T,%,¢;x,%)
=B(T,x,Vrv,c;x) —AvL(IT;x) —AaK(T,15x) = AH(T,x,6X)

for all test functions y:I' — R.

Also the mean curvature equation (1.8) may be tested with a test function and inte-
grated by parts. Defining

A(T;2,8):= [ Vig:vig
for fields Z,&:T — R3, a weak formulation of (1.8) reads
A(T;8,x)+ N (T,v;8,x) =0
for all test functions &:T — R,

For the weak formulation of the phase separation equation (1.7b) we introduce the
forms

M(T;,x) = /r X9,

T(C.eix):= [ eoVix-Trp+22(=1)* 19,

S(rxcig)i= [ 22(1-) ep- 3 (x—r,(c) PKe(c)g
+ /r K (€) (k= ks () )KL (0)— gkl ()b

P(T,c;):= /r i ()9,
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where fT:=max{f,0} for any real quantity f. We remark that the above forms use the
splitting ¢'(c) = 2c(c?—1)" —2¢(1—c?)*, which we found convenient in the time dis-
cretization. We note that other splittings of the double well potential into convex and
non convex parts have been introduced in [7,26] in the context of developing numerical
methods that guarantee a decrease of energy independently of the time step. We finally
obtain

ewM(T;¢,0tc)+T (T,c;¢,¢) =S(T,x,6,0) — AP (L,c;¢)
for all test functions ¢:I' = R.

Problem 2.3 (Variational Relaxation Flow). Suppose that an initial phase field surface
(T9,c%), I'Y enclosing a domain QY, is given such that |Q)°|=V, [T°|=A;+ A, and frO h(c%)=
A1—A,. Find a family {(I'(t),x(t),c(t)) }rejo,0) With T(0) = Y ¢(0) = and functions
Ai:[0,00) =R, i €Z, such that at each time ¢ € [0,00)

N (T, v;0ix,x)—C(T,x,c;x,%) =B(T,x,Vrv,c;x) —AvL(T;x)

—AAK(T,16x) —AH(T,x,6x), (2.8a)
A(T;¢,x)+ N (T,v;¢,x)=0, (2.8b)
ewM(T;¢,0t¢)+T (T,c;¢,¢) =S(T,x,6,¢) —AP(T,c;¢) (2.8¢)

for all test functions x,¢:T — R, &:T — R® and such that 0=C;(T'(t),c(t)), i€ {V,A,c}, at
each time t € [0,00).

3 Numerical scheme

The discretization of the governing equations in Problem 2.3 is based on approximating
the membrane I by triangulated surfaces I';, and using surface finite elements for both the
surface and the Allen-Cahn equation on the surface [14,18,19,22,23]. The specific scheme
that we use for the geometric evolution law is based on the approach of [3]. In order to
avoid explicit coordinates on or parameterizations of the evolving surface, the surface at
a subsequent time is computed via a parameterization over the actual surface. Since the
present evolution equation is of fourth order the mean curvature is kept as an additional
unknown quantity allowing for a splitting into two second order equations. Appropriate
variational formulations involve only first order gradients so that H' conforming finite
element spaces are sufficient.

3.1 Surface finite elements

Triangulated surfaces and isoparametric quadratic SFEs are carefully described in [8, 15,
30] and we give a short introduction only. A triangulated polyhedral surface T, is a polyhe-
dron with planar triangular faces,

Li=UT

TeT,
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where 7}, consists of a finite number of closed, non-degenerate triangles T such that the
intersection of two different triangles is either empty or a common edge or a common
vertex and such that each triangle has at least one edge in common with another triangle.
Given a triangulated polyhedral surface T',, a quadratic triangulated surface Tj, over T, is of

the form
Li=UT
TeT,

where there exists a homeomorphism F: I, =T, such that

e for each T € 7Tj, thereis a T € T, with T=F(T),
e F|z is a quadratic polynomial on each T<T,

e F leaves vertices unchanged.

It follows that each curved triangle T € 7, can be parameterized by a quadratic polyno-
mial ®7:T— T where T:={A€R3|A;>0,Y;A;=1} is a fixed reference triangle. Denoting
the space of polynomials of degree two by IP?(-) we have that 7 € P?(T).
Given a quadratic triangulated surface Iy, the isoparametric quadratic SFE space is de-
fined by
S(Tp):={¢p€C(Ty)|¢|ro®r €P*(T) oneach T T, }.

The nodal variables are the evaluations at the images of the nodes of T, ie., at the im-
ages of the vertices and of the edge midpoints of T. We denote the coordinates of these

points by {x; f\ﬁl. Thus, Ny, is the dimension of S;,. We denote the standard basis by

{¢i 11'\,:}11 characterized by ¢;(x;) =0;; with §;; being the Kronecker symbol. Elements {; €Sy,
can uniquely be written in the form {;,(x) =);{i¢;(x) with coefficients {; = {;(x;). We
introduce the notation { = (¢ i)ll.\lz"l for the coefficient vector. For discrete versions of three-
dimensional fields & = {&;}?_, we introduce the finite element space S;(I),) := S3(T).
The standard basis of S, is {4’1’@}%?':31, where e = {; }]3:1. We will employ the notation

= {gi,k}ﬁ,’jfl, where &; =, (x;) -ex. Generically, we denote the identity map on T'j, by xj,
and recall that the notion isoparametric refers to the fact that x; € S, (T,).

We now consider pairs (I';,¢;,) where I'j, is a quadratic triangulated surface that en-
closes a bounded domain ), together with a scalar field c, € S;,(I';). For such objects we
denote the external unit normal of the enclosed Q) by vj, which is well-defined at each
point in the interior of each triangle T € 7,. The matrix P, =I—v;,®v;, = Vr, x;, stands for
the projection onto the tangential space of I';, and, as vy, is well-defined at each point in
the interior of each triangle T € 7j,.

The weak formulation of (1.8) can be used to define a finite element function «; €
Su(T'y) that serves to approximate the mean curvature vector x =xv. It is defined via

/1" Kh~wh+vrhxh:vrhwh =0
h
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which has to hold for all wy, € S,(T';). Furthermore, we need an approximation to the
shape operator Vrv as appearing in the form B(T,x,Vrv,c;x). Partial integration on an
admissible phase field surface yields

/Vrvz-i-v (Vr-Z /vr (Z7v) /( v)-x

for any smooth test function Z:T —R3*3. This motivates defining the tensor valued field
Q, €5)73(T),) via

/thzh:—/ (Vrh-Zh)-vh-i—/ v, Ky Ly,
l“h rh rh

for all tensor-valued test fields Z; € Si”(F 1) in order to approximate the shape oper-
ator, [30]. If I';, approximates a sufficiently smooth surface I' by interpolation then, as
shown in [31], |Q,— Vrv|| 2(ry=O(h) for quadratic SFEs where Q), is an appropriate lift
of Q) from I', to I', see [31] for the details. Numerical experiments furthermore indicate
that this convergence also holds true in L®(T"). Another possibility for approximating the
shape operator is to compute Vr,v;, on every T € Ty, see [15] for the details.

3.2 Spatial discretization

For dynamic problems we consider families of triangulated surfaces {I';(t)}+c; where
each T’ (t) is a quadratic triangulated surface and the nodes x;(t) depend smoothly on
the relaxation time t. The velocity vy (t,x) := Y ;0;x;(t)¢;(t,x) is an element of S (T, (¢))
and is tacitly taken into account in the operator d; whenever working on a triangulated
surface. We remark that (see [22])

B;gbl (Bf-l-vh V)¢ 0, Vi= Nh. (31)

Also the other t-dependent surface fields will become families of finite element functions,
e.g., {x,(t)}+ where the t dependence concerns the coefficient vector x(t) but also the
basis functions ¢;(t,-) of S,(I';,(t)). Observe that by the transport property of the basis
functions (3.1) we have that

a;ch = Za; (cicpi) = Za;cicpi -+ Cia;(l),‘ = Zatcic[)i.
i i i
Inserting this into (2.8¢), a semi-discrete problem is derived from Problem 2.3 in a straight-
forward way:

Problem 3.1 (Semi-discrete Variational Relaxation Flow). Suppose that an initial
quadratic triangulated surface I') enclosing a domain Q) and an initial order parame-
ter ¢ € S,(T')) are given such that Q0 =V, IV |=A1+ A and fro =A;—Ay. Find a
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family { (' (£), %, (), cn(
tical map xp (¢ )ESh(F (
I,(0)=T9 and ¢, (0) =c

)) }te1, where I'j,(t) is a quadratic triangulated surface with iden-
t)) for all t € I, where x;,(t),cj, (t) € Sy (Ty(t)) for all t € I and where
9 and find functions Ay, A, Ac: [0,00) = R such that

N Ty vp;0ex,x1n) —C (T, t,Cos X oK)
=B(Tn,%n,Quncnsxn) = Av i L(Tnxn) = Aanl(Tnns xn) — A H(Tkn,cnsxn), (3.2a)

ATw;8%0) + N (Tn,vi; 8 in) =0, (3.2b)
Ny
ew Y M (Ty;n,¢i)0rci+T Tn,Cripnicn) = S(Tnskn,Cnidpn) — AP (Cnochipn) (3.2¢)

i=1

for all test functions x;, ¢, € S, (T (t)) and &, € S, (T, (¢)) and such that 0=C;(T,(t),cp(t)),
ie{V,A,c}, at each time t € [0,00).

When we had to compute the integrals we usually chose stable quadrature formu-
las that are exact for polynomials of degree eight. Some tests with formulas exact up
to degree 16 have been carried out but gave no significant differences. Corresponding
functionality is provided by the employed finite element software ALBERTA [39].

3.3 Time discretization

In order to discretize in time we consider times {#"},,en with £ € [0,00), " > t"~1 and
" — 0o as m — oo and set T" := "1 —#" for the time steps. Quantities at time #" are
denoted with an upper index m. At any time t" the surface I'}’ is given by knowledge
of X' €Sy, (T?f), the identical map on I'}'. As mentioned before, the idea of discretizing
the geometric evolution equation (2.8a) is to compute the surface at the subsequent time
t"*1 via parameterizing it over the already computed surface at time level m which is
achieved by computing x"*! as an element of S, (I'"). The link between ¥}’ € S, (I'")
and a computed x]' € Sh(Fm 1) is given by /1 =", i=1,--- Ny, k=1,2,3. At the
same time, we compute values for curvature and order parameter Km+1 m“ € S(I)
in the new nodes. To access the current values stored in x;',c} € Sh(F’” 1) we define
Ky, ere Sy () by " =« and &' =", i=1,---,Nj,.

To compute the required approximation to the Weingarten map Qj' € 53*(I'") we
proceed as described in [24] which we, for convenience of the reader, repeat here. We
first compute a field &} € S;(I'}") from

~AM — m., xm
/rm &y -wy = AL, wy)

h

for all wy, € S, (I'"). Then we find Q) € S;"*(I'"") by solving

erZZ:Zh:/rm(—(Vrh-Zh)-vhm-l—vhm@fchm:Zh)
h h

for all tensor-valued test fields Z; € Si” (Tp).
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Problem 3.2 (Fully Discrete Variational Relaxation Flow). Suppose that an initial
quadratic triangulated surface I') enclosing a domain Q)Y and an initial order parame-
ter ¢) € S,(T)) are given such that Q)| =V, [I)|=A;+ A, and frgh(cg) =A;—A;. Find
a family {(I'"«,c!)} e, where «,c" € S, (T7"~1) and find series {AY AR A Y meN
such that

1 Y 1
N @ v, x) — T C (T ki s xn k)

= N3 vt xn) + " B Qi et xn) =AY " LT xn)

= A T I R x) — AL R (TR RS X)), (3.3a)

A8 )+ N (T vt 8, ) =0, (3.3b)
ew M (T} n, eyt )+ " T (T, & m e )

= ew M(T} 5,05 ) +T" ST} K5 &) — AL " P (T 65 ) (3.3¢)

for all test functions xy,, ¢, €S, ("), £€S,(I'") and such that 0=C; (T, &), ie{V,A,c}
for each m e NU{0}.

We remark that the splitting of ¢ yields an approximation of ¢’(c) to be
ch+1((cn)2_1)+ —ch(l _ (cn)Z)—&-.

This linearization serves to make it easier to solve the resulting system of equations. The
resulting discrete problem is a large linear system for the vector {c?“,xﬂ”l,x;ﬁ”l} cou-
pled to a small nonlinear system for the Lagrange multipliers. We state the solution
algorithm in the Appendix. In short, we used the direct method UMFPACK [13] to fac-
torize the system matrix and solve a few systems of linear equations (see Appendix A).
After, a quasi-Newton iteration is carried out to compute the new Lagrange multipliers
and the new shape including mean curvature and phase field variable (see Appendix B).
This ideas dates back to [24] with the difference that the system matrix is as in [3] rather

than as in [20] on which the method in [24] is based.

3.4 Damping of the tangential motion and stopping criterion

In contrast to the method used in [24] which is based on [20] the discretization in Section
3.3 leads to updates which also have tangential components ensuring good mesh prop-
erties, see [2] for details. However we have observed in our simulations that, in the long
term, the tangential motion usually becomes dominating, i.e., the geometry of the shape
merely changes but the nodes almost only move in tangential direction. Then the total
relaxation time becomes unnecessarily large and, thus, we want to damp the tangential
motion.
For this purpose, we extended the method from [3], Section 2.4, from linear to quadratic

surface finite elements. On a quadratic triangulated surface I'j, let Tyn B = 1,2, denote



C. M. Elliott and B. Stinner / Commun. Comput. Phys., 13 (2013), pp. 325-360 341

vector fields such that {vy,T;;,72;,} form an orthonormal basis of R®. In practice, we
used the surface gradient of one of the barycentric coordinates to define 7, ) and then
computed T, j, from the vector product v, Aty ;. In analogy to N we define the forms

n(rhrry,h;ghIXh) ZZ/F S TuhXns n=12,
h

for &, € Sy(T'n), xn € Su(T'n).

Let a™ >0 be a sequence of damping parameters which initially are small and towards
the end of the simulation may increase (its adaptive choice will be discussed later on).
We now augment the scheme in Problem 3.2 by two additional equations and change

the curvature equation (3.3b). Apart from x'*!,x/"*1,c/"*1 we now have to find ﬁmH

Su(I')), p=1,2, such that

A( m'gh/xmﬂ) N (T3 v 8% mH)
+ocm7i(Fh,Tl won m+1)+am7§(rh,72h,§h, ):O, (3.4a)

711 Ty, 1", h/thﬂf’h,h) —T"M( h ?Wy,hrﬁmﬂ) T (Fh 7T, Ve e My, n), w=12, (3.4b)

for all test functions ¢ € S;,(T'}"), 17,1, € Sp(T}'), #=1,2, in addition to (3.3a), (3.3c) and the
side constraints. The identities (3.4b) mean that the tangential motion in the directions
T, is stored in the B, ;. The coupling in (3.4a) is such that the tangential motion that
would emerge from its original equation (3.3b) is reduced by 7"a™ T}/,

In our simulations we do not fix the damping parameters but rather choose them in
dependence on the velocities of vertices. Defining v € S,(I'J' ') and ¥} € S;,(T") by
xt—

Uk = e and o=, i=1-, Ny, k=123,

we compute the L2 norms of the normal and the tangential portion

1
_ v\ 2 2 ~ “ “ 2
o= ([ o), o= ([ er-epaen?)’
h h

The aim is to keep the tangential portion in a certain range with respect to the normal
portion, i.e., ¢, 0} <97 < C,0)', where 0 < ¢, < C, are two constants. As long as this holds
true we just keep the damping parameter, a1 =a™. If it turns out that o" is too big then
we increase the damping parameter, a”! > a™, so that the damping is enforced in the
next time step. Similarly, we decrease it if the tangential portion is too small where we
recall that some tangential motion is desired in order to keep a nice mesh. In practice,
we usually set ¢, =0.1 and C, =0.5 and the increase or decrease of a™ was realized by
multiplying with or dividing by a factor of 10. Additionally, we imposed lower and
upper limits for a™, usually of 10~° and 10* and we usually started with a®=10"%.

N|—
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The criterion for stopping the computations and accepting a final surface as the equi-
librium is based on the size of the computed normal velocity (and, hence, of the tangen-
tial velocity) and whether no Newton iteration steps are required any more to update the
Lagrange multipliers. We usually stopped if the L2 norm of the normal velocity normal-
ized by the characteristic radius (4.2), i.e., |7} | r2(ryy/ Re, reached a value of 1073 and no
Newton iteration steps had been carried out during the preceding 10 time steps where
we typically required an accuracy of 10~ for the constraints.

3.5 Mesh adaption

In order to reduce computation time it is desirable to adaptively refine and coarsen the
grid. We use ideas as proposed in [24], Section 3.3.4, but for convenience describe them
here. The employed finite element software ALBERTA [39] requires a marking function
that provides an integer for each triangle indicating how many times it has to be refined
(= bisected) or how many times it may be coarsened (if the integer is negative). We want
to ensure that the interfacial layers are resolved by the mesh but also demand that the
strongly curved regions contain sufficient numbers of nodes. For the latter regions we
consider the quantity |Vrv|? =«?—2¢ =3 +x3 where x; and «; are the principal cur-
vatures. As an approximation on a quadratic polyhedral surface we consider the finite
element function s, € S;(T';,) with the nodal values s, ; =|Q,, (x;)|?.

Our marking strategy consists of three positive numbers (Ni,,N,sf,N) with the fol-
lowing meaning: The diameter of an element in the interfacial layer shall be smaller than
e/Nj, and if the element belongs to one of the bulk phases then the diameter shall be
smaller than ¢/N, Ff and throughout the element diameter shall be smaller than N, /I,
where I is the arithmetic mean of the values of /5. in the nodes belonging to the ele-
ment. If a triangle fails to meet any of these criteria then it is marked for one refinement.
In turn, if its diameter is smaller than half the desired diameter then it is marked for one
coarsening.

We perform an explicit mesh adaption strategy and execute the marking algorithm
usually at the beginning of about every fifth time step, followed by the mesh adaption.
These routines involve interpolation and restriction operations to obtain the values in the
new nodes as described in [39]. In general, this leads to an increase of the total energy
and, in particular, the surface data are no longer consistent in the following sense. For a
triangulated surface in (or close to) equilibrium equation (3.2b) is fulfilled and relates x;,
and x; but mesh adaption typically destroys this relation. We observed that this usually
increases the nodal velocity and for this reason we perform a couple of time steps before
considering another mesh adaptation. We further observed in the late stage of the sim-
ulation when the system has almost relaxed that mesh changes are no longer required.
Altogether, this mesh adaption procedure does not ensure that the above mentioned cri-
teria are fulfilled during the whole relaxation but they are satisfied in the long run and,
hence, for the final shapes that we are essentially interested in.
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3.6 Remeshing

The method that we use for the geometric evolution equation in general leads to a good
mesh behavior by moving the vertices in tangential direction in an appropriate way,
see [2]. Nevertheless, when the deformations became strong even this incorporated tan-
gential vertex motion turned out to be insufficient. In particular, when necks formed then
triangles became somewhat elongated such that the ratio of the longest edge to the short-
est one became large. For this reason we employ the global remeshing method presented
in [21]. It is based on computing a conformal map to a reference manifold on which a nice
mesh is given. Then this nice mesh is mapped to the actual triangulated surface using the
inverse of the computed map. Since the inverse is conformal, too, the new surface mesh
is of the same quality as the mesh on the reference manifold.

We have employed this method only when computing some of the surfaces presented
in Section 4.4, namely those where the initial shape has been obtained by deforming the
two-sphere S2. In the following description, the reference manifold therefore is S?, too.

As a quality measure q(I';) of a quadratic triangulated surface I';, we have used the
minimal value of the sinus of the interior angles of the elements,

q(Ty) :=min{qr|T €Ty}, gr :=min{sin(a)|ax inner angle of T}. (3.5)

With inner angles of a curved triangle T € 7;, we mean all angles of the four flat triangles
formed by neighboring nodes: Recalling that any T € 7, has six nodes, three of them
corresponding to the vertices and three located on the edges (i.e., the images of the nodes
of T under the map @7, see Section 3.1), we consider the three planar triangles formed by
a vertex and the nodes on the adjacent edges and the planar triangle formed by the three
nodes on the edges.

One will expect that the mesh quality essentially depends on the triangulated polyhe-
dral surface T, underlying a quadratic triangulated surface T, (as introduced in Section
3.1). For this reason, it should be sufficient to work with linear SFEs, which has the fur-
ther advantage to be cheaper and this indeed turned out to be practical. We introduce
the space

Sn(Ty):=={¢p€C’(T})|¢ is linear on each T €7, }

of dimension Nj, and denote its vector valued variant by Sh(Fh) We remark that fm
is obtained from a computed I} by restricting the corresponding identity map x}’ to
S;,(T},) as this yields the identity map on F i (intuitively, we drop the edge midpoints and
linearly interpolate between the remaining vertices). The vertices of I}, are denoted by

{xz} ", and let us introduce the notation % = (it (3;) ) N i for a function a1y, € Sy (T).

We assume that the mesh on S? that we want to map to I, is given in terms of a fi-
nite element function y, €S Su(Ty). In practice, initial meshes I') usually were obtained
by deforming a mesh on S?. This mesh on S? was created by starting with a cube with
vertices on S?, inserting a diagonal edge on each face so that a triangulated surface with
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flat triangles-a special case of a quadratic triangulated surface-is obtained and then pro-
jecting the nodes on the edges to S?. We then subdivided by bisection, starting with the
longest edge and projecting new nodes to S? (the algorithm is described in the manual
of the employed software [39] but see also [31] for further illustration). This procedure
resulted in quadratic triangulated surfaces with nodes on S? of a quality g >0.498 for up
to 18 refinements. The vertex positions of this “nice” quadratic triangulated mesh on S?
before deforming it to I') were stored in the vector § associated with the finite element

function ¥, € S;,(T;). We remark that the grid adaption introduced in Section 3.5 also
involves refinement and coarsening of the mesh on S? defined by ¥, where, again, new
vertices are projected to S2.

The method described in [21] consists of computing a minimizer of the Dirichlet inte-
gral among the functions mapping to S2. The latter constraint is taken into account with
Lagrange multipliers p;, i=1,---,N},, leading to the functional

~ 1 S
F(zlp)izi/f Vi, | "+ Y 0i ([ (R [P 1), (3.6)
h i=1
where p = (pz-)fz’l. The problem then is to solve 0 = F'(i,p) for which we employ the

Newton method where we use (,0) as an initial guess. To compute the new search di-

rection (F”(-))"!'F/(-) a linear system of saddle point structure needs to be solved and
there we apply the generalized minimal residual method, GMRES. We remark that con-
formal maps to S? are only unique up to the conformal group of S? which consists of
stereographic projections of the Mdbius transformations of the complex plane (these in-
clude dilations, inversions, rotations and translations) [21]. To ensure uniqueness one
could ”divide by this group”, i.e., taking the additional constraints into account by aug-
menting (3.6) with further terms and Lagrange multipliers as described in [21] which
improves the stability of the numerical method. But the above method of computing an
approximation to any solution has turned out to be sufficient for our purpose.

As mentioned, the goal is to map the vertices {¥, (¥;) }; including their connections
to I}, by u; !in order to obtain a nice mesh there. The function 7, defines another mesh
i1),(T),) with vertices on S? and the first step is to project the vertices {7, (¥)}; to #;(T},).
By the piecewise linearity of uy, it is then straightforward to apply ﬁ;l to the projected
vertices. The upshot is a new triangulated surface fﬁew with a mesh of the same topol-
ogy but almost the same quality as the mesh of 7, (T;)-almost because of the involved
projections and numerical errors arising from minimizing (3.6) with an iterative method.

In order to obtain a new quadratic triangulated surface I'}*” we simply pick the edge
midpoints of f;}"w as new vertices, i.e., we linearly interpolate. This is certainly no par-
ticularly sophisticated method yet recall that we are not that much interested in approxi-
mating the relaxation dynamics but rather in the final relaxed shapes.

In a similar simple fashion we deal with the surface fields ¢}, x;" that are required
for the subsequent time step. One first projects the fields to the space §h(f}’fz) yielding
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functions ¢, k)". The values in the vertices of the new mesh f?’"ew then are computed
by evaluating ¢}’ and ¥} there. And finally, new functions c,"",x,""" € S, (I'}""")
are defined by finding the values in the edge midpoints by interpolation. In general,
Ci(T" %)) =0,ie{V,A,c}, is not fulfilled any more. But the errors have been small
enough in practice such that the Newton iteration in the subsequent time step has been
able to restore the constraints.

Similar to mesh adaption, in practice, mesh smoothing is no longer required when the
system has almost relaxed in the late stage of the simulation. In particular, characteristic
values such as the energy and the Lagrange multipliers of the final shape are not affected
(modulo numerical errors) by the preceding mesh operations during the relaxation. This
has been checked by comparing results computed with and without the mesh operations
for problems where the mesh did not degenerate too much. In Fig. 2 we display some
meshes revealing the effect of our remeshing method.

4 Simulation results

As mentioned in the introduction we are mainly interested in computing equilibrium
shapes of two-phase vesicles and we compute these by a relaxation dynamics which re-
duces the total membrane energy. The phase field methodology employed to model the
phase separation on the membrane easily allows for topological changes during the re-
laxation. We present an example where this happens before we turn our attention to the
equilibrium shapes.

This initial shape is a cigar of (dimensionless) length 4 and diameter 1 with spherical
caps, a shape of revolution around the symmetry axis {x=(x1,x2,x3)T €R®|xp =x3=0.5}.
Fig. 3 displays it including the initial phase separation where the order parameter is given
by

1, if 2.25<x,
A(x)={ x—1.25 if 0.25<x; <2.25, (4.1)
-1, if x; <0.25.

The initial grid was obtained by gluing together four coarsely triangulated surfaces of
unit cubes, refining the triangles and projecting onto the surface until it had 4610 nodes.
No mesh adaption has been carried out during the relaxation. The enclosed volume
and area are V ~2.88 and A;+ Ay ~12.57, respectively and the area difference is set to
A1—A,=4.71. Furthermore, we set r=2, k,(cl) :k,(cz) =1, Ks(l) =-2, Ks(z) =2and kél) —? =0,
¢=0.3 and w=0.01. The time step was fixed at T=5x10"°.

Almost immediately the red phase also occurs at the other tip (Fig. 3, upper middle),
which is energetically favorable due to the spontaneous curvatures and already involves
a topological change since the two red domains are separate. The shape of a two-phase
dumbbell emerges (Fig. 3, upper right), however it is not stable. Due to some numerical
noise, the axial symmetry breaks and the red domains merge together while two sep-
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Figure 2: Example for the remeshing method described in Section 3.6. For each curved triangle of a quadratic
triangulated surface we display the four flat sub-triangles as specified below (3.5). On the left, a mesh with
a quality of ~0.29 before remeshing. In our simulations the mesh never degenerated that much, this is for
illustration purpose only. In the middle the mesh after applying the global remeshing method, g~0.47. Often,
some mesh adaption (here a rather severe one) is necessary after remeshing. On the right we display the mesh

after this adaption.

Figure 3: Relaxation of a cigar with lateral phase separation (upper left) to a two-phase dumbbell (upper right)
which then becomes unstable (lower left) and relaxes to a two-phase discocyte (lower right). Here and in the
following figures showing vesicle shapes we visualize the quadratic triangulated surfaces by resorting to the four
flat sub-triangles of each curved triangle as specified below (3.5). The vertices of this sub-triangulation are
the nodes of the quadratic triangulated surface in which we know the value of ¢;,. The color-code is based on
linearly interpolating these nodal values on each flat sub-triangle. While red and blue stand for the pure phases
the dark region indicates the phase interface position by means of the zero level set of c¢;. The grid is quite
coarse but these images only serve to illustrate that topological changes with respect to the phase separation
can occur during relaxation and are accounted for by the proposed method.

arated blue domain form so that we finally end up with a two-phase discocyte (Fig. 3,

lower row).
Lets us now turn our attention to equilibrium configurations. Shapes of two-phase

vesicles are characterized by several dimensionless numbers that are computed from the
physical parameters and to which we will refer in the subsequent sections.

1. Reduced volume: Given a membrane area A1+ Ay, the characteristic radius of a sphere

of the same area,
Re:=1/(A1+Ay) /4, 4.2)

can serve as a length scale of the problem. The reduced volume is then defined as
the volume divided by the volume of a ball with radius R,

opim—V
" 4nR3/3
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2. Relative domain size: The portion of the “blue” phase area,

Xy = A2
T Al+Ay

3. Reduced line tension: The invagination length ¢; := k,(cl) /0 serves to characterize the
competition between bending and line tension. The reduced line tension is then the

ratio between the characteristic radius and the invagination length,

R R,

0= 7 0 o

K

4. Bending moduli ratio: Ratio of the mean curvature bending rigidities,

5. Normalized saddle-splay moduli difference: Thanks to the continuity of h, and hy,
Eq. (2.7b) can be written as

0= [k (lty -y —1)] )+ [kg] (s,

and a short calculation shows that (2.7d) may be written as

ki 2) _ (2)
0— b(hv —h,,—xs)ﬂ — (ke (13 —hg+ [Aa] 7).

In view of (2.7c) we see that the Gaussian curvature bending rigidities influence the
phase interface position only via their difference kg) —kfgz). An appropriate dimen-

sionless quantity is

4.1 Convergencein ¢

We have observed convergence of the method as the mesh has been refined and the time
discretization error has been negligible in comparison with the spatial discretization er-
ror, which is analogous to the results in [24], Section 4.3. We therefore confine ourselves
on reporting on the convergence as ¢ — 0 only.

We studied a rotationally symmetric problem and relaxed cigars of length 4 and di-
ameter 1 with spherical caps and symmetry axis {x = (x1,%2,x3)T € R®|x; =x3=0.5} to
nonsymmetric dumbbells, see Fig. 4. The initial grids were obtained as described in the
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example at the beginning of this section. We recall the values V ~2.88, A1+ A, ~12.57
and A;—A;=4.71. Initial data for the order parameter are given by (4.1) again.

We chose the material parameters o =1, k,g) =1.5, k,(f) =1, Ks(l) = Ks(z) =0 and kél) =

kfgz) =0 and set the kinetic coefficient w=0.1. With respect to mesh adaption, the strategy
(Nin,Nosf,Ni) = (1.6,0.3,4) has been used where the value Ny =4 is chosen such that it
does not impact on the grid, i.e., the mesh size is determined by € only. The time step was
fixed at T= (¢/30)>.

Table 1: Convergence in ¢, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1,
values of the discrete energy (4.3) and the Lagrange multiplier Ay ), at time t =0.45 as well as orders of
convergence computed according to (4.4).

I3 N, Fi eoc(Fy) Avn eoc(Ay p)
0.3/299 [ 01730 | 58.8500 - 27.20821 -
0.3/295 | 02738 | 58.8159 | 1.2273 | 27.24698 | 3.3533
0.3/210 | 03634 | 58.7935 | 1.2376 | 27.25911 | 2.1723
0.3/215 | 06274 | 58.7790 | 1.0641 | 27.26482 | 3.6868
0.3/220 | 09114 | 58.7689 | 1.3357 | 27.26641 | 3.5202
0.3/223 | 13458 | 58.7626 - 27.26688 -

The values shown in Table 1 reveal convergence as ¢ —0. For instance, we display the
discrete energy

]:h:/r %k"(ch)(Kh_KS(Ch))2+kg(Ch)( —1Qu?) _|VF;,Ch‘ +— l/J (cn) (4.3)

and the Lagrange multiplier for the volume constraint. The experimental order of con-
vergence for a quantity f that depends on ¢ is defined by

log (If(v2e)—f(e)|/|f (e) 8/\/2)!)
10g(f)

In Fig. 4 we see that also the shape profiles, displayed around the necks, converge.
Moreover, the transition points marking the zero level sets of c; are displayed and con-
verge also as e — 0.

The mean curvature is expected to jump in the limit because condition (2.7b) reads

)

(
0=kPx@ () o K X7 (45)
K2 K

eoc(f)(e) = (44)

~—

and we have that k 7& k . We computed the values of the mean curvature x and of the
bending moment

g:=ke(c)x (4.6)
along the profiles. In Fig. 5 the values are displayed for several values of € around the
phase interface position. We see that, as ¢ — 0, a jump of the mean curvature indeed
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Figure 4. Convergence in ¢, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1.
We display the initial and the relaxed shape. The colors red and blue indicate the pure phases and the position
of the phase interface is black. The profiles of the relaxed dumbbell shapes around the necks with the phase
transition region for several values of € are shown, too. More precisely, we intersected the shapes with the
half plane {x €IR®|x, =0.5,x3 >0} and display the distance to the symmetry axis. In addition, we indicate the
position of the phase interface. For convenience we shifted the profiles along the symmetry axis such that the
phase interfaces are at the position 0 where we stress that the continuum energy (1.6) is invariant under such
operations.
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Figure 5: Convergence in ¢, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1.
We display the mean curvature and the bending moment g as defined in (4.6) along the profiles displayed in
Fig. 4 for several values of €. The shapes have been shifted along the symmetry axis such that the phase
interfaces are at the position.

emerges. In turn, the curves showing the bending moment g appear to converge to a
continuous curve, possibly with a kink.

4.2 Increasing the line tension

We studied the influence of the surface tension parameter ¢ in an axisymmetric setting
as in the Figs. 4B and 4C of [5]. Starting with a cigar again we have the values A1+ A; =
12,5664, V~3.1835, Aj— Ay ~1.5080 and we set k") =k =1, k{") =K% =0, (") =¥ =0.
The dimensionless parameters are v, ~0.76, x, ~0.44, b, =1, A, =0. Furthermore, we set
w=0.1,e=0.1.
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Figure 6: Influence of the line tension with simulation parameters as described in Section 4.2. The profiles of
axisymmetric vesicles are shown for the values 0 =6,24,192 which corresponds to 7, =8,32,256. The colors red
and blue indicate the pure phases whilst the phase interface, approximated by the zero-level-set of ¢y, is colored
in black. We also display the values of the mean curvature along the profiles from the top to the bottom.

We performed simulations for values of ¢ between 6 and 192 (or 7, between 8 and
256). Fig. 6 shows the profiles of some relaxed shapes, i.e., the intersections of the shape
with the plane {x|x, =0.5} containing the symmetry axis. As ¢ increases the neck be-
comes more and more pronounced. This is supported by the graph below the profiles in
Fig. 6 showing the values of the mean curvature along one side of the profiles where we
see a peak emerging as ¢ increases. We also observe that the mean curvature in the pure
phases becomes nearly constant, i.e., the shapes of the pure phases become spherical.

4.3 Impact of different Gaussian curvature bending rigidities

A difference of the Gaussian curvature bending rigidities effectively shifts the interface
out of the neck of a two-phase dumbbell as in Fig. 4. Consider an axisymmetric setting
as in [5], Fig. 5C and 5D. We started with the same cigar as in the previous sections
as initial shape and appropriate initial values for the phase field variable. Parameters
were A;+Ar =12.5664, V ~3.1835, A;— Ar ~1.5080, KV =k? =1, Y =x? =0 and
0 =24.45 so that v, ~0.76, x, ~0.44, 7, =32.6 and b, =1 in consistency with the data in [5].

/N /N /

/N /N 7/ N\

Figure 7: Influence of the Gaussian curvature bending rigidities on the position of the phase interface, simulation
parameters as described in Section 4.3. We display the profiles of axisymmetric vesicles around the neck shown
for the values Ag=—4,0,4 from left to right. The colors red and blue indicate the pure phases and the position
of the phase interface is black.
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Furthermore, we set w =0.1, e=0.1. Changing A¢:= kél) —kéz) from —4 to 4, our method

indeed reproduced the predicted behavior of shifting the phase interface. Fig. 7 shows
some intersections of the shapes with the plane {x|x, =0.5} that contains the symmetry
axis around the necks.

4.4 Stabilization of multiple domains

Many equilibrium vesicle shapes formed by two-phase membranes exhibit symmetries
and some of them are even axisymmetric. The Euler-Lagrange equations in this setting
can be written as a system of ordinary differential equations, for instance see [12], that
are easier and cheaper to solve than the nonlinear partial differential equations in the
general setting. Our method may be used to investigate the phase diagram for arbitrary
equilibrium shapes and in this section we present an example where the spontaneous
curvature causes the appearance of non-axisymmetric shapes.

In a first set of simulations we chose k,g) = k}({z) =1, kél) = kéz) =0, KS(Z) =0,0=1and

(1)

vary k5 '. We consider different initial shapes that are distinguished by the number of red
domains. Enclosed volume and area are fixed to V x2.6226 and A;+ A;=12.5664 and we
set A1 —A»~2.4504. To be more precise with the initial shapes, we start with cigar shaped
vesicles where on one or on both tips red phases appear and we start with deformed
spheres with three or four tips. The latter ones initially enclosed a larger volume than
the desired value because otherwise the quality of the initial grid would have been too
bad. We then started the method in combination with a deflation process that leads to the
desired volume, i.e., the value V in (2.3) depends linearly on ¢ until the desired value is
attained. The dimensionless parameters are v, ~0.63, x, ~0.4025, 0, ~1.33, b, =1, Ag=0.
Furthermore, we set w=0.01, e=0.1.

In Fig. 8 we show some relaxed shapes with one to four tips in the upper row. In the

graph below the energy is displayed in dependence of the spontaneous curvature x§1) of

the red phase. We see that for x{") between 0 and about —1.7 the shape with one simply

connected red domain energetically is most favorable. If Ks(l) decreases until about —2.3,

the shape with two red tips attached to a blue bulged cylinder has less energy. Below that
value, three tips are favored and at about —4.1 the regime with four tips starts to have

least energy.
(1)

The curves are based on trying to compute the equilibrium energy at points x; ' =

0,—0.2,—04,---,—7. We were unable to do so for all configurations because of instabili-

ties. For instance, after increasing Ks(l) to —2 the configuration with four red tips became

(1)

unstable and the vesicle relaxed to a shape with three red tips and after decreasing x5’ to
—7.6 a vesicle with six red tips emerged.

Different bending rigidities together with the spontaneous curvature can also stabilize
multiple domains of one phase embedded in another phase on vesicles close to spheres.

2)

We set k,g) =1, k,(f) =8, kél) = kfg =0, x§1) =-8, Ks(z) =0 and ¢ =1. The initial shape was
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Figure 8: Equilibrium shapes and their energy in dependence of the number of the spontaneous curvature K§1)
for the red phase and the number of red domains. Simulation parameters are as described in Section 4.4. In
particular, ng) =0 in all cases. On top, four equilibrium shapes for spontaneous curvatures Ks(l) =—1 (top left),

Ks(l) = —2 (top right), K§1> = —3 (bottom left), Ks(l) = —4 (bottom right).

-

Figure 9: Initial configuration and equilibrium shape for a vesicle with multiple rafts. Simulation parameters are
stated in Section 4.4.

a slightly deformed icosahedron where the 12 tips are occupied by the first phase, see
Fig. 9 on the left. Further data are V ~3.8134, A1+ A, =12.5664 and A; — Ay~ —2.3894 so
that v, ~0.91, x,~0.595, 7, ~1.33, b, =8, A; =0. We also set w=0.05, ¢=0.1. The relaxed
shape is displayed in Fig. 9 on the right. This two-phase membrane shape turned out to
be stable with respect to changes in ¢, the mesh size, small perturbations of the sizes of the
domains of the first phase (the red one) and small perturbations of the initial shape. In
fact, in Fig. 9 on the left we display a gently perturbed icosahedron which can be spotted
by comparing the distances between the red domains. We remark that too large values
for € lead to coalescence of the red domains. If different material parameters in the two
phases are not taken into account then the red domains will merge as well as has already
been discovered in [44].
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4.5 Nonspherical vesicles

Our method also allows for investigating non-spherical vesicles with phase separation.
As an example, we start with a torus with main radii 1 and 0.15 centered in x =0 and
extended in directions x; and x;. We want to investigate the effect of multiple phase
changes along the torus and, thus, initialize the order parameter such that the two phases
alternate. The parameters are

V=0444083, A;+A,=5921605, A;—A,——1.184321,
V=1, kP =125 V=« =0, kV=-083, kP =-1.0375

and, if not otherwise stated, c =0.2. The dimensionless parameters are x, ~0.6 and b, =
1.25 (v, and 7, require the characteristic radius R, which has been defined for spherical
vesicles only). The material parameters are comparable to those in [9]. Furthermore, we
set w=0.01, e=0.05.

We have mainly been interested in the stability of multiple phase interfaces along the
torus and found that for the same simulation parameters different initial configurations
lead to different locally stable equilibria. In fact, four to eight red domains along the
torus appear to be stable which has been checked by slightly distorting the position of
the domains, enclosed volume and ¢. Interestingly, the shape with four domains has
less symmetry than the initial shape where the red domains were distributed at equal
distance. Fig. 10 displays some relaxed shapes. We remark that when starting with nine
red domains we observed coarsening and ended up with six red domains.

We found that increasing the number of red domains leads to a growth of the total
energy which is almost linear. From the graph at the bottom of Fig. 10 we infer that the
increase is essentially associated with the line energy which is almost proportional to the
number of phase interfaces across the torus since its radius does not change very much.
A small increase of the bending energy can be observed, too, which we link to the fact
that the shape is less able to deform if the number of red domains increases.

In another set of simulations each of the two phases are connected and we vary o, see
Fig. 11 on the left for the initial configuration and on the right for a relaxed shape. The
phase interfaces lead to indentions which, as expected, become more pronounced when
the line tension is increased. We remark that a configuration as in Fig. 12 on the left does
not seem to lead to a stable shape. The torus shrinks reducing the lengths of the phase
interfaces and such that the blue phase (with the higher bending rigidity) becomes flatter
(see Fig. 12 on the right). Both are favorable for the energy and apparently the increase
of energy due to the increased bending of the red phase is compensated. In fact, we even
observed an acceleration of the shrinking process. Moreover, the energy of the shape
in Fig. 12 on the right is 147.9562 and, thus, lower than the energy of the relaxed shape
obtained from the initial configuration as in Fig. 11 on the left with the same parameters,
which is 152.9947. However, analyzing this behavior further requires investigating the
remeshing method described in Section 3.6 for non-spherical shapes and is left for future
research.
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Figure 10: On top, relaxed shapes of tori differing in the number of phase transitions. Below we display the

energy over the number of red domains split up into the line energy and the bending energy (where we subtracted
150 from the latter one for an easier comparison). The simulation parameters are given in Section 4.5.

Q Q
Figure 11: Torus with phase separation, initial shape and relaxed shape for 0 =6.4. The other simulation
parameters are as described in Section 4.5.

Figure 12: Torus with phase separation, initial shape on the left. At time t=0.02, the shape on the right is
obtained. Simulation parameters as described in Section 4.5.
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Appendix

A Discrete system

In order to solve the fully discrete system in each time step we proceed in a similar way
to [24]. Let us define the matrices

A" = (A?jk,j,z)%fii]’i'sr Al jii= ATy pier,djer),

N" = (NI, =N (T vilpiend)),

T =Ty i Tt =Ta(T0 Tawbiend)),  1=12,
M= (M5, M= M(T}90,9)),

C" = (CI)y, Clti=C (TR RS pin)),

M= (I, 1= M(T] 5, )) +T" T (T3S0 00,9)-

The objects A™, N™, T" and T}" rather are tensors but they can be understood as matri-
ces in connection with coefficient vectors § = {¢; k}N"’ Land x={xi}; hl of finite element

functions &, € S(I'}") and xj, € Sy(T)"). In fact, matrix-vector products like A™¢, (N")T¢g
and T}'x are naturally defined by

Nu,3 N3 Nj,
T
(Amg) ik Z ATk,j,lgj,If ((Nm) g)]‘: Z Ni%,jgi,k' (T;tﬂlf)i,k: ZTnji,k,ij'
jl=1 ik=1 j=1
In the same spirit we define the vectors
v ={o b =N (T ity ) + T BT R Q) E1ig),
N

m—{l?”}l o It=t"L(T) i),
= {k' 2, ki =TT R 0),
= {n" Wit =T"H ()R i),
={t}, 1}1 » tm.‘:zrmﬁ(l"m,rgh;f?,cp,«), u=12,

s _{Sm}l Y i = ew M(I5¢5,8) + TS (TR Epl i),

={p/" }1 1/ p;'n::Tm (T S ¢i)-
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plus the constraints. Let us define

A™ N™ am T " Ty 0
NmT - gmem 0 0 0
am(Tm)T 0 —a" "M 0 0
a"(TyT 0 0 —a"T"M™ 0
0 0 0 0 m
0 0 0 0
bm m km hm
gl =AT o [ =A 0 | AT O
£ 0 0 0
s 0 0 P
A N™ a™ T am T
(NMT  gmCm 0 0
Jh=am(T/T 0 —amt"M™ 0
a™(TyT 0 0 —a" " M
0 0 0 0
lm+l 0
Em+1 pM
m+1,__ ’Bmel m.__ (ymy—1 ;m
y I 4 r _(I) 1 7
‘Bm+l tm
[0 -1
£m+l S
uy 0
. m
d = =Mt o,
: 0
0 0
uy 0
. M
dy = =™~ o |,
: 0
0 0
! 0
. W
at=| - =™~ o[,
: 0
& P

o O OO

—
3

In each time step we have to solve the system consisting of (3.4a), (3.3a), (3.4b), (3.3c)
plus the constraints. With the above definitions, the system is equivalent to

(A.1a)

(A.1b)

(A.1c)

(A.1d)

(A.le)

where we remark that the last Nj, entries of df; and d’} vanish and g” =(Im)~1 p" because
of the block structure of J™. In order to solve the above four linear systems we used a
direct method [13]. Computing the matrix factorizations of the two blocks of J™ turned
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out to be the most costly part of the whole solution algorithm, typically requiring 80-90%
of the computation time.
We then obtain
Y = Ay — AR — AT (A2)

and the Lagrange multipliers have to be such that

c(rypttery=0,  ie{V,Ac}. (A3)

B Solution algorithm

m+1

Eq. (A.2) suggests to consider y"""* and, hence, also TZHl as a function of the unknown

)\;”H which have to be a root of (A.3), i.e., we have to solve

év<}\m+1)
0=f(A" )= | Ca(A™1) |,
CTC()\m—i-l)

where A1 = (Aﬁ;l,)\’z;l,)\’gf;l) and

Ci(A™ Ty =Ty (A g (A ), e {V,A,c).

As proposed in [24] we perform a quasi-Newton iteration for this purpose. For the New-
ton method we would need the derivative of f. We see from (A.2) and (A.1c) that a change
in A%jl leads to a change of x*1(A"*1) in the direction —uf}. Writing —u}} , € S;,(I'}") for
the finite element function corresponding to —u{; and defining #y, , € Sy(T (A1) in
the usual way by setting ﬁ’V”’i’k::u%/k, i=1,---,Nj, k=1,2,3, we see that the change in A"’}}:l
can also be understood as a deformation of I'J'*1(A™*1) in the direction —iiy ;. Hence,
d AwlC_V(Am“) is the change of the volume enclosed by I'J"*!(A"+1) when deforming in

direction —1iy; ;. Identity (2.6d) suggests that (see [24] for the details)

O Cv V= [y BT (=),

rZHrl (/\m+l) h

Similarly, changes in A" 1! and A", correspond to deformations in directions —#i’} , and

—ﬁc"fh, respectively, so that

5 m+1y _ m+1ym+1y ( xm
a)&‘}:lcv (A )_ /I“Z’H(/\"lﬂ)vh (A ) ( uA'h)’

5 m+1y _ m+1ym+1 Y
aAgf;leV(/\ ) o /I"Zl+l()\m+1)vh (/\ ) ) (_uczh) ’
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For computing o A Ca(A™1) we want to proceed analogously, using identity (2.6e). But

instead of computing the variation of the area of a quadratic triangulated surface exactly
as in [24] we use the mean curvature «}" " (A"*1) which is contained in y"+(A"*1) by
means of k1 (A1)

5 M1y _em+1loam+1y mt1lym+1y\ (_ ~m
aA'\'}IICA (* )N/]“Z’+1(/\nz+1)( gy AT A)) - (=),

5 m-+1\ ~ _em+1lym+1\, m+1ym+1\\ (_ ~m
BAZ,’Z]CA (A" =~ /I"Z’“()\”‘“) ( Ky (A )Vh (A )) ( uA,h)’

5 m+1y _aem+1 o ym+1\, m+1ym+1\\ (_ ~m
aA?f;TICA (A )N/FZ’H(/\mH)( Ry ATV AMT)) - (i)

In order to approximate the partial derivatives of C.(A" 1), identity (2.6f) suggests to

use "1 (A"+1) again but also c]'*!(A"+1). Recall that # in (2.6f) is the variation of
c along the trajectories defined by the deformation field. From (A.lc) and (A.1d) we

see if }U"}Zl or /\Zf change then these variations of the order parameter vanish but, in
view of (A.le) and (A.2), changing A" ! leads to a variation of CVZZ“(/\"Z“) in direction
—{m € Sp(T) 1 (A™+1)) which is the finite element function corresponding to the coeffi-
cient vector —gz Hence,

QG [ (@R (),

rzl+l (/\m+l)

5 m+1y\ ~ sm~+1\~m+1, m+1 m+1\ ~m
a)\%};] CC (/\ ) ~ A?I+I(Anl+]) (h(Ch )Kh Vh ) (/\ ) ~uA’h,
1

a)\zthrlC_c (/\m+l) %/r (h(5m+l)%z1+lvz1+l) (/\m+l) 'ﬁc,h

ZHrl ()\m+l)
w17y m+1y %
_/ILZIJrl()\erl)h/(CZZ (Am ))gzn

We denote the approximation of D f(A"*1) by H(A"™*+1). The quasi-Newton iteration to
compute the values A" ! reads

Am—i—l,k-&-l — Am—i—l,k I (H(Am+1’k)) —1f(/\m+l,k)_ (B‘l)

The values A" 10 =A™ A90=( were always taken as initial choice. We stopped the itera-
tion when the values Cy (A" +1541) /7, Cx (A1) /(A1 + Ay) and Co (A1) /(A —
A,) were reduced below a given tolerance that usually was set to about 10-8. Damping
has never been required to ensure convergence of the quasi-Newton method.
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