
Commun. Comput. Phys.
doi: 10.4208/cicp.210711.111111s

Vol. 13, No. 1, pp. 107-128
January 2013

Mathematical and Numerical Aspects of the

Adaptive Fast Multipole Poisson-Boltzmann Solver

Bo Zhang1, Benzhuo Lu2, Xiaolin Cheng3, Jingfang Huang4,∗,
Nikos P. Pitsianis1,5, Xiaobai Sun1 and J. Andrew McCammon6

1 Department of Computer Science, Duke University, NC 27708, USA.
2 Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100910, China.
3 Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA.
4 Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599,
USA.
5 Department of Electrical and Computer Engineering, Aristotle University,
Thessaloniki, 54124, Greece.
6 Department of Chemistry & Biochemistry, Center for Theoretical Biological Physics,
Department of Pharmacology, Howard Hughes Medical Institute, University of
California, San Diego, CA 92093, USA.

Received 21 July 2011; Accepted (in revised version) 11 November 2011

Available online 12 June 2012

Abstract. This paper summarizes the mathematical and numerical theories and com-
putational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver.
We introduce and discuss the following components in order: the Poisson-Boltzmann
model, boundary integral equation reformulation, surface mesh generation, the node-
patch discretization approach, Krylov iterative methods, the new version of fast multi-
pole methods (FMMs), and a dynamic prioritization technique for scheduling parallel
operations. For each component, we also remark on feasible approaches for further
improvements in efficiency, accuracy and applicability of the AFMPB solver to large-
scale long-time molecular dynamics simulations. The potential of the solver is demon-
strated with preliminary numerical results.

AMS subject classifications: 45B05, 65Y05, 68W10, 90B10, 92C05, 92C40

Key words: Biomolecular system, electrostatics, Poisson-Boltzmann equation, fast multipole meth-
ods, mesh generation, directed acyclic graph, dynamic prioritization, parallelization.

∗Corresponding author. Email addresses: zhangb@cs.duke.edu (B. Zhang), bzlu@lsec.cc.ac.cn (B. Lu),
chengx@ornl.gov (X. Cheng), huang@email.unc.edu (J. Huang), Nikos.P.Pitsianis@duke.edu (N. P. Pit-
sianis), xiaobai@cs.duke.edu (X. Sun), jmccammo@ucsd.edu (J. A. McCammon)

http://www.global-sci.com/ 107 c©2013 Global-Science Press

108 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

1 Introduction

In the past three decades, the Poisson-Boltzmann (PB) continuum electrostatic model has
been adopted in many simulation tools for theoretical studies of electrostatic interactions
between biomolecules such as proteins and DNAs in aqueous solutions. Various numeri-
cal techniques have been developed to solve the PB equations and help elucidate the elec-
trostatic role in many biological processes, such as enzymatic catalysis, molecular recog-
nition and bioregulation. Existing simulation packages or PB solvers use the finite differ-
ence method, such as in DelPhi [1], GRASP [2, 47], MEAD [13], UHBD [3, 46], PBEQ [35,
36], PB solver [32] in AMBER [18], ZAP [27] and MIBPB [62], or use the finite vol-
ume/multigrid method, such as in the Adaptive Poisson-Boltzmann Solver (APBS) [4].
In a circumstance where the linearized PB is applicable, the partial differential equations
can be reformulated into a set of surface integral equations (IEs) by using Green’s theo-
rem and potential theory. The unknowns in the IEs are located on the molecular surface
only, and the resulting discretized linear system can be solved efficiently and accurately
with certain fast convolution algorithms, in particular, the fast Fourier transform (FFT)
and the fast multipole method (FMM).

The main purpose of this paper is to introduce the adaptive fast multipole Poisson-
Boltzmann (AFMPB) solver, in the aspects of mathematical theories, numerical properties
and computational components. The numerical components of the AFMPB are mostly
based on previously published results, by some of the authors and other researchers. We
give a brief summary and provide certain references, not exhaustively, to the precursor
work. Certain computational components, especially for algorithmic parallelization and
parallel scheduling, are recently developed by the authors. We introduce them briefly. We
emphasize that even when each component is well studied and understood, a coherent
integration of these components still calls for special attention and efforts. The success
of a mathematical software is ultimately measured by its applicability and the extent of
its applications. The rest of the paper is organized into two sections. In Section 2, we
describe the PB model, the boundary integral equation (BIE) reformulation, the surface
mesh generation, a node-patch discretization approach, the Krylov subspace methods,
the new version of FMMs, and a dynamic prioritization technique for parallelization. We
comment on each topic certain feasible strategies or active efforts for further improve-
ments in efficiency and accuracy. In Section 3, we present numerical results from prelim-
inary experiments and demonstrate applicability and performance of the AFMPB solver.

2 Theoretical foundations and computational elements

2.1 Continuum Poisson-Boltzmann electrostatics model

The electrostatic force is considered to play an important role in the interactions and
dynamics of molecular systems in aqueous solution. In the Poisson equation model,
when the charge density that describes the electrostatic effects of the solvent outside the

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 109

molecules is approximated by a Boltzmann distribution, the continuum nonlinear PB
equation assumes the following familiar form

−∇·(ǫ∇φ)+κ̄2 sinh(φ)=
M

∑
i=1

qiδ(r−ri). (2.1)

In the formula, the molecule is represented by M point charges qi located at ri, ǫ is the
(position-dependent) dielectric constant, φ is the electrostatic potential at location r, κ̄ is
the modified Debye-Hückel parameter, κ̄ = 0 in the molecule region and κ̄ =

√
ǫκ in the

solution region, κ is the inverse of the Debye-Hückel screening length determined by the
ionic strength of the solution. Comprehensive introductions or reviews of the implicit
solvent models and the PB theory can be found in the literature [24,48,52]. The PB theory
is also known as the Gouy-Chapman (GC) theory in electrochemistry, the Debye-Hückel
theory in solution chemistry, and the Derjaguin-Landau-Verwey-Overbeek (DLVO) the-
ory in colloid chemistry, respectively. When the electrostatic potentials are small, the
linearized PB (LPB) equation

−∇·(ǫ∇φ)+κ̄2φ=
M

∑
i=1

qi δ(r−ri) (2.2)

becomes valid, equipped with the interface conditions [φ] = 0 (by the continuity of the

potential) and [ǫ ∂φ
∂n] = 0 (by the conservation of flux). Here, [] denotes the jump across

the molecular surface and ∂
∂n is the outward (into the solvent) normal direction gradient

at the surface.
It is observed in experiments and numerical simulations that the nonlinear PB model

is sufficiently accurate for highly charged molecular systems. For numerical solution
of the nonlinear PB model, many existing solvers use finite difference methods by the
formulation of partial differential equations, or finite element methods by certain varia-
tional formulations. However, the efficiency in solving the PB equations matters greatly
for the study of large molecular systems via simulation, which involves direct visualiza-
tion of the electrostatic potentials and intensive calculation of the energetics of molecular
interactions in the solution. Highly efficient solutions are essential for simulating the
dynamics of a molecular system for a biologically relevant time period, in which the PB
equation is coupled with time evolution equations describing, for example, continuum
diffusion and Newton’s law of motion.

It is also noticed that the nonlinear effects are often restricted to a small neighbor-
hood of the molecular surface. This opens up new opportunities for efficient solution of
the nonlinear PB model. To our knowledge, there are ongoing efforts on improving the
LPB model with adequate interface conditions in order to yield results in better agree-
ment with that by the nonlinear PB model. In other words, such a remodeling approach
attempts to capture the nonlinearity in the interface conditions instead. If successful, it
will have computational advantages in that the numerical solution for the LPB model re-
quires only the solution of constant coefficient linear equations, and it allows the model to

110 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

be reformulated into BIEs and then solved with efficient numerical methods [16,42]. The
solution approaches for the nonlinear models so far resort only to volume discretization
methods using finite differences or finite elements.

2.2 Boundary integral equation reformulation

With the LPB model, one can reformulate the partial differential equation into BIEs. An
immediate benefit is the reduction in the number of unknown variables upon discretiza-
tion. There exists a traditional way to do so, but we introduce a better BIE reformulation
approach that yields well-conditioned discrete equations and leads to both efficient, sta-
ble and accurate solutions.

Traditionally, one applies Green’s second identity to derive the following BIE for the
LPB equation over a single domain (molecule),

1

2
φint

p =
∮

S

[

Gpt
∂φint

t

∂n
− ∂Gpt

∂n
φint

t

]

dSt+
1

ǫint
∑

k

qkGpk, p∈S=∂Ω, (2.3a)

1

2
φext

p =
∮

S

[

−upt
∂φext

t

∂n
+

∂upt

∂n
φext

t

]

dSt, p∈S, (2.3b)

with the interface conditions

φint=φext, ǫint
∂φint

∂n
=ǫext

∂φext

∂n
,

where S=∂Ω is the boundary of the molecule. It is assumed that S is smooth; otherwise,
the BIEs should be modified for nonsmooth surfaces. The potentials at a surface position
p in the interior/molecular region and exterior/solution regions are denoted by φint

p and

φext
p , respectively. In addition, ǫint and ǫext are respectively the interior and exterior di-

electric constants, t is an arbitrary point on the boundary and n is the outward normal
vector at t,

∮

denotes the principal value integral to avoid the singular point when t→ p
in Eq. (2.3). The functions Gpt and upt are the fundamental solutions to the corresponding
Poisson and LPB equations,

Gpt=
1

4π|rt−rp|
, upt=

e−κ|rt−rp|

4π|rt−rp|
,

with rk as the position of the kth source point for charge qk of the molecule, and κ as
the reciprocal of the Debye-Hückel screening length. One notices that the unknowns are
placed on the molecular surface only.

The BIE formulation (2.3), together with the interface conditions, results in a Fred-
holm integral equation of the first kind, which is unfortunately ill-conditioned, leading to
any discrete system progressively ill-conditioned as the number of unknowns increases.
The increase in the condition number typically implies the increase in the number of it-
erations and hence the arithmetic complexity of an iterative method, such as a Krylov

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 111

subspace method. One may use certain preconditioners if available. Such precondition-
ing may be viewed as a numerical reformulation technique.

Based on the work of Rokhlin [51] we developed an alternative reformulation ap-
proach for AFMPB and arrived at Fredholm equations of the second kind. Particularly,
we have the following equations,

(

1

2ǭ
+

1

2

)

fp =
∮

S

[

(Gpt−upt)ht−
(

1

ǭ

∂Gpt

∂n
− ∂upt

∂n

)

ft

]

dSt+
1

ǫext
∑

k

qkGpk, (2.4a)

(

1

2ǭ
+

1

2

)

hp =
∮

S

[

(

∂Gpt

∂n0
− 1

ǭ

∂upt

∂n0

)

ht−
1

ǭ

(

∂2Gpt

∂n0∂n
− ∂2upt

∂n0∂n

)

ft

]

dSt

+
1

ǫext
∑

k

qk

∂Gpk

∂n0
, (2.4b)

with

f =φext, h=
∂φext

∂n
,

where n0 is the outward unit normal vector at point p ∈ S and ǭ = ǫext
ǫint

. This system of
equations is well conditioned. It provides the foundation for a well-conditioned system
of equations with an adequate discretization method. This reformulation approach may
be seen as an analytical technique for preconditioning. Our numerical results with cer-
tain Krylov subspace methods on Eq. (2.4) show that the number of iterations remains
bounded up to a large number of unknowns.

Similar formulations are previously derived by others for PB solutions. Juffer et al.
used a limiting process to circumvent the singularity problem [37]. Some others used the
boundary element method (BEM) [17, 41]. Liang and Subramaniam provided compar-
isons between the first and second kind formulations [41]. We comment that the second
kind Fredholm integral equation representation is not unique in general. It is an interest-
ing research topic to find the best BIE representation for optimal efficiency and accuracy
by certain criteria. Also, numerical preconditioning strategies may be combined with BIE
methods in the physical or frequency domain to increase the convergence rate.

2.3 Molecular surface and mesh generation

Numerical solution to the BIE formulation in Eq. (2.4) requires a description of the molec-
ular surface S and a high quality mesh for numerical discretization. This is a prepro-
cessing step in the AFMPB solver. The AFMPB solver accepts mesh data from popular
molecular surface calculation packages such as MSMS [5], GAMer (Geometry-preserving
Adaptive MeshER) [6], TMSmesh (Tracing Molecular Surface for meshing) [7,19], or a tri-
angulated molecular surface mesh generated by other programs. Fig. 1 shows the mesh
generated by TMSmesh for an ion channel protein structure. The protein is a proton-
gated ion channel from Gloeobacter violaceus (GLIC, PDB code: 3ehz), and the structure
is taken from a MD simulation trajectory [25].

112 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

Figure 1: Surface triangular mesh of a channel protein (GLIC) structure.

There exist several definitions of molecular surfaces, such as the van der Waals (VDW)
surface [15] defined as the union of the VDW surfaces of individual atoms, the solvent
accessible surface (SAS) [40] and solvent excluded surface (SES) [50] formed by rolling a
probe sphere on the VDW surface, the minimal energy molecular surface [14,23] derived
by minimizing the surface free energy, and the Gaussian surface [61, 64] defined as the
level set of summations of the Gaussian kernel functions as adopted in TMSmesh [7].
Software packages based on these surface definitions generate acceptable meshes for vi-
sualization purposes, but lead to differences in the calculation of free energy and electro-
static properties. Also, some of them display poor performance in efficiency or numerical
stability. For example, we observed that MSMS, although highly efficient, generated from
time to time elongated triangular elements of extremely small area, isolated nodes or
edges. A low quality mesh may significantly slow down or even inhibit the convergence
of the Krylov iterative methods used in AFMPB (see also Section 3). For approximating
molecular surfaces, the recently developed software TMSmesh [7, 19] usually generates
better quality meshes and can handle very large-scale molecules such as viruses that
challenge many other existing mesh generation tools. There are other active efforts to
improve mesh quality, such as proper filtering of coarse triangular meshes, e.g., using
Delaunay conforming triangulation [26].

In the efficiency aspect, based on our experiments, the sequential mesh generation
tools mentioned above typically take from seconds to a few minutes each for a system
with a few to a dozen thousand atoms. This is comparable to the time the sequential
AFMPB solver takes. While such computation time may be sufficient for single struc-
ture calculation, in which the mesh is generated only once, we face a pressing challenge
in efficiency for calculating an ensemble of structures that may undergo changes in the
dynamics simulations. Such calculation requires remeshing or mesh update at each time
step. A main approach to dealing with the efficiency issue is to design and develop par-
allel mesh generation tools and PB solvers; see the work from D’Agostino et al. [21].

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 113

2.4 The “node-patch” discretization method

For the AFMPB solver, we have developed a “node-patch” approach [44] to discretizing
the integral equations (2.4). It involves a transformation of the initial surface mesh pro-
vided by a mesh generation tool. The initial mesh is typically composed of flat triangular
facet patches. The node-patch approach makes use of two low-order BEM techniques
widely used in the engineering community, namely, the piecewise constant method and
the linear element method. In the constant element method, the number of unknowns
equals to the number of triangular patches, and each unknown is treated as a constant
on its triangular patch. In the linear element method, the number of unknowns equals
to the number of (vertex) nodes, and the solution on each patch is interpolated linearly
using values at the three vertex nodes. The number of nodes is approximately a half of
the number of triangular elements. The linear element method leads to a reduction in
the number of unknowns, but requires more sophisticated formulas and numerical in-
tegration schemes when evaluating the local direct interactions (panel integrations). Its
implementation is consequently more complicated.

In the node-patch approach, we combine the constant element method for its easy im-
plementation and the linear element method for its reduced number of unknowns. We
first construct a virtual patch or node-patch around each node to replace the facet patch
(element); see an illustration in Fig. 2 for the node-patch around the vertex i, which is
the intersection set of the five triangular elements. Specifically, the patch area is enclosed
by the dashed edges connecting the centroid points {O1,O2,··· ,O5} of the triangular ele-
ments and the midpoints {C1,C2,··· ,C5} of the edges incident at i. Next, the unknowns
are assumed constant on each new node-patch. Clearly, each triangular element con-
tributes one third of its area to the new node-patch. Thus, for the far-field integration,
the charge on the patch can be approximated by the charge at the node multiplied by the
total area of the node-patch; for the near-field integration, a normal quadrature method
is used.

The node-patch approach has a couple of advantages. (1) The computational cost of
the resulting linear system is reduced with the number of unknowns. The additional cost
for deriving the average charge on each patch is negligible in comparison to the time
saved. Furthermore, the geometric coefficients produced in this phase can be saved for
repeated use in an iterative solution process. (2) One can split the matrix into two addi-
tive terms, by certain cutoff criteria. One of the terms is for the direct interactions with
the “near points” (local list panel integrations), such as specified as the local neighbor box
list in the FMM. The calculation and storage processing of the near-interaction matrix by
the node-patch approach are more economic compared to that by the linear element ap-
proach. This reduces substantial execution time spent on non-numerical operations in
retrieving datum entries. It is long recognized that when the arithmetic complexity is
nearly linear, the computation time may be dominated by data accesses and other nonar-
ithmetic operations.

There are other active research efforts for solutions of PB models with smooth sur-

114 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

Figure 2: Illustration of a node-patch construction around node i in a triangulated mesh: Oℓ and nℓ are the
centroid and normal vectors of element ℓ, respectively, Cℓ is the middle point of edge ℓ incident at node i,
ℓ=1,··· ,5.

faces, such as on high-order surface description, or on approximation of the solution on
the surface with higher accuracy [38, 39]. As mentioned earlier, with a nonsmooth sur-
face, the interface conditions must be changed accordingly. We are aware that there exist
different definitions and descriptions for a smooth molecular surface by domain scientists.

2.5 Krylov subspace methods

The discretized linear system from Eq. (2.4) can be expressed in matrix-vector form as
Ax=b. AFMPB solves this system with Krylov subspace methods. Given an initial iterate
x0, a Krylov method solves the linear system by minimizing the iterative errors, with
respect to a selected measure, in the so-called Krylov space x0+Kk at step k, where Kk =
span{r0,Ar0,A2r0,··· ,Ak−1r0} with r0=b−Ax0. The basic operations in a Krylov subspace
method are matrix-vector multiplications. Krylov subspace methods differ from each
other in their assumptions on the structures or properties of the linear system, such as
symmetric or nonsymmetric, with or without an available routine for the product of AT

and a vector if the matrix is nonsymmetric, with or without defective eigenspaces.
The matrix A formed by the node-patch discretization of Eq. (2.4) is usually non-

symmetric. There is no known or available fast algorithm for applying the transpose of
A to an arbitrary vector. AFMPB employs four particular Krylov iterative subroutines
for solving nonsymmetric systems of linear equations, especially provided by the open
source package SPARSKIT [8]. They are the full GMRES, the restarted GMRES, the bicon-
jugate gradient stabilized (BiCGStab) method, and the transpose-free Quasi-Minimum
Residual (TFQMR) method. SPARSKIT follows the so-called “reverse communication
protocol” (see the ITSOL directory of the package) and provides a simple and effective
interface for integrating the iterative subroutines with a user-customized matrix-vector
product procedure. Specifically, the Krylov solver places at the interface a vector to take
the user-provided matrix-vector product during the iteration process. This simple data-

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 115

passing interface circumvents the potential trouble or limitation in parameter-passing
interface.

The convergence rate of a Krylov subspace method depends in part on the condition
number of the matrix A. In AFMPB, A is well conditioned as a result of the BIE refor-
mulation (2.4). In fact, A is the sum of the identity operator and a compact operator with
well-bounded singular values. Preliminary numerical experiments show that the full
GMRES method converges numerically in fewer iterations than the other methods, in
agreement with analytical expectations. However, the memory requirement by the GM-
RES method increases linearly with k, the number of iterations. The reorthogonalization
at step k requires k matrix-vector multiplications, making the total number of matrix-
vector multiplications grow quadratically with k. In other words, GMRES procedure
becomes very costly in both memory space and arithmetic operations. To control such
cost growth, one can restart GMRES every k0 steps, with a prescribed parameter k0 ≪N.
The restarted version is denoted as GMRES(k0). The convergence rate with BiCGStab or
TFQMR is slightly slower than that of the full GMRES. But the memory requirement for
BiCGStab or TFQMR is independent of k, and the total number of matrix-vector mul-
tiplications grows linearly with k. In general, the choice of a Krylov iterative solver is
application-specific. The default choice of the Krylov subspace solver in AFMPB is a
restarted version of GMRES [8].

The GMRES method has been used in previous BIE based LPB solvers [17]. Further
improvements in computational efficiency may be achieved by numerically precondi-
tioning the linear system resulted from the Fredholm second-kind integral equation for-
mulation, and by employing parallel versions of the Krylov subspace methods.

2.6 Adaptive fast multipole methods

AFMPB uses the new version of the adaptive fast multipole methods (FMMs) [29, 31] for
fast matrix-vector multiplications in the iterative methods. The arithmetic complexity
of each matrix-vector product using FMM is O(N). The number of iterations is nearly
independent of N with the Krylov methods. Therefore the discretized linear system can
be solved with O(N) arithmetic operations.

An ingenious idea behind the FMM is to represent the matrix in a compressed form
and further utilize it in the matrix-vector product. In this compressed form, submatrices
are associated with interactions of regions at differential spatial scales. Submatrices cor-
responding to relatively far-field interactions are expressed in numerical low-rank form,
while those for near-field interactions are in sparse forms; see the matrix interpretation
of the FMM from Sun and Pitsianis [57].

AFMPB uses the compressed form derived from the multipole expansions for the Coulomb
potential (Poisson equation) of particles located at ρi carrying a charge qi, i=1,··· ,N,

φ(R,θ,ψ)=
N

∑
i=1

qi ·
1

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Mm
n

Ym
n (θ,ψ)

Rn+1
, (2.5)

116 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

and the multipole coefficients are computed as follows

Mm
n =8

N

∑
i=1

qi ·ρn
i ·Y−m

n (αi,βi). (2.6)

In the formulas, P is the length of the expansion, determined by an accuracy requirement,
(R,θ,ψ) and (ρi,αi,βi) are the spherical coordinates of the “far-field” target (evaluation)
point ~R and source point ~ρi, respectively, the origin is assumed to be the center of the
source points, Ym

n is the spherical harmonics function of order n and degree m, specified
by

Ym
n (θ,ψ)=

√

(2n+1)(n−|m|)!
4π(n+|m|)! ·P|m|

n (cosθ)eimψ , (2.7)

with Pm
n as the associated Legendre polynomial [10].

A similar expansion for the Debye-Hückel (screened Coulomb) interactions is derived
as follows,

φ(R,θ,ψ)=
N

∑
i=1

qi ·
e−κ|~R−~ρi|

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Mm
n ·kn(κR)·Ym

n (θ,ψ), (2.8)

where the multipole coefficients are computed by

Mm
n =8κ

N

∑
i=1

qi ·in(κρi)·Y−m
n (αi,βi). (2.9)

Here, in(r) and kn(r) are the modified spherical Bessel and modified spherical Han-
kel functions, respectively. They are related to the conventional Bessel function as fol-
lows [10],

in(r)=

√

π

2r
In+1/2(r), kn(r)=

√

π

2r
Kn+1/2(r),

with
Iv(r)= ı−v Jv(ır), Kv(r)=

π

sinvπ
[I−v(r)− Iv(r)].

In the algorithmic aspect, FMM shares some common features with the so-called tree-
code algorithms. Both partition the space hierarchically, using an oct-tree data structure,
and both have intrascale translations. The arithmetic complexity of tree-code algorithms,
such as that by Appel [11] or by Barnes and Hut [12], is O(N logN). The prefactor de-
pends on the detailed specification of the interaction list regions at each and every level.
In any case, there are O(logN) scale levels. By the Cartesian box setting as in the FMM,
at every level, each particle interacts with 189 boxes in its “interaction list” via intrascale
translation in a tree-code algorithm. Each translation follows the multipole expansion of
O(P2) terms. The FMM by Greengard and Rokhlin [30], introduced for the first time the
local expansions, intrascale multipole-to-local translations and interscale multipole-to-
multipole, local-to-local translations, each equipped with rigorous approximation anal-
ysis. In local expansions, the coordinate systems are with respect to the target points.

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 117

The multipole-to-local translations at each scale level are among boxes, instead of from
boxes to particles. The source particle information is first aggregated into boxes at the
bottom (particle) level and will be further aggregated to the higher levels, up to the top,
during multipole-to-multipole translations. In the local-to-local translations, the interac-
tion information is accumulated from the top, level by level, and disaggregated into child
boxes. In short, each particle interacts with the other particles in the near-field boxes only
at the bottom level. The remaining interactions and translations are carried out through
the boxes. Notice that the total number of boxes is O(N). As a result, the arithmetic com-
plexity of the FMM becomes linear with N. Specifically, the local expansion for Coulomb
interactions is as follows,

φ(R,θ,ψ)=
N

∑
i=1

qi ·
1

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Lm
n ·RnYm

n (θ,ψ), (2.10)

where Lm
n are the local expansion coefficients. A similar expansion for the screened

Coulomb interaction can be described as

φ(R,θ,ψ)=
N

∑
i=1

qi ·
e−κ|~R−~ρi|

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Lm
n ·in(κR)·Ym

n (θ,ψ). (2.11)

However, the prefactor in the complexity of the original FMM is larger than logN
for systems of size N in practical range. The prefactor is substantially reduced in what
is referred to as the “new version of the FMM” [31]. It is achieved by (1) introducing
exponential expansions to diagonalize the multipole-to-local translation, and (2) using a
“merge-and-shift” technique to reduce the total number of intrascale translations. The
new version becomes highly competitive in systems of practical range. Numerical ex-
periments show that the new version of FMM for the screened Coulomb interaction
breaks even with the direct calculation when the number of particles N is as small as
500 when only 3-digit accuracy is required, or when N is 1000 for 6-digit accuracy re-
quirement. In the AFMPB solver, the new version of FMMs are implemented for the
Laplace and LPB equations to calculate the electrostatic interactions efficiently, with cer-
tain routines adopted from FMMSuite [9]. It also adapts to various geometries and sam-
ple distributions. Detailed descriptions of the adaptive new version FMM can be found
elsewhere [20, 29, 31, 34].

We will comment in Section 3 on the comparison between FMM-based algorithms
and FFT-based algorithms in biosystem simulations.

2.7 Parallel traversal of spatio-temporal graphs

We have introduced the key algorithmic components in the previous sections, and we
have released our first sequential version of the AFMPB solver under open source license
agreement [42]. We now turn our discussion to parallel computation. Since the arith-
metic complexities have been substantially reduced toward the theoretically minimal,

118 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

the hope and effort to further speed up the computation rest mostly on parallelization.
Fortunately, we have available advanced computer architectures, especially multicore
processors, graphics processing units and their interconnections. In this section, we first
introduce how the computation associated with the FMM, as a nontrivial example, can
be analyzed and orchestrated as traversing a spatio-temporal directed acyclic graph (ST-
DAG) so that its parallelization can be studied systematically. We then introduce in the
next section a dynamic prioritization scheme toward parallel traversing the graph in min-
imal time.

The FMM graph may be better described by its subgraphs and associated operations.
The FMM tree is familiar to many. In fact, it is the fusion of a source tree and a target
tree, representing two spatial partitions in one spatial domain. One partitions the source
ensemble, and the other partitions the target ensemble; see Fig. 3 for a view of the source
and target trees in separation, shown in red and blue colors respectively. The spatial nodes
(vertices) of the graph include the sets of source and target boxes in the FMM tree at levels
ℓ=0,··· ,ℓmax, denoted by V s

ℓ
and V t

ℓ
, respectively. A spatial node Vi may be visited multi-

ple times during a computation process, such as in an iterative or time-marching process.
We further unfold such a spatial node into multiple spatio-temporal nodes Vik = (Vi,k),
specifying the kth visit to the spatial node Vi. The spatio-temporal nodes are connected
by directed edges indicating the dependency from a predecessor node to a successor node.
The nodes without predecessors or successors are respectively referred to as the frontier or
terminal nodes, the rest are called interior nodes. We denote by G the ST-DAG consisting
of the spatio-temporal nodes and the directed edges.

In the FMM, the computation traverses the graph G as follows. (1) Upward traversal
on the source tree, up to level 2. Every leaf node in the source tree computes and renders a
vector-valued output data, namely, the multipole expansion coefficients. A nonleaf node
accumulates and translates data from its child nodes into its own multipole coefficients.
Such upward interscale operations are known as the multipole-to-multipole translations,
denoted by TMM; see Fig. 3. (2) The multipole-to-local translations TML for the “interac-
tion list” boxes, which connects the source and target nodes in the ST-DAG G. We denote
the corresponding bipartite subgraphs by Gℓ at each level ℓ∈ [2,ℓmax]. The vertex set of
Gℓ includes V s

ℓ
and V t

ℓ
, the respective (disjoint) sets of the source and target boxes in the

FMM tree at level ℓ; the edge set of Gℓ represents the source-target interaction. A source
box Bs and a target box Bt at level ℓ are connected by an edge if (a) Bs∩Bt =∅, and (b)
their parents are near-neighbors, i.e., with common boundary; see Fig. 3. Notice that the
interaction subgraphs Gℓ at different levels are also disjoint from each other. If the source
and target ensembles are uniformly distributed, Gℓ+1 has 2d times as many nodes as Gℓ

does, where d is the dimensionality of the problem. (3) Downward traversal of the target
tree. At level ℓ>2, every node gets the local coefficients from its parent, merges them with
its own at level ℓ, and makes the integrated results available to its child nodes or residing
target locations. These downward interscale operations are known as the local-to-local
translations, denoted by TLL; see Fig. 3.

In the remainder of this section, we shall briefly review previous efforts in paralleliz-

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 119

Target tree
Source tree

TTTTTLLLLTTTT

TMMTT

TML

G3

G4

Interaction subgraphs

Figure 3: Example of ST-DAG for the FMM.

ing the FMM. The first study is by Greengard and Gropp with the Laplacian kernel on
uniformly distributed data [28]. It showed that the overall time complexity was O(logN)
using O(N) processors and predicted that shared memory systems were more suitable.
Many other methods attempted to partition and balance the computation work among
the available processing elements (PEs). They may be categorized into the tree node de-
composition and spatial decomposition methods. Tree decomposition approach is based on
the FMM tree: one estimates the computation work at each tree node, and distributes it
evenly across the available PEs. This approach is implemented by using either the cost-
zone technique on shared memory architectures [55, 56] or the hashed oct-tree technique
on distributed memory architectures [60]. By assuming an upper bound on the partition
level, Teng gave a provably good partition algorithm with linear complexity [58]. The
distribution independent adaptive tree (DIAT) [54] is developed to handle the extreme
case where the partition level becomes O(N). It integrates a compressed oct-tree and a
balanced binary search tree. The spatial decomposition approach divides the problem
domain into non-overlapping subregions, while the tree nodes at two different PEs by
the tree node decomposition approach may spatially overlap. Each spatial subdomain
contains an approximately equal number of particles and is assigned to an available PE.
For instance, Salmon used the orthogonal recursive bisection (ORB) technique [53]. At
each PE, a locally essential tree (LET) is constructed, with the data required for the com-
putation on the particles owned by the PE.

2.8 Dynamic prioritization

We introduce in this section a dynamic prioritization scheme for traversing a general ST-
DAG in parallel, which is a significant departure from previous ad-hoc approaches. Due
to the page space limitation, we give only a sketch of the main idea. The paper by Zhang
et al. [63] introduced the concept and scheme for parallel scheduling in general. We show
in Section 3 the particular application of this scheme to parallel FMM and its remarkable
performance.

120 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

We start with the constraint-free situation where there are infinite or sufficient com-
puting resources. The shortest parallel traversal time in this case can be achieved by
following a simple data-driven rule. The frontier nodes start their computation imme-
diately and unconditionally, which are removed together with their incident edges upon
the completion of computations. In the reduced ST-DAG, nodes with available input data
become the new frontier nodes and start their computations, and so on. The latest time
step among all the terminal nodes in the original ST-DAG is the absolute shortest time.
The predecessors of the terminal nodes in the final step are time critical. Within the same
period, however, it is not necessary to start every noncritical node at the earliest possible
time. We define the absolute ranking as follows. Adopting Hu’s methodology [33], we
introduce an artificial sink node to the graph under consideration as the sole successor to
all the original terminal nodes. The absolute rank of a node v is the length of the longest
path connecting v and the sink node. With this ranking system, one can invoke the nodes
of the highest rank among the frontier nodes at any given time while maintaining the
shortest time in parallel traversal. We also define the unconditionally sufficient number
of PEs as the maximal number of nodes in concurrent computation at any time, across all
possible schedules for parallel traversing in the absolute shortest time.

The minimization in traversal time becomes complicated when resources are limited,
such as by the number of PEs and variations in latency due to memory accesses, thread
switches, time sharing, etc. The problem may be further complicated if the graphs are
highly irregular. To this end, we introduce the concept of adaptive ranking among the
frontier nodes. Assume the resource constraint first, where the number of available PEs,
NPE, is far smaller than sufficient for the absolute shortest time case. At any step, when
there are no more than NPE frontier nodes, the frontier nodes are served all at once, just as
the constraint-free situation; otherwise, the nodes of higher ranks are served first. Con-
sider the case when two frontier nodes u and v are of the same absolute rank, but only one
of them can be served with the rest NPE−1 nodes of higher ranks. A random tiebreaker
is a candidate policy for utilizing the parallel capacity at the current step. However, it is
not an optimal policy for any DAG toward the shortest time under resource constraints.
It is necessary to look ahead and maximize the number of frontier nodes at the next
steps, which influence the subsequent steps. We want to maintain the maximal degree
of concurrency at any and all steps. We are also concerned with the execution dynamics.
Therefore, we associate each frontier node c with an order pair, 〈d−m(c),ns(c)〉,

d−m(c)= min
(c,d)∈E (G)

deg−(d), (2.12)

where (c,d) is a directed edge from c to d in the edge set E(G), and deg−(d) is the in-
degree at node d. When d−m(c) = 1, ns(c) equals to the number of direct successors of
c with in-degree 1. That is, c is the only node in the way to release and enable these
successor nodes. Otherwise, ns(c) equals to the out-degree of c, deg+(c). The completion
of c makes its successors one step closer to the front. Back to the selection between equal-

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 121

ranked nodes u and v for service by one available PE. We give u a higher priority if

〈d−m(u),−ns(u)〉< 〈d−m(v),−ns(v)〉 (2.13)

in the lexicographical order. A random selection breaks the tie in (2.13). Suppose u is
chosen. Upon u’s completion, each of its direct successors decrements its in-degree by
one. The ranking criterion (2.13) may seem counterintuitive in the case d−m(u) = 1, as
opposed to the other case d−m(u)>1. They are consistent in the sense that we deal in the
former case with immediate node release in order to maximize the concurrency at the
very next step, and in the latter case, with the greatest reduction in parallel dependency
for maximizing the concurrency in future steps.

We also remark that the problem of traversing a DAG in parallel in the shortest time,
with the number of PEs constant or varying, is in general NP-complete [59].

3 Experimental results

3.1 Electrostatic calculations

We describe numerical experiments for electrostatic calculations of a protein system with
the AFMPB solver as well as with the APBS solver [4]. APBS is popularly used. It as-
sumes the solvent excluded surface (SES) [50] by default, uses internal implicit mesh
generation and employs a multigrid finite element method. AFMPB admits meshes gen-
erated by the new tool TMSmesh or other popularly used mesh generators, and employs
Krylov subspace methods for solving the discretized BIEs with the interface conditions
described earlier. As the two solvers differ in all the major factors, the differences in
computing requirements and numerical results provide a comprehensive perspective to
their comparisons, in addition to the arguments or analysis on each of the computational
components.

In order to single out the impact by an individual factor on numerical accuracy and
computational efficiency in numerical solutions, we describe four sets of experiments,
some of which we completed very recently and the others were carried out earlier by Lu,
one of the co-authors, and his other collaborators. The first set of experiments demon-
strate the impact by the difference between the surface descriptions and mesh genera-
tors on the accuracy in calculated solvation energy. In particular, AFMPB is used with
two types of meshes: meshes generated by MSMS with a solvent excluded surface and
meshes generated by TMSmesh with a Gaussian surface. In order to observe the response
in numerical behaviors as the mesh resolution becomes finer or coarser, the experiments
shall be carried out at different mesh resolutions. To this end, we restricted the experi-
ments to the study of small molecules. Lu and his colleagues had reported the results of
such experiments in a very recent paper [19] on a few small molecules, including ADP.
They found that with each of the two types, the total surface area of the generated mesh
converges as the mesh resolution becomes sufficiently fine, so do the enclosed volume

122 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

−1200

−1150

−1100

−1050

−1000

 0 5 10 15 20

S
ol

va
tio

n
en

er
gy

 (
kJ

/m
ol

)

Inverse grid size (1/Å)

AFMPB
APBS

Figure 4: The convergence behaviors of AFMPB and APBS in energy calculations. The grid size of AFMPB
denotes the side length of the smallest grid box used by TMSmesh to generate the triangulated molecular
Gaussian surface [19].

and the solvation energy. They also observed a small discrepancy (1%) in the converged
values in the calculated energy between the two mesh types.

We continued their efforts with ADP. In the second set of experiments, we compared
the calculated solvation energies by AFMPB with TMSmesh to that by APBS, which al-
lows the user to specify the mesh resolution. As the mesh resolution becomes finer, the
calculated energy values by both solvers show similar convergence behaviors, as shown
in Fig. 4. APBS renders sufficiently accurate results when the grid resolution is about 0.2
∼ 0.25 Å. Fig. 4 shows that AFMPB reaches the same accuracy at about the same grid res-
olution. Fig. 4 also shows the discrepancy between the converged values, which remains
small (1%). The experiments of the third set are to provide a comparison in computa-
tional efficiency. Instead of making direct comparisons, we refer the reader to the paper
by Lu et al. [43], where they reported that the nonadaptive counterpart of AFMPB out-
performed APBS already on a few systems that are not large. We add only that AFMPB
is more efficient than its nonadaptive counterpart.

In the fourth set of experiments, we were concerned in particular with the impact of
the molecule size and complexity on the effectiveness of the AFMPB solver. We used a
larger molecule, the proton-gated ion channel GLIC, taken from a MD simulation tra-
jectory [25]. This high-resolution crystal structure of GLIC captured in a potentially
open state may provide detailed atomic-level insights into ion conduction and selectiv-
ity mechanisms in the ion channels. GLIC consists of 25,300 atoms, in 100 Å× 80 Å×
128 Å dimensions. In our experiments, the molecular surface mesh generated by MSMS,
with 1/Å2 density and 1.5 or 1.4 Å probe radius, contained many isolated nodes. Such
topological faults inhibited successful execution of AFMPB. In comparison, the molecular
surface generated by the TMSmesh, with 329,764 triangular elements and 164,523 nodes
(see Fig. 1), allowed a successful AFMPB execution, returned with a solvation energy of
−11053.5 kcal/mol. The computed surface potential is shown in Fig. 5.

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 123

Figure 5: Side and top views of the surface electrostatic potential (in unit kcal/mol·e) of an ion channel protein,
GLIC (PDB code: 3ehz).

3.2 Parallel FMM in AFMPB

We have recently integrated the parallel FMM into a parallel version of the AFMPB under
development. We present here preliminary experimental results to demonstrate the effi-
ciency of the parallel FMM. The experiments were carried out on a 24-core workstation
with 64 GB memory. We used the system function pthread set affinity np to select and ac-
tivate a partial or the entire set of cores for scalability evaluations. For the numerical task,
we computed the pairwise interactions of N particles governed by the screened Coulomb
potential e−κr/r, where r is the Euclidean distance between two interacting particles and
κ is a modest positive constant. Particles were randomly distributed within a normalized
cube in R

3.

We show in Fig. 6 the parallel performance in terms of the weak scaling in the top

4 8 12 16 20 24
0

20

40

60

80

100

4 8 12 16 20 24
0

20

40

60

80

100

3−digit
6−digit

3−digit
6−digit

Figure 6: Parallel FMM’s parallel efficiency in weak scaling (top chart) and strong scaling (bottom chart).

124 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

chart and the strong scaling in the bottom chart. The ordinate axes in both bar charts
stand for the parallel efficiency, defined as Ts

NPE·Tp(NPE)
, where Ts is the runtime of the

best sequential algorithm, NPE is the number of cores, and Tp is the runtime of the best
parallel algorithm on NPE cores. The blue and red bars display the results of 3-digit and
6-digit accuracy, respectively. In weak scaling tests, we kept the ratio between N and
NPE constant. Specifically, the ratio was 3.75e6 for 3-digit accuracy and 6.25e5 for 6-digit
accuracy. The parallel efficiency remains above 90% in each case, in the presence of thread
management overheads. Without dynamic priority scheduling, the parallel efficiency
was above 90% up to 8 cores, but dropped to 60% with 24 cores. In strong scaling tests,
the problem size N was kept constant at 1.5e7. The parallel efficiency remains above
90% for 6-digit case since it involves more numerical operations. The 3-digit case lacks
computational work to keep all 24 cores busy most of the time. This is in part caused by
the aggregation operations to counterbalance the overhead in thread management. The
balance between the granularity in concurrent operations and the overhead in thread
management is delicate.

3.3 Additional discussion

Finally, we shall address, if not fully, the issue on the comparison between the FMM-
based algorithms and FFT-based algorithms in biosystem simulations. Methods from
the latter category include the precorrected FFT (pFFT) method [49] and particle mesh
Ewald (PME) technique [22]. To shed a light on the fundamental, we made an abstract
experiment setting, keeping only the most dominant algorithmic component. We con-
sider two types of data: cubic volume data and spherical surface data. There are two
typical components in the FFT-based algorithms: the interpolations and the FFTs. By the
interpolations the data are translated to and from a Cartesian grid, before and after the
FFTs, respectively. We keep the FFTs only. However, when the data are on the surface, we
take into consideration of the change in data types made by the interpolations or required
by the FFT. That is, the data on the surface are translated into the volume data in a cube.
For the FMM-based algorithms, we keep the FMM only, which admits data at arbitrary
locations. We assume, as in most of other FMM applications, that the FMM translators
are predetermined numerically.

The experiments were carried out on the aforementioned workstation. The FFT ex-
periments used the best schedule in the FFTW; the FMM code, written in C, was compiled
using gcc without linking any existing high-performance library, without loop-level un-
rolling or tuning. The timing results (in seconds) are summarized in Table 1, where N is
the data size, TFFT is the time spent on two FFTs (forward and backward), and TFMM is
the time spent on the FMM. With cubic volume data, the FFT is the front winner. With
spherical surface data, the FMM surpasses the FFT at three-quarter million size. This is
due to the change of surface data to volume data at the FFT step, i.e., the FFT operates on
the data of size 5123 and 10243, respectively, for the two surface data sets. We also note
that the FMM takes less time on the surface data of 3 million size than the volume data

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 125

Table 1: Basic comparisons in execution time (seconds) between the FFT-based and FMM-based methods for
calculating electrostatic interactions with cubic volume and spherical surface data.

Data distributions N×220 TFFT TFMM

Cubic volume
2.00 0.3 13.1

16.00 0.4 14.9

Spherical surface
0.75 6.4 2.3

3.00 30.0 9.0

of 2 million. This manifests the adaptation of the FMM to data distribution. These tell
us that the FFT-based algorithms are likely more efficient when particles are uniformly
distributed in a 3D cubical domain. The algorithms that are based on the adaptive FMM
are perhaps more efficient when particles are distributed on a 2D surface as in the case
when we use the BIE method or other situations where the data are highly clustered.

These comparisons, however, may change dramatically on distributed memory ar-
chitectures. The distributed FFT is known to suffer from high latency in synchronized
interprocess communications. The FMM potentially allows asynchronized communica-
tions.

Acknowledgments

The AFMPB solver uses many open-source packages, including SPARSKIT [8], MSMS [5],
FMMSuite [9], and several numerically important subroutines for the new-version of the
FMM provided by Greengard and Rokhlin. We thank our colleagues and collaborators in
computer science, mathematics and bioscience for their contributions and suggestions at
every stage of the AFMPB development. This work was supported by NSF, DOE, HHMI,
and NIH (B. Z./X. S./N. P.: NSF 0905164, B. Z./J. H.: NSF 0811130 and NSF 0905473,
J. A. M.: NSF MCB1020765 and NIH GM31749) and the NSF Center of Theoretical Bio-
logical Physics (CTBP). Additionally, B. L. is partially funded by the Chinese Academy of
Sciences, the State Key Laboratory of Scientific/Engineering Computing, and the China
NSF (NSFC1097218). X. C. is supported in part by the U.S. Department of Energy Field
Work Proposal ERKJE84. We also thank the reviewers for their valuable comments and
suggestions.

References

[1] http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi.
[2] http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:GRASP.
[3] http://mccammon.ucsd.edu/uhbd.html.
[4] http://www.poissonboltzmann.org/apbs.
[5] http://mgltools.scripps.edu/packages/MSMS/.
[6] http://fetk.org/codes/gamer/.

126 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

[7] http://lsec.cc.ac.cn/~lubz/Meshing.html.
[8] http://www-users.cs.umn.edu/~saad/software/SPARSKIT/index.html.
[9] http://www.fastmultipole.org/.

[10] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, 1970.
[11] A. W. Appel. An efficient program for many-body simulation. SIAM Journal on Scientific

and Statistical Computing, 6:85–103, 1985.
[12] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature, 324:446–

449, 1986.
[13] D. Bashford. An object-oriented programming suite for electrostatic effects in biological

molecules. Lecture Notes in Computer Science, 1343:233–240, 1997.
[14] P. W. Bates, G. W. Wei, and S. Zhao. Minimal molecular surfaces and their applications.

Journal of Computational Chemistry, 29:380–391, 2008.
[15] A. Bondi. van der Waals volumes and radii. The Journal of Physical Chemistry, 68:441–451,

1964.
[16] A. H. Boschitsch and M. O. Fenley. Hybrid boundary element and finite difference method

for solving the nonlinear Poisson-Boltzmann equation. Journal of Computational Chemistry,
25:935–955, 2004.

[17] A. H. Boschitsch, M. O. Fenley, and H. X. Zhou. Fast boundary element method for the linear
Poisson-Boltzmann equation. The Journal of Physical Chemistry B, 106:2741–2754, 2002.

[18] D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods. The Amber biomolecular simulation programs.
Journal of Computational Chemistry, 26:1668–1688, 2005.

[19] M. X. Chen and B. Z. Lu. TMSmesh: A robust method for molecular surface mesh generation
using a trace technique. Journal of Chemical Theory and Computation, 7(1):203–212, 2011.

[20] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three di-
mensions. Journal of Computational Physics, 155:468–498, 1999.

[21] D. D’Agostino, A. Clematis, I. Merelli, L. Milanesi, and M. Coloberti. A grid service based
parallel molecular surface reconstruction system. In Proceedings of 16th Euromicro Confer-
ence on Parallel, Distributed and Network-Based Processing, pages 455–462, 2008.

[22] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: an N logN method for Ewald
sums in large systems. Journal of Chemical Physics, 98:10089–10092, 1993.

[23] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. Coupling hydrophobicity, dispersion,
and electrostatics in continuum solvent models. Physics Review Letters, 96:087802, 2006.

[24] F. Fogolari, A. Brigo, and H. Molinari. The Poisson-Boltzmann equation for biomolecular
electrostatics: a tool for structural biology. Journal of Molecular Recognition, 15:377–392,
2002.

[25] S. Fritsch, I. Ivanov, H. L. Wang, and X. L. Cheng. Ion selectivity mechanism in a bacterial
pentameric ligand-gated ion channel. Biophysical Journal, 100:390–398, 2011.

[26] A. Gouaillard, A. Gelas, and S. Megason. Triangular meshes Delaunay conforming filter.
Insight Journal, July-December, 2008.

[27] J. A. Grant, B. T. Pickup, and A. Nicholls. A smooth permittivity function for Poisson-
Boltzmann solvation methods. Journal of Computational Chemistry, 22:608–640, 2001.

[28] L. Greengard and W. Gropp. A parallel version of the fast multipole method. Computers &
Mathematics with Applications, 20:63–71, 1990.

[29] L. Greengard and J. Huang. A new version of the fast multipole method for screened
Coulomb interactions in three dimensions. Journal of Computational Physics, 180:642–658,
2002.

B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128 127

[30] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Compu-
tational Physics, 73:325–348, 1987.

[31] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace
equation in three dimensions. Acta Numerica, 6:229–269, 1997.

[32] M. J. Hsieh and R. Luo. Physical scoring function based on AMBER force field and Poisson-
Boltzmann implicit solvent for protein structure prediction. Proteins, 56:475–486, 2004.

[33] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9:841–848,
1961.

[34] J. Huang, J. Jia, and B. Zhang. FMM-Yukawa: an adaptive fast multipole method for
screened Coulomb interactions. Computer Physics Communications, 180:2331–2338, 2009.

[35] W. Im, D. Beglov, and B. Roux. Continuum solvation model: computation of electrostatic
forces from numerical solutions to the Poisson-Boltzmann equation. Computer Physics
Communications, 111:59–75, 1998.

[36] S. Jo, M. Vargyas, J. Vasko-Szedlar, B. Roux, and V. Im. PBEQ-solver for online visualization
of electrostatic potential of biomolecules. Nucleic Acids Research, 36:270–275, 2008.

[37] A. H. Juffer, E. F. F. Botta, B. A. M. Vankeulen, A. Vanderploeg, and H. J. C. Berendsen.
The electric potential of a macromolecule in a solvent: a fundamental approach. Journal of
Computational Physics, 97:144–171, 1991.

[38] S. Kuo, M. Altman, J. Bardhan, B. Tidor, and J. White. Fast methods for biomolecule charge
optimization. In Proceedings of International Conference on Modeling and Simulation of
Microsystems, 2002.

[39] S. Kuo and J. White. A spectrally accurate integral equation solver for molecular surface
electrostatics. In Proceedings of the IEEE Conference on Computer-Aided Design, 2006.

[40] B. Lee and F. Richards. The interpretation of protein structures: estimation of static accessi-
bility. Journal of Molecular Biology, 55:379–400, 1971.

[41] J. Liang and S. Subramaniam. Computation of molecular electrostatics with boundary ele-
ment methods. Biophysical Journal, 73:1830–1841, 1997.

[42] B. Lu, X. Cheng, J. Huang, and J. A. McCammon. AFMPB: an adaptive fast multipole
Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems. Computer
Physics Communications, 181:1150–1160, 2010.

[43] B. Lu, X. Cheng, and J. A. McCammon. “New-version-fast-multipolemethod” acceler-
ated electrostatic calculations in biomolecular systems. Journal of Computational Physics,
226:1348–1366, 2007.

[44] B. Lu and J. A. McCammon. Improved boundary element methods for Poisson-Boltzmann
electrostatic potential and force calculations. Journal of Chemical Theory and Computation,
3:1134–1142, 2007.

[45] B. Lu, Y. C. Zhou, G. A. Huber, S. D. Bond, M. J. Holst, and J. A. McCammon. Electrodiffu-
sion: a continuum modeling framework for biomolecular systems with realistic spatiotem-
poral resolution. Journal of Chemical Physics, 127:135102, 2007.

[46] J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz,
M. K. Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon. Electrostatics and diffusion
of molecules in solution - simulations with the University of Houston Brownian Dynamics
Program. Computer Physics Communication, 91:57–95, 1995.

[47] A. Nicholls, K. A. Sharp, and B. Honig. Protein folding and association: insights from the
interfacial and thermodynamic properties of hydrocarbons. Proteins: Structure, Function,
and Bioinformatics, 11:281–296, 1991.

[48] M. Orozco and F. Lugue. Theoretical methods for the description of the solvent effect in

128 B. Zhang et al. / Commun. Comput. Phys., 13 (2013), pp. 107-128

biomolecular systems. Chemical Reviews, 100:4187–4226, 2000.
[49] J. R. Phillips and J. K. White. A precorrected-FFT method for electrostatic analysis of com-

plicated 3D structures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16:1059–1072, 1997.

[50] F. M. Richards. Areas, volumes, packing and protein structure. Annual Review in Biophysics
and Bioengineering, 6:151–176, 1977.

[51] V. Rokhlin. Solution of acoustic scattering problems by means of second kind integral equa-
tions. Wave Motion, 5:257–272, 1983.

[52] B. Roux and T. Simonson. Implicit solvent models. Biophysical Chemistry, 78:1–20, 1999.
[53] J. Salmon. Parallel Hierarchical N-Body Methods. PhD thesis, California Institute of Tech-

nology, 1990.
[54] F. E. Sevilgen and S. Aluru. A unifying data structure for hierarchical methods. In Proceed-

ings of the ACM/IEEE Conference on Supercomputing, 1999.
[55] J. Singh, C. Holt, J. Hennessy, and A. Gupta. A parallel adaptive fast multipole method. In

Proceedings of the ACM/IEEE Conference on Supercomputing, 1993.
[56] J. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load balancing and data locality in

adaptive hierarchical N-body methods: Barnes-Hut, fast multipole, and radiosity. Journal
of Parallel and Distributed Computing, 27:118–141, 1995.

[57] X. Sun and N. P. Pitsianis. A matrix version of the fast multipole method. SIAM Review,
43:289–300, 2001.

[58] S. Teng. Provably good partitioning and load balancing algorithms for parallel adaptive
N-body simulation. SIAM Journal on Scientific Computing, 19:635–656, 1998.

[59] J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System Sciences,
10:384–393, 1975.

[60] M. Warren and J. Salmon. A parallel hashed oct-tree N-body algorithm. In Proceedings of
the ACM/IEEE Conference on Supercomputing, 1993.

[61] J. Weiser, P. S. Shenkin, and W. C. Still. Optimization of Gaussian surface calculations and
extension to solvent-accessible surface areas. Journal of Computational Chemistry, 20:688–
703, 1999.

[62] Y. C. Zhou and M. Feig and G. W. Wei. Highly accurate biomolecular electrostatics in con-
tinuum dielectric environments. Journal of Computational Chemistry, 29:87–97, 2007.

[63] B. Zhang, J. Huang, N. P. Pitsianis, and X. Sun. Dynamic prioritization for parallel traversal
of irregularly structured spatio-temporal graphs. In Proceedings of the 3rd USENIX Work-
shop on Hot Topics in Parallelism, 2011.

[64] Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecu-
lar structures. The Special Issue of Computer Aided Geometric Design on Applications of
Geometric Modeling in the Life Sciences, 23:510–530, 2006.

