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Abstract. Stochastic walk-on-spheres (WOS) algorithms for solving the linearized
Poisson-Boltzmann equation (LPBE) provide several attractive features not available
in traditional deterministic solvers: Gaussian error bars can be computed easily, the
algorithm is readily parallelized and requires minimal memory and multiple solvent
environments can be accounted for by reweighting trajectories. However, previously-
reported computational times of these Monte Carlo methods were not competitive
with existing deterministic numerical methods. The present paper demonstrates a se-
ries of numerical optimizations that collectively make the computational time of these
Monte Carlo LPBE solvers competitive with deterministic methods. The optimization
techniques used are to ensure that each atom’s contribution to the variance of the elec-
trostatic solvation free energy is the same, to optimize the bias-generating parameters
in the algorithm and to use an epsilon-approximate rather than exact nearest-neighbor
search when determining the size of the next step in the Brownian motion when out-
side the molecule.

PACS: 02.70.Uu, 41.20Cv, 05.40.Fb
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1 Introduction

Implicit-solvent models, like the Poisson-Boltzmann equation (PBE) are commonly used
to account for the aqueous environments and ionic atmospheres of biomolecules in elec-
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trostatic calculations without requiring the explicit inclusion of water molecules and
ions [1–3]. Instead, the water is represented as a high-dielectric continuum, the ions are
represented as a continuous charge distribution that obeys the Boltzmann distribution
and the biomolecule is represented as a low-dielectric cavity containing point charges
at the atomic centers. Unfortunately, the PBE is a nonlinear partial differential equa-
tion (PDE), which presents challenges to numerical solvers. Instead, the PBE is often
linearized in the limit of small potentials, producing the linearized Poisson-Boltzmann
equation, LPBE [4]. The LPBE has been applied to many biophysical problems and has
been solved with several different numerical methods, including finite-difference [5–10],
finite element [11–13], boundary element [14–19] and stochastic methods [20–24].

In particular, walk-on-spheres (WOS) [20–24], methods can compute the electrostatic
solvation free energy, ∆Gel, accurately with several features unavailable in determinis-
tic methods, including natural parallelizability, low memory overhead, easily computed
Gaussian error bars and the ability to compute ∆Gel across multiple solvent conditions si-
multaneously, accounting for both changes in the dielectric environment and salt concen-
tration. However, previously-reported timings for WOS methods were not competitive
with deterministic alternatives. The present paper illustrates that numerically optimiz-
ing WOS methods by dividing the variance of ∆Gel evenly over all atoms, optimizing
the bias generating parameters in the algorithm and including an epsilon-approximate
rather than exact nearest-neighbor search when computing the size of the next Markov
step during the walk outside the molecule produces computational times competitive
with deterministic methods while retaining all of the previously-mentioned advantages.

2 Computational methods

2.1 Structure preparation and Poisson-Boltzmann calculations

The 55 proteins in this study were a data set used by Tjong and Zhou [25], which in turn
were taken from the RCSB Protein Databank, PDB [26], with charges taken from the AM-
BER force field [27] and the radii taken from the set used by Bondi [28]. Unless otherwise
stated, all calculations in this paper used a temperature of 298.15K, 0.5M 1:1 salt (NaCl),
an interior dielectric constant of 1 and an exterior dielectric constant of 80. The selec-
tion of these parameters does not significantly affect the results presented here. All WOS
calculations were performed on a single core of an Intel Core 2 Duo T6500 processor
operating at 2.10GHz with 4GB of random access memory. The deterministic calcula-
tions used to compare to the WOS solver were performed with either the ACG [29] or
APBS [3] programs. The calculations in ACG were performed on a grid that was 3 times
larger than the largest dimension of the molecule with a minimum grid spacing of 0.3Å.
To verify that these electrostatic solvation free energies are converged, the same calcula-
tions were performed at a minimum grid spacing of 0.2Å and the two sets of calculations
fit to a best-fit line with a slope of 1.0 and R2 = 0.999 (data not shown). All calculations
were performed with double precision.
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2.2 The walk-on-spheres Monte Carlo linearized Poisson-Boltzmann solver

As discussed in the introduction, the PBE replaces the electrostatic interactions between
a biomolecule, its aqueous environment and its ionic atmosphere with the electrostatic
interactions between the biomolecule and an exterior high-dielectric continuum contain-
ing a continuous charge distribution. The resulting electrostatic potential, φ, can then be
found by solving the PBE,

∇2 ·ϕ(r)=κ2sinh(ϕ(r)), (2.1)

outside the molecule. Here ϕ is the normalized potential, ϕ = eφ/kT, where e is the
fundamental charge, k is Boltzmann’s constant and T is the temperature in Kelvin. For a
1:1 salt (e.g., NaCl), κ is the inverse Debye length,

κ2=
8πcbe2

εoutkT
, (2.2)

where cb is the bulk concentration of 1:1 salt and εout is the dielectric constant of the high-
dielectric medium outside the molecule. Eq. (2.1) can be simplified in the limit of small ϕ
to obtain the LPBE,

∇2 ·ϕ(r)=κ2 ϕ(r). (2.3)

Currently, the WOS method is restricted to solving the LPBE, but this restriction could
be lifted by, for example, implementing branching WOS techniques [30]. Inside the
molecule, the potential obeys the Poisson equation,

∇2 ·ϕ(r)=∑qiδ(r−ri), (2.4)

where qi is the (partial) charge on the ith atom and ri is the location of the ith atom’s
center. In practice; however, because the primary goal of the WOS solver is to compute
the electrostatic solvation free energy, ∆Gel, the quantity desired is not ϕ, but rather the
reaction-field potential, ϕr f = ϕ−ϕcoul, where ϕcoul is the Coulombic vacuum potential,
ϕcoul=∑

qi

ε in|r−ri|
. Substituting into the above equations produces the following equations

for ϕr f ,
∇2 ·ϕr f (r)=κ2 ϕr f (r), (2.5)

outside the molecule and the Laplace equation,

∇2 ·ϕr f (r)=0 (2.6)

inside the molecule. These equations are then solved subject to the standard electrostatic
boundary conditions [31]: at the molecular boundary,

ϕ
r f
in = ϕ

r f
out (2.7)

and

ε in
∂ϕ

r f
in

∂n̂
= εout

∂ϕ
r f
out

∂n̂
, (2.8)
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where ϕ
r f
in is the reaction-field potential inside the molecule, ϕ

r f
out is the reaction-field po-

tential outside the molecule, ε in is the dielectric constant inside the molecule, n̂ is the
normal to the surface of the biomolecule and

ϕ
r f
out→0 (2.9)

at infinity. The WOS solver presented here solves for ϕr f at the i’th atomic center, φ
r f
i , by

running a series of Brownian motion trajectories from the i’th atomic center.

First, φ
r f
i is estimated by φr f at a point on the boundary chosen by sampling from the

distribution of first exit points of a Brownian walk using the walk-on-subdomains tech-
nique, as outlined in a previous study [21]. Then, φr f at this first exit point is estimated
by φr f on a sphere of auxiliary radius α chosen according to a probability density that
enforces the boundary conditions at the surface [20]. If the next point in this walk is in-
side, φr f is estimated by a point on the surface sampled from the distribution of first exit
points on the surface of the molecule, as was done for the first step of the walk. If the new
point is instead outside, a WOS process is started, which either terminates on the surface
when it enters the absorbing layer of thickness τ, in which case another sampling to an
auxiliary sphere is performed, or the walk dies because each step outside is accompanied
by a killing probability p= sinh(κd)/κd, where d is the size of the step outside. Because
the killing probability is finite, the walk eventually terminates. Each step outside is taken
on a sphere centered at the walker’s current location with a radius equal to the distance
from the walker to the nearest point on the surface. Once ϕr f has been obtained at the
atomic centers, ∆Gel can be computed by

∆Gel =
1

2 ∑qiφ
r f
i . (2.10)

One difficulty with PBE methods is that how to define the boundary between the in-
terior and exterior regions is not settled [32]. The WOS method presented here contains a
van der Waal’s surface definition, where the low-dielectric interior of the biomolecule is
considered to be the union of spheres centered at the atomic centers with van der Waal’s
radii (see Fig. 1). However, the WOS method could be readily modified to use other
molecular surface definitions, including the solvent-excluded, SE, molecular surface [33].
Solving the PBE for the SE surface, for example, could be accomplished by increasing the
radii of atoms that are not solvent-exposed by the radius of the water probe and treat-
ing the nonspherical reentrant region as a third region in which a WOS trajectory could
be used, as in the exterior region. A Stern layer could also be incorporated by treating
the ion-exclusion region as an additional domain through which a WOS trajectory could
pass, as in the exterior region.

2.3 Variance balancing

Previously, WOS methods computed ∆Gel by running an equal number of trajectories
started from each atomic center until ∆Gel converged to an acceptably small standard de-
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Figure 1: An image of an enterotoxin (PDB id: 1ETL) from the data set used in this paper showing the van der
Waal’s surface definition. The interior of the molecule is the union of spheres centered at the atomic centers
with radii equal to the van der Waal’s radii.

viation, σ [20–24]. This method is inefficient because not all of the atoms’ contributions,
var(∆Gi

el), to the variance of ∆Gel, var(∆Gel) are equal. When an equal number of tra-
jectories are run from each atom, too much time is spent converging atoms with small
var(∆Gi

el). Instead, the computational time, t, can be reduced significantly by ensuring
that each atom’s var(∆Gi

el), is the same. This condition can be obtained by running a
small number of trajectories, Nsmall, over all atoms to estimate ∆Gel, ∆Gi

el and their vari-
ances over the small run, [var(∆Gel)]small and [var(∆Gi

el)]small
. The desired variance of

each atom, δi, can then be estimated by computing

δi=[∆Gel]
2
smallδ/Natoms, (2.11)

where δ = σ2
desired, where σdesired is the desired percent standard deviation of ∆Gel and

Natoms is the number of atoms in the molecule. As in most Monte Carlo methods,
[var(∆Gi

el)] ∝ 1/Ni
traj, where Ni

traj is the number of trajectories run from the i’th atom

and therefore Ni
traj can be estimated by

Ni
traj=

[var(∆Gi
el)]small

δi
Nsmall. (2.12)

This method also allows ∆Gel to be converged to an arbitrary accuracy without reference
to any prior knowledge of ∆Gel.

In the resulting calculations, the var(∆Gi
el) are more uniform than when variance bal-

ancing is not performed, as illustrated in Fig. 2. To create this figure, the atoms were
sorted in ascending order by var(∆Gi

el) and the cumulative variance, or the sum of the
var(∆Gi

el) of the first n atoms as a fraction of var(∆Gel), for runs with and without vari-
ance balancing was plotted as a function of n for an enterotoxin (PDB id: 1ETL). Many
atoms in the run without variance balancing had negligible var(∆Gi

el) and therefore, too
much work was spent on converging them. This problem was less pronounced in the run
with variance balancing, as can be seen from Table 1, where an energy computation was
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Figure 2: The atoms were sorted by their contribution to the total variance from smallest to largest and the
cumulative variance, or the sum of the variances of all atoms less than atom n as a fraction of the total variance,
for runs with (circles) and without (triangles) variance balancing is plotted as a function of n for an enterotoxin
(PDB id: 1ETL).

performed with variance balancing until an overall 1% σ was reached and then a calcu-
lation was run where the same total number of trajectories was divided evenly across all
atoms. On average, σ, was 1.49 times larger for the runs without variance balancing and
t ∝ 1/σ2, variance balancing on average decreases t by a factor of 2.22.

2.4 Bias optimization

As discussed in previous studies [20, 23], WOS solvers contain two bias-generating pa-
rameters: the thickness of the absorbing layer, τ and the size of the auxiliary sphere, α.
Optimizing the bias produced by α and τ is essential when computing ∆Gel because both
parameters significantly alter t. As shown in a previous study [23],

t∼A−Blog(τ), (2.13a)

t ∝
1

α
, (2.13b)

where A and B are positive functions independent of τ. As was shown before [20], the
theoretical bias in the estimate of the potential at a point on the surface of a sphere of
radius R from a single auxiliary jump is

Bias(φ(x))=φ(x)
( α

2R

)3
. (2.14)

The order of the bias in the energy due to α is then

Bias(E)=Enhits

( α

2R

)3
, (2.15)

where nhits is the number of boundary hits per trajectory.
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Figure 3: The empirical bias due to the auxiliary sphere radius,α, taken here to be the difference between ∆Gel
at a given value of α and that at α=0.01Å converged to 0.1% at 0.01M NaCl for the first ASP residue in the
pheromone ER-1 (PDB id: 2erl) plotted against α. The bias was not observable for any protein in the current
data set.

Similarly, the order of the bias in the energy due to τ is [20]

Bias(E)=Enhits

( τ

2R

)

. (2.16)

These two sources of bias are independent and because log(τ) increases more slowly
than τ, t can be minimized by using as small a τ as possible and placing all of the bias into
the term depending on α. In addition, because the survival probability is proportional
to 1/α, nhits ∝ 1/α. The bias can therefore be set to a value smaller than σdesired∆Gel by
running the simulation with a fixed value of α, αsmall, for a small number of trajectories
and then resetting α afterwards to

α=((8R3σ)/(nsmall
hits αsmall))

1
2 , (2.17)

where nsmall
hits is the average number of hits per trajectory during the initial small run.

Bias optimization decreased t by an average factor of 3.85 (Table 1). Fortunately, the
bias due to α is typically smaller than that predicted by Eq. (2.17) because the maximum
size of this bias is the difference between ∆Gel computed at infinite salt and ∆Gel com-
puted at the salt concentration of interest and this difference is typically quite small. To
demonstrate this overestimation of the bias, the empirical bias for the first ASP residue
of the pheromone ER-1 (PDB id: 2erl) as a function of α is plotted in Fig. 3. This quantity
was computed by taking the difference between the energy computed at different values
of α and α=0.01Å at an accuracy of 0.1% at a salt concentration of 0.01M NaCl.

2.5 Approximate nearest-neighbor searches

The slowest component of the WOS algorithm is the nearest-neighbor search that must
be performed each step during the walk outside the molecule. The algorithm’s speed can
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therefore be improved with an epsilon-approximate rather than exact nearest-neighbor
search. In the results presented here, nearest-neighbor searches were performed with
the ANN library [34], which allows the accuracy of the search to be adjusted with an
epsilon parameter, ε and returns a sphere that is within 1+ε times the distance to the
nearest sphere. Increasing epsilon typically increases the number of trajectories required
to reach a converged solution while decreasing the execution time of each trajectory. For
the molecules in the present study, ε=5 provided a good compromise and the resulting
calculations were an average of 1.6 times faster than those run with ε=0.

3 Results

Collectively, the numerical optimizations described in Methods allow the LPBE to be
solved in times competitive with traditional finite-difference solvers, as none of these
finite-difference calculations took more than a few minutes. Unfortunately, quantifying
the difference in execution time between the two methods is not possible because the er-
ror in the electrostatic solvation energy cannot be extracted readily from the deterministic
solvers. However the apparent error in the deterministic calculations appears to be ap-
proximately 1% and therefore ∆Gel was converged to 1% by the WOS solver in this study.
The resulting predictions of ∆Gel are plotted against those computed with the ACG fi-
nite difference solver in Fig. 4. The slope of the best-fit line is 0.99 and R2 = 0.999. The
same calculations were also performed with the APBS solver and the resulting best-fit
line had a slope of 0.99 and R2 = 0.999 (data not shown). The complexes used in this
study contained between 145 and 3564 atoms and the execution time was competitive
with traditional deterministic solvers, as the 55 protein calculations took between 47 sec-
onds and 630 seconds (Table 1). Collectively, the three optimizations accelerated the code
by an average factor of 20.

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

-10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000  0

W
O

S
 ∆

G
el

 (
kc

al
/m

ol
)

ACG ∆Gel (kcal/mol)

Figure 4: The electrostatic solvation free energy, ∆Gel converged to 1% desired standard deviation by the
stochastic walk-on-spheres, WOS, solver for all 55 proteins in this data set plotted against the same quantity
computed with the deterministic solver ACG. The slope of the plot is 0.99 and R2 =0.999.
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Table 1: For each protein in the data set, the electrostatic solvation free energy, ∆Gel, was computed with
variance balancing and converged to a 1% desired standard deviation, σdesired. That number of trajectories
was then split evenly across all atoms and another calculation without variance balancing was performed.
Variance balancing reduced the standard deviation of ∆Gel, σ, by on average a factor of 1.49 and because the
computational time is inversely proportional to σ2, variance balancing on average reduced the computation time
by a factor of 2.22. Similar runs were then performed with an ANN parameter of 5.0 and with bias optimization
and the acceleration in the execution time is shown in the table. Also shown are the final timings with all
optimizations.

PDB id Trajectories Without Optimization Variance Balancing Variance Variance ANN Bias Final
/Atom Balancing Balancing Acceleration Optimization Timings

Improvement Acceleration Acceleration (s)
in σ

∆Gel σ ∆Gel σ
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

1A6M 74 -2709 31 -2725 20 1.56 2.44 2.38 3.82 314
1AH0 150 -1268 15 -1294 11 1.39 1.92 2.40 4.63 129
1BYI 64 -3553 42 -3593 26 1.58 2.51 2.25 3.48 463
1C75 116 -1378 15 -1403 11 1.43 2.05 2.45 3.86 111
1C7K 96 -2364 29 -2459 20 1.47 2.17 2.44 4.46 270
1CEX 78 -2760 34 -2887 22 1.55 2.40 2.24 4.07 433
1EB6 36 -4961 57 -5137 36 1.61 2.58 2.36 2.16 217
1EJG 391 -572 8 -572 5 1.39 1.94 2.43 5.30 350
1ETL 874 -285 3 -288 2 1.17 1.37 1.69 2.33 58
1EXR 24 -9233 82 -9432 53 1.53 2.34 2.15 1.55 108
1F94 155 -1173 14 -1218 10 1.38 1.91 2.10 5.25 133
1F9Y 78 -2956 33 -2949 21 1.55 2.39 2.36 4.06 293
1G4I 100 -2311 28 -2385 18 1.50 2.24 2.21 4.60 243
1G66 109 -2906 34 -2951 23 1.53 2.34 2.25 5.14 483
1GQV 76 -2530 31 -2570 21 1.51 2.28 2.15 4.00 263
1HJE 525 -274 3 -274 2 1.18 1.38 1.77 2.37 65
1IQZ 23 -4670 41 -4668 27 1.51 2.29 2.45 1.38 56
1IUA 163 -1269 15 -1274 10 1.48 2.19 2.35 5.24 251
1J0P 56 -2851 29 -2799 20 1.46 2.14 2.12 2.86 131
1K4I 67 -3813 44 -3899 28 1.55 2.39 2.18 3.67 412
1KTH 139 -1438 15 -1454 11 1.37 1.88 2.35 4.41 90
1L9L 45 -3032 32 -3110 22 1.46 2.14 2.36 2.40 68
1M1Q 67 -2332 26 -2377 17 1.51 2.27 2.12 3.30 89
1NLS 59 -4670 54 -4699 34 1.58 2.49 2.26 3.36 370
1NWZ 68 -2728 32 -2739 20 1.56 2.42 2.41 3.50 202
1OD3 106 -2005 26 -2050 17 1.51 2.29 2.51 4.78 285
1OK0 108 -1516 18 -1536 13 1.43 2.04 2.44 4.11 107
1P9G 194 -762 10 -747 7 1.36 1.85 2.26 3.74 188
1PQ7 101 -2502 31 -2607 20 1.53 2.35 2.21 4.93 539
1R6J 145 -1330 15 -1329 10 1.46 2.13 2.43 4.95 173
1SSX 79 -2561 33 -2631 21 1.56 2.43 2.24 4.13 609
1TG0 38 -3177 34 -3266 22 1.57 2.48 2.65 2.12 47
1TQG 62 -2874 32 -2911 20 1.57 2.45 2.32 3.25 160
1TT8 97 -2526 30 -2580 19 1.55 2.41 2.30 4.72 370
1U2H 96 -2024 23 -2035 15 1.48 2.19 2.40 4.28 162
1UCS 215 -1000 11 -1020 8 1.42 2.02 2.44 4.93 146
1UFY 93 -2281 26 -2298 17 1.52 2.31 2.44 4.38 242
1UNQ 55 -3391 39 -3431 25 1.52 2.32 2.33 3.00 163
1VB0 158 -1128 14 -1111 9 1.47 2.15 2.30 4.83 165
1VBW 78 -1784 20 -1808 14 1.50 2.25 2.75 3.39 112
1W0N 93 -2384 29 -2441 19 1.48 2.19 2.57 4.15 187
1WY3 223 -757 9 -773 6 1.39 1.94 2.51 4.02 107
1X6Z 89 -2089 26 -2183 17 1.55 2.40 2.42 4.14 174
1X8Q 71 -3514 40 -3584 26 1.54 2.39 2.29 3.78 333
1XMK 120 -1565 19 -1591 13 1.49 2.23 2.43 4.59 181
1YK4 55 -1864 22 -1888 14 1.57 2.45 2.47 2.49 48
1ZZK 106 -1549 20 -1596 13 1.52 2.30 2.49 4.17 149
2A6Z 66 -3633 42 -3674 27 1.57 2.48 2.26 3.64 467
2BF9 199 -915 9 -901 7 1.39 1.92 2.43 4.20 61
2CHH 117 -2116 25 -2126 17 1.51 2.29 2.42 5.01 201
2CWS 78 -3129 39 -3206 25 1.57 2.45 2.17 4.25 630
2ERL 105 -1147 13 -1160 9 1.41 2.00 2.31 3.37 57
2FDN 72 -1690 19 -1695 13 1.51 2.29 2.32 3.00 47
2FWH 85 -2216 26 -2234 16 1.55 2.39 2.47 4.06 211
3LZT 82 -2505 31 -2575 20 1.53 2.35 2.33 4.00 279
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4 Conclusions

Although previous results with WOS solvers indicated that they were unacceptably slow
compared to deterministic methods, the results presented here indicate that when ap-
propriate numerical optimizations were performed, this WOS solver computed ∆Gel in
times that were competitive with traditional deterministic methods. The resulting pre-
dictions of ∆Gel could be converged to arbitrary precision without reference to any prior
knowledge and in addition, WOS algorithms have several attractive features not avail-
able in deterministic solvers, including well-behaved Gaussian error predictions, trivial
parallelizability, minimal memory requirements and the ability to run at multiple solvent
conditions simultaneously, making them attractive for biophysical applications.
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