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Abstract. Classical facet elements do not provide an optimal rate of convergence of
the numerical solution toward the solution of the exact problem in H(div)-norm for
general unstructured meshes containing hexahedra and prisms. We propose two new
families of high-order elements for hexahedra, triangular prisms and pyramids that re-
cover the optimal convergence. These elements have compatible restrictions with each
other, such that they can be used directly on general hybrid meshes. Moreover the
H(div) proposed spaces are completing the De Rham diagram with optimal elements
previously constructed for H1 and H(curl) approximation. The obtained pyramidal
elements are compared theoretically and numerically with other elements of the liter-
ature. Eventually, numerical results demonstrate the efficiency of the finite elements
constructed.
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1 Introduction

The aim of this article is to build optimal H(div)-conforming elements in the same spirit
as done in [1,2] for H1 and H(curl) conforming formulations. Finite elements for H(div)
formulations can be used for example to solve Stokes problem like in [3] or Darcy flow
equation (see [4]). The other goal of this article is to complete the De Rham diagram for
optimal elements introduced in [1,2] of an hybrid mesh (including hexahedra, tetrahedra,
triangular prisms and pyramids).
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A first family of finite elements for H(div) formulations has been introduced by
Nédélec for hexahedra and tetrahedra in [5], a second one being introduced in [6] for
hexahedra, tetrahedra and triangular prisms. Nédélec’s first family for H(div) approxi-
mation is also known as Raviart-Thomas elements [7]. However, when these elements are
used on general unstructured meshes (especially hexahedral meshes), the interpolation
error EH(div) is not optimal:

EH(div) = ∣∣u−πu∣∣H(div) =O(hmax(0,r−2)),
where the H(div) norm is defined as

∣∣u∣∣2H(div) = ∣∣u∣∣22 + ∣∣divu∣∣22,

π being a projector from H(div) on the discrete Raviart-Thomas space, r the order of
approximation and h the mesh size. This sub-optimal convergence may be very prob-
lematic for lowest-order elements and unstructured meshes including highly distorted
elements. The sub-optimal convergence is obtained when the elements of the mesh are
not tending to affine elements when h tends to 0. Affine elements are elements such that
the transformation F linking reference elements (unit cube, unit prism, unit tetrahedron
and symmetric pyramid) to elements of the mesh is affine. This case occurs if the ele-
ment is only made of triangular faces (i.e. for tetrahedra), or when the quadrilateral faces
are parallelograms. In [8], some numerical experiments illustrate the lack of consistency
of lowest-order elements. The authors propose non-linear functions in order to obtain
a convergent method. An another approach based on the splitting of an hexahedron in
tetrahedra is proposed in [4]. These two contributions seem difficult to extend to higher
orders and the expression of basis functions on the reference element depend on the ge-
ometry.

The aim of this paper is to construct high order elements for hexahedra, tetrahedra,
prisms and pyramids ensuring an optimal estimate O(hr) in H(div) norm. Such ele-
ments will be based on Piola transform, i.e. a basis function u on the real element will be
obtained as:

u○F(x̂,ŷ,ẑ)= 1

∣DF∣DF û(x̂,ŷ,ẑ),
where (x̂,ŷ,ẑ) are the coordinates defined on the reference element K̂, DF is the jacobian
matrix of transformation F (which transforms K̂ to the real element K), ∣DF∣ its deter-
minant. Moreover, these elements will be constructed such that basis functions on the
reference element û will belong to finite element spaces P̂r that do not depend on the ge-
ometry, that is to say they do not depend on the real element K. Such finite elements have
been obtained for general quadrilateral elements in [9], and for lowest-order hexahedral
elements in [10]. In Theorem 2.3, these super-optimal spaces are detailed at any order for
the four types of elements, the lowest order hexahedral space is the same as in [10]. How-
ever, these spaces are not unique and not very practical to implement, optimal spaces
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will be detailed in Theorem 2.2 with more attractive properties. The dimensions of these
spaces are very close to super-optimal ones.

To make the transition between triangular and quadrangular faces in a conformal
hybrid mesh, the introduction of pyramids is needed (see [11]). Some pyramidal elements
has been build by Nigam and Phillips, a first family in [12], a second one in [13]. The
optimal pyramidal space detailed in this paper will be compared to Nigam and Phillips
spaces, and also to basis functions proposed in [14]. Numerical experiments show that
the optimal space require less degrees of freedom to reach a given accuracy.

We consider the following wave equation:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ω2

µ
u+−∇(1

ρ
divu)= f , in Ω,

u⋅n=0, on Γ,

divu=−iωu⋅n, on Σ,

(1.1)

with ω the pulsation, ρ,µ physical coefficients related to the considered media. This sim-
ple equation enables us to study H(div) finite elements in hybrid meshes. A Dirichlet
condition is set on the inner boundary Γ and an absorbing boundary condition is set on
the outer boundary Σ. As a result, this boundary value problem is well-posed for any
ω ∈R. The variational formulation of the problem is equal to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find u ∈H(div,Ω) such that

∀v∈H(div,Ω), −ω2∫
Ω

1

µ
u⋅vdx+∫

Ω

1

ρ
divudivvdx−iω∫

Σ

u⋅n v⋅ndx=∫
Ω

f ⋅vdx.
(1.2)

The outline of the paper is as follows:

• Section 2 is devoted to the construction of spaces for the four types of elements
(hexahedron, tetrahedron, triangular prism and pyramid) as done in [1, 2]. A first
set of ”optimal” spaces is constructed in Section 2.2. To satisfy sharper conditions
on the number of degrees of freedom, we construct a set of ”super-optimal” spaces
in Section 2.3. The trace of the two spaces is precised in Section 2.4 to verify the
conformity at the interfaces.

• The stability of the elements is treated in Section 3 where we prove that the sequence
of the De Rham diagram is exact with the spaces of [1, 2] and the super-optimal
spaces constructed.

• Quadrature formula used to get exact integrals whenever it is possible for the basis
functions are presented in Section 4. When the quadrature formulas provide an
approximate integration, it has been numerically observed that this approximation
does not deteriorate the order of convergence of the finite element method.

• We present in Section 5 a space for pyramids compatible with the classical Nédélec’s
first family.
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• Hierarchical basis function are finally given in Section 6, for the optimal space for
any type of element, for the super-optimal space and the hexahedron, and for the
first family and the pyramid.

• Section 7 is devoted to the comparison of the new elements to elements found in
the literature. A dispersion analysis and a study of the convergence are conducted
for different kind of meshes. These numerical results show that optimal elements
require generally less degrees of freedom than other elements.

2 H(div)-conforming finite element spaces

2.1 Definition of elementary spaces

Let us first introduce the following classical polynomial spaces:

Definition 2.1. In 2-D:

Pr(x,y)=Span{xiyj, i, j≥0, i+ j≤r} ,

P̃r(x,y)=Span{xiyj, i, j≥0, i+ j=r} ,

Qm,n(x,y)=Span{xiyj, 0≤ i≤m, 0≤ j≤n},
Dr(x,y)=(Pr−1(x,y))2⊕P̃r−1(x,y)[ x

y
];

In 3-D:
Pr(x,y,z)=Span{xiyjzk, i, j,k≥0, i+ j+k≤r} ,

P̃r(x,y,z)=Span{xiyjzk, i, j,k≥0, i+ j+k=r} ,

Qm,n,p(x,y,z)=Span{xiyjzk, 0≤ i≤m, 0≤ j≤n, 0≤k≤ p},

Wm,n(x,y,z)=Span{xiyjzk, i, j,k≥0, i+ j≤m, k≤n} ,

Sr(x,y,z)={u∈P̃r
3
, u1 x+u2 y+u3 z=0},

Rr(x,y,z)=P3
r−1⊕Sr,

Dr(x,y,z)=P3
r−1⊕P̃r−1(x,y,z)

⎡⎢⎢⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎥⎥⎦
,

where Rr and Dr are Nédélec’s first family spaces for tetrahedra introduced by Nédélec
[5], for H(curl) and H(div)-formulation respectively, Dr being also known as Raviart-
Thomas finite elements [7]. The space Wr,r is the finite element space used for continuous
triangular prisms.

We also introduce the approximation space for continuous pyramidal elements (see
[1])

Br(x,y,z)=Pr(x,y,z)⊕ r−1

∑
k=0

Pk(x,y)( xy

1−z
)r−k

,
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which can be written on the cube [−1,1]×[0,1] as:

Cr(x,y,z)=Span{xi yj(1−z)k , 0≤ i, j≤k≤r}
using the transformation T from the pyramid K̂(x̂,ŷ,ẑ) to the cube [−1,1]2×[0,1] of coor-
dinates (x̃,ỹ,z̃): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂ = x̃(1−z̃),
ŷ= ỹ(1−z̃),
ẑ= z̃.

The approximation space for H(curl) pyramidal elements (see [2]) is

Br(x,y,z)=B3
r−1(x,y,z)⊕

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xpyp

(1−z)p+2

⎡⎢⎢⎢⎢⎢⎣
y(1−z)
x̂(1−z)

xy

⎤⎥⎥⎥⎥⎥⎦
, 0≤ p≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xmyn+2

(1−z)m+2

⎡⎢⎢⎢⎢⎢⎣
(1−z)

0
x

⎤⎥⎥⎥⎥⎥⎦
,

xn+2ym

(1−z)m+2

⎡⎢⎢⎢⎢⎢⎣
0(1−z)
y

⎤⎥⎥⎥⎥⎥⎦
, 0≤m≤n≤r−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xpyq

(1−z)p+q+1−r

⎡⎢⎢⎢⎢⎢⎣
(1−z)

0
x

⎤⎥⎥⎥⎥⎥⎦
,

xqyp

(1−z)p+q+1−r

⎡⎢⎢⎢⎢⎢⎣
0(1−z)
y

⎤⎥⎥⎥⎥⎥⎦
,

0≤ p≤r−1
0≤q≤r+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

2.2 Optimal finite element spaces

The finite element approximation is constructed by considering a transformation F from
a reference element K̂ (unit tetrahedron, symmetric pyramid, unit prism and unit cube)
to a real element K on the mesh (see Fig. 1). This transformation is written as

F= ∑
1≤i≤ni

Si ϕ̂1
i , (2.1)

K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

Fiẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Figure 1: Transformation F for a pyramid.
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where ni is the number of vertices of the element, Si = (xi,yi,zi) are the vertices and ϕ̂1
i

are mapping functions depending on the considered type of the element. The mapping
functions are classical for tetrahedra, hexahedra and triangular prisms and can be found
in [1] for pyramids.

By introducing some constants A0,A1,A2,A3,C,C1,C2,C3,D depending on the vertices(Si), the transformations F writes as follows:

Definition 2.2. The transformation F for any element is written as:

• Tetrahedron: F =A0+A1x̂+A2ŷ+A3ẑ;

• Hexahedron: F =A0+A1x̂+A2ŷ+A3ẑ+C1 x̂ ŷ+C2 x̂ ẑ+C3 ŷ ẑ+Dx̂ŷẑ;

• Triangular prism: F =A0+A1x̂+A2ŷ+A3ẑ+C1 x̂ ẑ+C2 ŷ ẑ;

• Pyramid: F =A0+A1x̂+A2ŷ+A3ẑ+C
x̂ŷ
(1−ẑ) .

There is a bijection between these constants and the vertices, that is the real element K is
uniquely determined by these constants (e.g. A0,A1,A2,A3 and C for the pyramid).

Let us denote

H(div,Ω)={u∈(L2(Ω))3 such that divu∈L2(Ω)}.
The unknown u and test function v of the variational formulation (1.2) belongs to the
following finite element space:

Vh ={u∈H(div,Ω) so that u∣K ∈PF
r },

where PF
r (K) denotes the finite element space on the element K of the mesh. This space

is built with the reference finite element space P̂r(K̂) thanks to Piola H(div)-conforming
transform

PF
r (K)={u so that ∣DF∣DF−1u○F ∈ P̂r(K̂)},

where DF the jacobian matrix of transformation F, and ∣DF∣ its determinant. The space
P̂r(K̂) depends only on the reference element K̂ and on the order of approximation r, and
is thus independent of the element K. The approximate solution uh is the solution to the
discrete variational formulation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Find uh ∈Vh such that

∀v∈Vh, −ω2∫
Ω

1

µ
uh ⋅vh dx+∫

Ω

1

ρ
divuh divvh dx−iω∫

Σ

uh ⋅n vh ⋅ndx=∫
Ω

f ⋅vh dx.
(2.2)

To obtain a convergence of uh towards the exact solution u of the problem (1.1) inO(hr), where h denotes the mesh size, a first necessary condition is to have the following
inclusion (see [15]):

PF
r ⊃Pr−1(x,y,z)3.
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Definition 2.3. The space Êr of order r is the space of minimal dimension on K̂ such that

P̂r(K̂)⊃ Êr⇔ PF
r ⊃Pr−1(x,y,z)3

for any element K.

Theorem 2.1. The spaces Êr are equal to:

• Tetrahedron:

Êr =Pr−1(x̂,ŷ,ẑ)3;

• Hexahedron:

Ê1=P1(x̂,ŷ,ẑ)3⊕
⎡⎢⎢⎢⎢⎢⎣

x̂ŷ
0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂ẑ
−ŷẑ

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
−x̂ŷ
x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2ẑ
0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2ŷ
−x̂ŷ2

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
−ŷ2ẑ
ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ
−ŷẑ
ẑ2

⎤⎥⎥⎥⎥⎥⎦
;

For r>1,

Êr =Qr+1,r−1,r−1(x̂,ŷ,ẑ)×Qr−1,r+1,r−1(x̂,ŷ,ẑ)×Qr−1,r−1,r+1(x̂,ŷ,ẑ)
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷr ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂jŷi ẑr

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂r ŷj ẑi

⎤⎥⎥⎥⎥⎥⎦
0≤ i≤r

0≤ j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷj ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂r ŷi ẑj

0

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂jŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
0≤ i≤r

0≤ j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷj ẑr

0

−x̂rŷj ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

0

x̂jŷr+1ẑr

−x̂jŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑj

−x̂rŷr+1ẑj

0

⎤⎥⎥⎥⎥⎥⎦
0≤ j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
;

• Triangular prism:

Êr =(Wr−1,r(x̂,ŷ,ẑ)⊕P̃r(x̂,ŷ)Pr−1(ẑ))2

⊗(Wr−2,r+1(x̂,ŷ,ẑ)⊕P̃r−1(x̂,ŷ)Pr(ẑ))⊕ P̃r−1(x̂,ŷ)ẑr

⎡⎢⎢⎢⎢⎢⎣
−x̂
−ŷ
ẑ

⎤⎥⎥⎥⎥⎥⎦
;
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• Pyramid:

Êr =Br−1(x̂,ŷ,ẑ)3⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1−ẑ)m+1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1−ẑ)m+1

0

⎤⎥⎥⎥⎥⎥⎥⎦
0≤m≤n≤r−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂m+1 ŷn+1

(1−ẑ)m+2

0

− x̂m ŷn+1

(1−ẑ)m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊕

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

x̂n+1 ŷm+1

(1−ẑ)m+2

− x̂n+1ŷm

(1−ẑ)m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0≤m≤n≤r−1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Proof. The proof will be completed for the pyramid and the hexahedron. Let us begin
with the pyramid, for which the transformation F is equal to

F =A0+A1x̂+A2ŷ+A3ẑ+C
x̂ŷ

(1−ẑ) ,
where (x̂,ŷ,ẑ) are the coordinates on the symmetric pyramid. We will express each func-
tion either in (x̂,ŷ,ẑ) coordinates, or either in (x̃,ỹ,z̃) coordinates of the cube [−1,1]2×[0,1]
defined by the relations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂ = x̃(1−z̃),
ŷ = ỹ(1−z̃),
ẑ = z̃.

The derivatives of F with respect to coordinates of K̂ are equal to:

∂F

∂x̂
=A1+C

ŷ

(1−ẑ) =A1+Cỹ,

∂F

∂ŷ
=A2+C

x̂

(1−ẑ) =A2+Cx̃,

∂F

∂ẑ
=A3+C

x̂ŷ

(1−ẑ)2 =A3+Cx̃ỹ.

The columns of the comatrix of DF are equal to:

comat(DF)x = ∂F

∂ŷ
× ∂F

∂ẑ
=A2×A3+C×A3 x̃+A2×Cx̃ỹ,

comat(DF)y = ∂F

∂ẑ
× ∂F

∂x̂
=A3×A1+A3×Cỹ+C×A1 x̃ỹ,

comat(DF)z = ∂F

∂x̂
× ∂F

∂ŷ
=A1×A2+A1×Cx̃+C×A2 ỹ.

Let us take a polynomial p in P3
r−1. Piola transform writes:

p̂ = ∣DF∣DF−1p○F,
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where ∣DF∣ is the determinant of the jacobian matrix. By using comatrix, the relation is
simpler:

p̂= comat(DF)∗p○F.

Because of the optimality of Cr (see [1]), considering a polynomial of P3
r−1 on the pyramid

K̂ is equivalent to consider a polynomial of C3
r−1 on the unit cube [−1,1]2×[0,1], that is:

p○F = x̃i ỹj(1−z̃)kU, i, j≤k≤r−1,

with U a constant vector in R3. Therefore p̂ is equal to:

p̂=comat(DF)∗ x̃i ỹj(1−z̃)kU = x̃i ỹj(1−z̃)k
⎡⎢⎢⎢⎢⎢⎣
(A2,A3,U)(A3,A1,U)(A1,A2,U)

⎤⎥⎥⎥⎥⎥⎦
+ x̃i ỹj(1−z̃)k⎛⎜⎝(C,A3,U)

⎡⎢⎢⎢⎢⎢⎣
x̃
−ỹ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C,U)

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ
0
−ỹ

⎤⎥⎥⎥⎥⎥⎦
+ (C,A1,U)

⎡⎢⎢⎢⎢⎢⎣
0

x̃ỹ
−x̃

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠,

where (A,B,C) denotes the determinant of the 3x3 matrix whose columns are A, B and
C. By varying values of A1,A2,A3 and U, the first term generates all monomials of C3

r−1.
For the other terms, we distinguish four cases:

1. If i, j<k, all the terms belongs to C3
r−1.

2. If i=k, j<k, by removing components in C3
r−1, it remains

⎡⎢⎢⎢⎢⎢⎣
x̃k+1ỹm(1−z̃)k

0
0

⎤⎥⎥⎥⎥⎥⎦
, x̃kỹj(1−z̃)k

⎡⎢⎢⎢⎢⎢⎣
0

x̃ỹ
−x̃

⎤⎥⎥⎥⎥⎥⎦
, m≤k, j<k.

3. If j=k,i<k, by removing components in C3
r−1, it remains

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹk+1(1−z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, x̃jỹk(1−z̃)k

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ
0
−ỹ

⎤⎥⎥⎥⎥⎥⎦
, m≤k, j<k.

4. If i=k, j=k, we have the following terms

⎡⎢⎢⎢⎢⎢⎣
x̃k+1ỹk(1−z̃)k

0
0

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0

x̃kỹk+1(1−z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, x̃kỹk(1−z̃)k

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ
0
−ỹ

⎤⎥⎥⎥⎥⎥⎦
, x̃kỹk(1−z̃)k

⎡⎢⎢⎢⎢⎢⎣
0

x̃ỹ
−x̃

⎤⎥⎥⎥⎥⎥⎦
.

The two first terms are already treated in the second and third case and the last two
terms can be added to the second and third case by extending j until k (instead of
j<k).
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Finally, by taking polynomials p in P3
r−1, the following space is generated:

C3
r−1⊕

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̃k+1ỹm(1−z̃)k
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹk+1(1−z̃)k
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤m≤k≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̃j+1ỹk+1(1−z̃)k
0

−x̃jỹk+1(1−z̃)k
⎤⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣
0

x̃k+1ỹj+1(1−z̃)k
−x̃k+1ỹj(1−z̃)k

⎤⎥⎥⎥⎥⎥⎦
, 0≤ j≤k≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

When we write this space in coordinates (x̂,ŷ,ẑ) we recover the claimed space Êr for the
pyramid.

We now consider the following transformation for a general hexahedron:

F =A0+A1x̂+A2ŷ+A3ẑ+C1 x̂ ŷ+C2 x̂ ẑ+C3 ŷ ẑ+Dx̂ŷẑ.

The derivatives of F are equal to:

∂F

∂x̂
=A1+C1ŷ+C2 ẑ+Dŷẑ,

∂F

∂ŷ
=A2+C1x̂+C3 ẑ+Dx̂ẑ,

∂F

∂ẑ
=A3+C2x̂+C3 ŷ+Dx̂ŷ.

The columns of the comatrix of DF are equal to:

comat(DF)x = ∂F

∂ŷ
× ∂F

∂ẑ
=A2×A3+ x̂(C1×A3+A2×C2)+ŷ(A2×C3)+ẑ(C3×A3)
+ x̂ŷ(A2×D+C1×C3)+ x̂ẑ(D×A3+C3×C2)+ x̂2(C1×C2)
+ x̂2ŷ(C1×D)+ x̂2 ẑ(D×C2),

comat(DF)y = ∂F

∂ẑ
× ∂F

∂x̂
=A3×A1+ x̂(C2×A1)+ŷ(A3×C1+C3×A1)+ẑ(A3×C2)
+ x̂ŷ(D×A1+C2×C1)+ŷẑ(A3×D+C3×C2)+ŷ2(C3×C1)
+ŷ2 x̂(D×C1)+ŷ2 ẑ(C3×D),

comat(DF)z = ∂F

∂x̂
× ∂F

∂ŷ
=A1×A2+ x̂(A1×C1)+ŷ(C1×A2)+ẑ(A1×C3+C2×A2)
+ x̂ẑ(C2×C1+A1×D)+ŷẑ(C1×C3+D×A2)+ẑ2(C2×C3)
+ x̂ẑ2(C2×D)+ŷẑ2(D×C3).

Let us begin with a polynomial p in P3
r−1. Because of the optimality of Qr (see [1]), it is

equivalent to consider a polynomial of Q3
r−1:

p○F = x̂i ŷj ẑkU, i, j≤k≤r−1,
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with U a constant vector in R3. Therefore p̂ is equal to:

p̂ =comat(DF)∗ x̂i ŷj ẑk U = x̂iŷj ẑk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
(A2,A3,U)(A3,A1,U)(A1,A2,U)

⎤⎥⎥⎥⎥⎥⎦
+ (C1,A3,U)

⎡⎢⎢⎢⎢⎢⎣
x̂
−ŷ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C2,U)

⎡⎢⎢⎢⎢⎢⎣
x̂
0
−ẑ

⎤⎥⎥⎥⎥⎥⎦
+(A2,C3,U)

⎡⎢⎢⎢⎢⎢⎣
ŷ
0
0

⎤⎥⎥⎥⎥⎥⎦
+(C3,A3,U)

⎡⎢⎢⎢⎢⎢⎣
ẑ
0
0

⎤⎥⎥⎥⎥⎥⎦
+(A2,D,U)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ
0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+(C3,C1,U)

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+(D,A3,U)

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ
−ŷẑ

0

⎤⎥⎥⎥⎥⎥⎦
+(C1,C2,U)

⎡⎢⎢⎢⎢⎢⎣
x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+(C1,D,U)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ
−x̂ŷ2

0

⎤⎥⎥⎥⎥⎥⎦
+(D,C2,U)

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ
0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+(C2,A1,U)

⎡⎢⎢⎢⎢⎢⎣
0
x̂
0

⎤⎥⎥⎥⎥⎥⎦
+(C3,A1,U)

⎡⎢⎢⎢⎢⎢⎣
0
ŷ
−ẑ

⎤⎥⎥⎥⎥⎥⎦
+(A3,C2,U)

⎡⎢⎢⎢⎢⎢⎣
0
ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+(D,A1,U)

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+(C3,C2,U)

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ
ŷẑ
−ẑ2

⎤⎥⎥⎥⎥⎥⎦
+(C3,D,U)

⎡⎢⎢⎢⎢⎢⎣
0

ŷ2ẑ
−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+(C1,A2,U)

⎡⎢⎢⎢⎢⎢⎣
0
0
ŷ

⎤⎥⎥⎥⎥⎥⎦
+(A1,C1,U)

⎡⎢⎢⎢⎢⎢⎣
0
0
x̂

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

The coefficients (A2,A3,U), (A3,A1,U), (A1,A2,U), (C1,A3,U), (A2,C2,U), (A2,C3,U),(C3,A3,U), (A2,D,U), (C3,C1,U), (D,A3,U), (C1,C2,U), (C1,D,U), (D,C2,U), (C2,A1,U),(C3,A1,U), (A3,C2,U), (D,A1,U), (C3,C2,U), (C3,D,U), (C1,A2,U), (A1,C1,U) viewed as
functions of variables U,A0,A1,A2,A3,C1,C2,C3,D are linearly independent, therefore all
the associated monomials are needed to obtain P3

r−1. By a simple recombination of these
monomials, they can be enumerated as follows:

⎡⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
x̂
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
x̂

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
ŷ
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
ŷ
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
ŷ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
ẑ
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
ẑ
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0
ẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ
0
−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂ẑ
−ŷẑ

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂2

−x̂ŷ
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷ
ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ
−ŷẑ
ẑ2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ
−x̂ŷ2

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ
0
−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

ŷ2ẑ
−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
.

These monomials have to be multiplied by x̂iŷj ẑk with i, j,k ≤ r−1 to obtain the needed
functions to generate P3

r−1. When r=1, all these monomials are needed, and no further
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manipulation is necessary. When r>1, we will make manipulations in order to obtain a
suitable expression of Êr.

Because of the presence of (x̂,0,0), it is immediate that the following functions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r ŷi ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
belong to Êr. Let us now consider the following combination between functions of Êr:

⎡⎢⎢⎢⎢⎢⎣
x̂i+2 ŷj ẑk

−x̂i+1ŷj+1ẑk

−x̂i+1ŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

x̂i′+1ŷj′ ẑk′

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂ℓ+1ŷm ẑn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x̂i+2 ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
.

All the functions of this equality belong to Êr if

0≤ i, j,k,i′ , j′,k′,ℓ,m,n≤r−1.

This equality becomes true if we have

∣ i′= i, j′= j+1, k′=k,
ℓ= i, m= j, n=k+1.

This choice of indices is possible if j,k ≤ r−2. As a result, the monomials (x̂i+2 ŷj ẑk,0,0)
belong to Êr if i≤r−1, j,k≤r−2. The following combination is now considered:

−
⎡⎢⎢⎢⎢⎢⎣

x̂i+2 ŷj ẑk

−x̂i+1ŷj+1 ẑk

−x̂i+1ŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+2

⎡⎢⎢⎢⎢⎢⎣
x̂i′+2 ŷj′ ẑk′+1

0

−x̂i′+1ŷj′ ẑk′+2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0

x̂ℓ+1ŷm+1ẑn

−x̂ℓ+1ŷm ẑn+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x̂i+2 ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
.

This identity is true as soon as:

∣ i′= i, j′= j, k′=k−1,
ℓ= i, m= j, n=k.

This choice of indices is possible if k≥1. Therefore (x̂i+2 ŷj ẑk,0,0) belongs to Êr if 1≤k≤r−1
and i, j≤r−1. With a similar combination we can also find (x̂i+2 ŷj ẑk,0,0) in Êr if 1≤ j≤r−1
and i,k≤r−1.

As a result, if r>1, the following monomials belongs to Êr:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷi ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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Let us now consider the following combination:

−
⎡⎢⎢⎢⎢⎢⎣
−x̂i+1 ŷj+1ẑk

x̂iŷj+2ẑk

−x̂iŷj+1 ẑk+1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

x̂i′+1 ŷj′+1ẑk′

0

−x̂i′ ŷj′+1ẑk′+1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

x̂ℓ+2ŷm+1ẑn

−x̂ℓ+1ŷm+2ẑn

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x̂i+1 ŷj+1ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
.

This identity becomes true when

∣ i′= i, j′= j, k′=k,
ℓ= i−1, m= j, n=k.

This choice of indices is possible if i ≥ 1. If r > 1 and by taking i = r−1, we obtain the
function (x̂r ŷr ẑk,0,0) in Êr with k≤r−1. Similarly, we can obtain the function (x̂r ŷk ẑr ,0,0).
Because of the presence of the monomials (ŷ,0,0) and (ẑ,0,0), the functions (x̂iŷr ẑk,0,0)
and (x̂iŷr ẑk,0,0) with i,k ≤ r−1 belong to Êr. As a result, the following monomials are
included in Êr: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i≤r, 0≤ j≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

By regrouping the different results, and exploiting symmetries, we have proved that Êr

contains the following functions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂jŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂jŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
, i≤r+1, j,k≤r−1

⎡⎢⎢⎢⎢⎢⎣
x̂iŷr ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂iŷk ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂r ŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂kŷi ẑr

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂r ŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂kŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
, i≤r, k≤r−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Let us now consider the monomials

⎡⎢⎢⎢⎢⎢⎣
x̂i+2ŷj+1ẑk

−x̂i+1ŷj+2 ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂i+2ŷj ẑk+1

0

−x̂i+1ŷj ẑk+2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷj+2 ẑk

−x̂iŷj+1ẑk+1

⎤⎥⎥⎥⎥⎥⎦
.

These functions can be written as combination of the previous functions that are included
in Êr, except when

i= j=r−1 for the first monomial,
i=k=r−1 for the second monomial,
j=k=r−1 for the third monomial.

With this choice of indices, we have found the last monomials of Êr.

Following the principles used to construct H(curl) optimal spaces defined in [2], the
optimal space on K̂ is defined as:
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Definition 2.4. The optimal space of order r is the space P̂
opt
r (K̂) of minimal dimension

on such that
P̂r(K̂)⊃ P̂

opt
r (K̂)⇔ PF

r ⊃Dr(x,y,z)
for any element K.

Theorem 2.2. The optimal spaces P̂
opt
r are equal to:

• Tetrahedron:

P̂
opt
r =Dr(x̂,ŷ,ẑ)

• Hexahedron:

P̂
opt
r =Qr(x̂,ŷ,ẑ)=Qr+2,r,r(x̂,ŷ,ẑ)×Qr,r+2,r(x̂,ŷ,ẑ)×Qr,r,r+2(x̂,ŷ,ẑ)

• Triangular prism:

P̂
opt
r =Wr(x̂,ŷ,ẑ)= (Dr+1(x̂,ŷ)⊗Pr(ẑ))×Wr−1,r+2(x̂,ŷ,ẑ)

• Pyramid:

P̂
opt
r =Br(x̂,ŷ,ẑ)3
=Br−1(x̂,ŷ,ẑ)3

⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1−ẑ)m+1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1−ẑ)m+1

0

⎤⎥⎥⎥⎥⎥⎥⎦
0≤m≤n≤r−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂m ŷn+1

(1−ẑ)m+1

⎡⎢⎢⎢⎢⎢⎣

x̂
(1−ẑ)

0
−1

⎤⎥⎥⎥⎥⎥⎦
⊕ x̂n+1 ŷm

(1−ẑ)m+1

⎡⎢⎢⎢⎢⎢⎣
0
ŷ

(1−ẑ)

−1

⎤⎥⎥⎥⎥⎥⎦
0≤m≤n≤r−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂iŷj

(1−ẑ)i+j−r

⎡⎢⎢⎢⎢⎢⎢⎣

x̂
(1−ẑ)

ŷ
(1−ẑ)

−1

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

The optimal space for the pyramid is polynomial when expressed in the cube [−1,1]2×[0,1]:
P̂

opt
r ○T =C3

r−1⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̃n+1ỹm(1−z̃)n
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̃mỹn+1(1−z̃)n
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤m≤n≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̃m+1ỹn+1(1−z̃)n
0

−x̃mỹn+1(1−z̃)n
⎤⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣
0

x̃n+1ỹm+1(1−z̃)n
−x̃n+1ỹm(1−z̃)n

⎤⎥⎥⎥⎥⎥⎦
, 0≤m≤n≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̃iỹj(1−z̃)r
⎡⎢⎢⎢⎢⎢⎣

x̃
ỹ
−1

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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Proof. For any type of element, by construction, we obviously have

Êr ⊂ P̂
opt
r .

The remaining polynomials to consider are the polynomials p of

P̃r−1

⎡⎢⎢⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎥⎥⎦
.

This part of the proof will be conducted for the pyramid and the hexahedron.
Let us begin with the pyramid. We consider a polynomial p such that

p= xiyjzr−1−i−j

⎡⎢⎢⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎥⎥⎦
= x̃i ỹj(1−z̃)r−1

⎡⎢⎢⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎥⎥⎦
, i, j≤r−1

by using the optimality of Br. The first component of p̂ is equal to:

p̂x =x̃i ỹj(1−z̃)r−1 comat(DF)x ⋅F
=x̃i ỹj(1−z̃)r−1(A2×A3 +C×A3 x̃+A2×Cx̃ỹ)⋅(A0+A3+A1 x̃(1−z̃)+A2 ỹ(1−z̃)

−A3(1−z̃)+Cx̃ỹ(1−z̃)).
If we note Ā0 =A0+A3, we obtain:

p̂x =x̃i ỹj(1−z̃)r−1[(A2,A3, Ā0)+(A2,A3,A1)x̃(1−z̃)+(C,A3, Ā0)x̃
+(C,A3,A1)x̃2(1−z̃)+(A2,C, Ā0)x̃ỹ+(A2,C,A1)x̃2ỹ(1−z̃)−(A2,C,A3)x̃ỹ(1−z̃)].

Similar computations give the following values for the second and third component of p̂

p̂y=x̃i ỹj(1−z̃)r−1[(A3,A1, Ā0)+(A3,A1,A2)ỹ(1−z̃)+(A3,C, Ā0)ỹ
+(A3,C,A2)ỹ2(1−z̃)+(C,A1, Ā0)x̃ỹ+(C,A1,A2)x̃ỹ2(1−z̃)−(C,A1,A3)x̃ỹ(1−z̃)],

p̂z=x̃i ỹj(1−z̃)r−1[(A1,A2, Ā0)−(A1,A2,A3)(1−z̃)+(A1,C, Ā0)x̃−(A1,C,A3)x̃(1−z̃)
+(C,A2, Ā0)ỹ+(C,A2,A1)x̃ỹ(1−z̃)−(C,A2,A3)ỹ(1−z̃)].

The terms involving Ā0 can be removed since they have already been treated when con-
sidering p in P3

r−1. It remains the following monomials:

x̃i ỹj(1−z̃)r−1⎛⎝(A1,A2,A3)
⎡⎢⎢⎢⎢⎢⎣

x̃(1−z̃)
ỹ(1−z̃)
−(1−z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A3,A1)

⎡⎢⎢⎢⎢⎢⎣
x̃2(1−z̃)
x̃ỹ(1−z̃)
−x̃(1−z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A1,A2)

⎡⎢⎢⎢⎢⎢⎣
x̃2ỹ(1−z̃)
x̃ỹ2(1−z̃)
−x̃ỹ(1−z̃)

⎤⎥⎥⎥⎥⎥⎦
+ (C,A2,A3)

⎡⎢⎢⎢⎢⎢⎣
x̃ỹ(1−z̃)
ỹ2(1−z̃)
−ỹ(1−z̃)

⎤⎥⎥⎥⎥⎥⎦
⎞
⎠, i, j≤r−1.
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We notice that the coefficients (A1,A2,A3), (C,A3,A1), (A2,C,A1), (C,A2,A3) viewed as
functions of the vertices of the pyramid S0,S1,S2,S3,S4 are linearly independent, then all
the monomials are needed. These monomials can be regrouped in a single family:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̃i ỹj(1−z̃)r

⎡⎢⎢⎢⎢⎢⎣
x̃
ỹ
−1

⎤⎥⎥⎥⎥⎥⎦
, i, j≤r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We recognize here the last family of the optimal space of the pyramid, the other families
coming directly from Êr.

Let us consider a general hexahedron, and the polynomial p:

p=
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
.

Because of Piola transform, the first component will be equal to

p̂x =(A2×A3 + x̂(C1×A3 +A2×C2)+ ŷ A2×C3 + ẑC3×A3 + x̂ŷ(A2×D+C1×C3)
+ x̂ẑ(D×A3+C3×C2)+ x̂2 C1×C2 + x̂2ŷC1×D+ x̂2ẑD×C2)⋅(A0+ x̂ A1+ŷ A2+ẑ A3

+ x̂ŷC1+ x̂ẑC2+ŷẑC3+ x̂ŷẑD).
By expanding this expression, and computing the two other components of p̂, we find
the following result

p̂=(A1,A2,C1)
⎡⎢⎢⎢⎢⎢⎣

0
0−x̂ŷ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2,C2)

⎡⎢⎢⎢⎢⎢⎣
x̂2

x̂ŷ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2,C3)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷ

ŷ2

0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A2,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ

x̂ŷ2

−x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3,C1)

⎡⎢⎢⎢⎢⎢⎣
−x̂2

0
−x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3,C2)

⎡⎢⎢⎢⎢⎢⎣
0
x̂ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3,C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂ẑ

0

−ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A1,A3,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ẑ
−x̂ŷẑ

x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3,C1)

⎡⎢⎢⎢⎢⎢⎣
0

ŷ2

ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3,C2)

⎡⎢⎢⎢⎢⎢⎣
0
ŷẑ
ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3,C3)

⎡⎢⎢⎢⎢⎢⎣
ŷẑ
0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,A3,D)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷẑ

−ŷ2ẑ

−ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C1,C2)

⎡⎢⎢⎢⎢⎢⎣
x̂3

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C1,C3)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷ
0

x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C2,C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂2ẑ
−x̂ŷẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C1,C2)

⎡⎢⎢⎢⎢⎢⎣
0

−x̂ŷ2

−x̂ŷẑ

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C1,C3)

⎡⎢⎢⎢⎢⎢⎣
0
−ŷ3

0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C2,C3)

⎡⎢⎢⎢⎢⎢⎣
−x̂ŷẑ
−ŷ2ẑ

0

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C1,C2)

⎡⎢⎢⎢⎢⎢⎣
0
−x̂ŷẑ

−x̂ẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C1,C3)

⎡⎢⎢⎢⎢⎢⎣
x̂ŷẑ
0

ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C2,C3)

⎡⎢⎢⎢⎢⎢⎣
0
0

ẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C1,D)

⎡⎢⎢⎢⎢⎢⎣
x̂3ŷ
0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂3ẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (A1,C3,D)

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ2ẑ

−x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
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+ (A2,C1,D)
⎡⎢⎢⎢⎢⎢⎣

0

−x̂ŷ3

0

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂2ŷẑ

0
x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (A2,C3,D)

⎡⎢⎢⎢⎢⎢⎣
0

ŷ3ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C1,D)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷẑ

−x̂ŷ2ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C2,D)

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂ẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (A3,C3,D)

⎡⎢⎢⎢⎢⎢⎣
0
0

−ŷẑ3

⎤⎥⎥⎥⎥⎥⎦
+ (C1,C2,C3)

⎡⎢⎢⎢⎢⎢⎣
x̂2ŷẑ

x̂ŷ2ẑ

x̂ŷẑ2

⎤⎥⎥⎥⎥⎥⎦
+ (C1,C2,D)

⎡⎢⎢⎢⎢⎢⎣
−x̂3ŷẑ

0
0

⎤⎥⎥⎥⎥⎥⎦
+ (C1,C3,D)

⎡⎢⎢⎢⎢⎢⎣
0

x̂ŷ3ẑ
0

⎤⎥⎥⎥⎥⎥⎦
+ (C2,C3,D)

⎡⎢⎢⎢⎢⎢⎣
0
0

−x̂ŷẑ3

⎤⎥⎥⎥⎥⎥⎦
+ other terms in P3

1.

Since the coefficients (A1,A2,A3), (A1,A2,C1),⋯ are linearly independent, all the mono-
mials written above are needed to generate Dr. When we combine these monomials with
monomials of Ê1, we can observe that we obtain exactly

Q3,1,1×Q1,3,1×Q1,1,3.

For any r, since we have to multiply by the polynomials x̂iŷj ẑk with 0 ≤ i, j,k ≤ r−1, we
obtain that:

P̂
opt
r =Qr+2,r,r×Qr,r+2,r×Qr,r,r+2.

The proof is complete.

Remark 2.1. The dimension of the optimal spaces is equal to:

• Tetrahedron: dim P̂
opt
r = r(r+1)(r+3)

2

• Hexahedron: dim P̂
opt
r =3(r+3)(r+1)2

• Triangular prisms: dim P̂
opt
r = (r+1)(r+3)(3r+2)

2

• Pyramids: dim P̂
opt
r = (r+1)(2r2+7r+2)

2

2.3 Super-optimal finite element spaces

The needed and sufficient conditions in order to obtain optimal error estimates for H(div)
are the following ones (see [10]):

{ PF
r ⊃Pr−1(x,y,z)3,

divPF
r ⊃Pr−1(x,y,z).

The optimal spaces previously constructed verify these properties since divDr =Pr−1, but
spaces of lower dimension satisfying to these conditions can be constructed for each type
of element.

We first define the following space:
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Definition 2.5. The space F̂r of order r is the space of minimal dimension on K̂ such that

ˆdiv P̂r(K̂)⊃ F̂r⇔ div PF
r ⊃Pr−1(x,y,z)

for any element K.

Theorem 2.3. The spaces F̂r are equal to:

• Tetrahedron:

F̂r =Pr−1(x̂,ŷ,ẑ)
• Hexahedron:

F̂r =Qr,r,r(x̂,ŷ,ẑ)⊕{x̂r+1ŷm ẑn, x̂mŷr+1ẑn, x̂mŷn ẑr+1, 0≤m,n≤r}
• Triangular prism:

F̂r =Wr,r(x̂,ŷ,ẑ)⊕Pr−1(x̂,ŷ)ẑr+1

• Pyramid:

F̂r={ x̂iŷj

(1−ẑ)i+j−k
,

0≤ i, j≤k+1
0≤k≤r−1

}
Proof. We complete the proof for the pyramid and the hexahedron. Let us consider a
function p∈PF

r , such that
divp= xiyjzk, i+ j+k≤r−1.

For the pyramid, because of the optimality of Cr−1, it is equivalent to consider a function
such that

divp= x̃iỹj(1−z̃)k, i, j≤k≤r−1.

We use again coordinates (x̃,ỹ,z̃) of the symmetric cube [−1,1]2×[0,1]. We have the rela-
tionship

ˆdiv p̂= ∣DF∣p.

The jacobian ∣DF∣ is equal to:

∣DF∣ = (A1 +Cỹ)×(A2 +Cx̃)⋅(A3 +Cx̃ỹ)
= (A1,A2,A3)+ (A1,C,A3)x̃+ (C,A2,A3)ỹ+ (A1,A2,C)x̃ỹ.

Since the constants (A1,A2,A3), (A1,C,A3), (C,A2,A3), (A1,A2,C) viewed as functions of
A1,A2,A3,C are linearly independent, the following monomials are necessarily included
in Fr:

x̃iỹj(1−z̃)k, x̃i+1ỹj(1−z̃)k, x̃iỹj+1(1−z̃)k, x̃i+1ỹj+1(1−z̃)k.

For instance, the last monomial gives:

x̃i+1ỹj+1(1−z̃)k = x̂i+1ŷj+1

(1−ẑ)i+1+j+1−k
.
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By naming i′ = i+1, j′ = j+1, we obtain:

x̃i+1ỹj+1(1−z̃)k = x̂i′ ŷj′

(1−ẑ)i′+j′−k
, i′≤ j′≤k+1

which corresponds to a function of F̂r. It is immediate that these monomials will generate
all the functions of F̂r.

For the hexahedron, we consider a function p such that

divp= x̂iŷj ẑk, i, j,k≤r−1.

Similarly to the pyramid, the jacobian ∣DF∣ of the hexahedron can be expressed as

∣DF∣ =b0+b1x̂+b2ŷ+b3ẑ+b4x̂ŷ+b5x̂ẑ+b6ŷẑ+b7x̂ŷẑ+b8 x̂2+b9x̂2ŷ+b10x̂2ẑ+b11x̂2ŷẑ

+b12ŷ2+b13x̂ŷ2+b14ŷ2ẑ+b15x̂ŷ2ẑ+b16ẑ2+b17x̂ẑ2+b18ŷẑ2+b19x̂ŷẑ2

with linearly independent functions b0,b1,⋯,b19. Therefore all the functions of Qr+1,r,r+
Qr,r+1,r+Qr,r,r+1 are necessary and sufficient to generate any p such that divp∈Pr−1(x,y,z).
We obtain the claimed space F̂r for the hexahedron.

Proposition 2.1. The divergence of the spaces Êr is equal to:

• Tetrahedron:

divÊ1 =0, divÊr =Pr−2(x̂,ŷ,ẑ), r>1

• Hexahedron:

divÊ1 =Span{1}, divÊr = F̂r−1, r>1

• Triangular prism:

divÊ1 =0, divÊr =Wr−2,r(x̂,ŷ,ẑ)⊕P̃r−1(x̂,ŷ)Pr−1(ẑ), r>1

• Pyramid:

divÊr = F̂r−1⊕{ 1

1−ẑ
}, with F0=∅

Proof. The proof is immediate by computing the divergence of all monomials of Êr. It
should be noticed that 1

1−ẑ for the pyramid is obtained as the divergence of the function

x̂n+1ŷm

(1−ẑ)m+1

⎡⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎦
for the special case m=n=0. Other values of m,n give a divergence in F̂r−1. The divergence
of the functions of the last family appearing in the expression of Êr is null.
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Now we have all the ingredients needed to find the super-optimal finite element
spaces.

Definition 2.6. A super-optimal space of order r is a space P̂
s−opt
r (K̂) of minimal dimen-

sion on such that

P̂r(K̂)⊃ P̂
s−opt
r ⇒{ PF

r ⊃Pr−1(x,y,z)3,

divPF
r ⊃Pr−1(x,y,z),

for any element K.

Theorem 2.4. A set of super-optimal spaces P̂
s−opt
r is equal to:

• Tetrahedron:

P̂
s−opt
r = P̂

opt
r

• Hexahedron:

P̂
s−opt
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂jŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂jŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i≤r+1, 0≤ j,k≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂jŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂jŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
, i=r+2, 0≤ j,k≤r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷr ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂r ŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂r ŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i≤r+1, 0≤k≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷk ẑr

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂kŷi ẑr

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂kŷr ẑi

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i≤r+1, 0≤k≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑr

x̂r ŷr+1ẑr

x̂r ŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

• Triangular prism:

P̂
s−opt
r = P̂

opt
r /{(P̃r(x̂,ŷ)ẑr)2×{0}}⊕P̃r−1(x̂,ŷ)ẑr

⎡⎢⎢⎢⎢⎢⎣
x̂
ŷ
0

⎤⎥⎥⎥⎥⎥⎦
• Pyramid:

P̂
s−opt
r = P̂

opt
r
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Proof. We make the proof only for the hexahedron. For r = 1, it suffices to examine the

21 monomials of Ê1 and the 19 monomials of F̂1/{1} to check that P̂
s−opt
1 satisfies the

appropriate conditions, and is minimal since its dimension is equal to 40. For r>1, since
ˆdivÊr = F̂r−1, the condition

ˆdivP̂
s−opt
r ⊃ F̂r

is equivalent to
ˆdivP̂

s−opt
r ⊃ F̂r/F̂r−1.

This last condition is much more interesting, since it will not overlap with the condition

P̂r⊃ Êr.

Therefore, a minimal space will have the following form:

P̂
s−opt
r = Êr⊕Ĝr

with
ˆdivĜr = F̂r/F̂r−1.

We see here that Ĝr cannot be uniquely determined by this relation, an infinite number

of spaces will satisfy this relation. That’s why the optimal space P̂
s−opt
r is not unique. In

order to choose a space, we have applied the following rule:

ˆdivp=α x̂i ŷj ẑk⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p=
⎡⎢⎢⎢⎢⎢⎣

x̂i+1ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
, if i> j,k,

p=
⎡⎢⎢⎢⎢⎢⎣

0

x̂iŷj+1 ẑk

0

⎤⎥⎥⎥⎥⎥⎦
, if j> i,k,

p=
⎡⎢⎢⎢⎢⎢⎣

0
0

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if k> i, j,

p=
⎡⎢⎢⎢⎢⎢⎣

x̂i+1ŷj ẑk

x̂iŷj+1 ẑk

0

⎤⎥⎥⎥⎥⎥⎦
, if i= j>k,

p=
⎡⎢⎢⎢⎢⎢⎣

x̂i+1ŷj ẑk

0

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if i=k> j,

p=
⎡⎢⎢⎢⎢⎢⎣

0

x̂iŷj+1 ẑk

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if j=k> i,

p=
⎡⎢⎢⎢⎢⎢⎣

x̂i+1ŷj ẑk

x̂iŷj+1 ẑk

x̂iŷj ẑk+1

⎤⎥⎥⎥⎥⎥⎦
, if i= j=k.
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By selecting this rule, the obtained optimal space keeps all the symmetries in x,y,z. We
have:

F̂r/F̂r−1 ={x̂r ŷr ẑi, x̂r ŷi ẑr , x̂iŷr ẑr , i≤r−1}
⊕{x̂r ŷr ẑr}⊕{x̂r+1ŷi ẑj, x̂iŷr+1ẑj, x̂iŷj ẑr+1, i, j≤r}.

With our rule, we obtain:

Ĝr=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑi

x̂r ŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷi ẑr

0

x̂r ŷi ẑr+1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷr+1ẑr

x̂iŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
, i≤r−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑr

x̂r ŷr+1ẑr

x̂r ŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+2ŷi ẑj

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂iŷr+2ẑj

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂iŷj ẑr+2

⎤⎥⎥⎥⎥⎥⎦
, i, j≤r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Since we have ⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑi

x̂r ŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
∈ Ĝr and

⎡⎢⎢⎢⎢⎢⎣
x̂r+1ŷr ẑi

−x̂r ŷr+1ẑi

0

⎤⎥⎥⎥⎥⎥⎦
∈ Êr,

we obtain by summation (x̂r+1ŷr ẑi,0,0)∈Popt
r , and symmetric monomials in ŷ, ẑ. By merg-

ing all the other monomials of Ĝr and Êr, we obtain the claimed expression of P̂
s−opt
r .

Remark 2.2. Since the divergence of two different spaces can be the same, the super-
optimal spaces are not unique, an infinity of super optimal spaces with a minimal di-
mension do exist. We have given here a set of super-optimal spaces. In the numerical
experiments the basis functions chosen for the hexahedron (detailed in Proposition 6.1)
will not span the proposed space, but an equivalent one of the same dimension.

Remark 2.3. The dimension of the super-optimal spaces is equal to:

• Tetrahedron: dim P̂
s−opt
r =dim P̂

opt
r

• Hexahedron: dim P̂
s−opt
r =dim P̂

opt
r −(5+3r)

• Pyramids: dim P̂
s−opt
r =dim P̂

opt
r

• Triangular prisms: dim P̂
s−opt
r =dim P̂

opt
r −(2+r)

The dimension of optimal finite element spaces is very close to the dimension of super-
optimal finite element spaces. Therefore, since the optimal spaces do not include any
linked function and has an attractive tensorized structure, these spaces seem more suit-
able for the numerical computations.



1394 M. Bergot and M. Duruflé / Commun. Comput. Phys., 14 (2013), pp. 1372-1414

2.4 Restriction of normal traces on the faces

To ensure the compatibility between elements, it is essential that the restriction of normal
components of the functions span the same space on triangular and quadrilateral faces.
A simple computation provides the following theorem:

Theorem 2.5. The normal traces are equal to:

For the optimal finite element spaces P̂
opt
r :

Qr,r(x,y) for quadrilateral faces

Pr−1(x,y) for triangular faces

For the super-optimal finite element spaces P̂
s−opt
r :

Qr,r(x,y)/ {xr yr} for quadrilateral faces

Pr−1(x,y) for triangular faces

Proof. The proof is completed by computing for each monomial p of P̂
opt
r the quantity p⋅n

on each face of the element, where n is the normale.

3 De Rham diagram

The stability for H(curl) and H(div) conforming elements comes from the exact sequence
of De Rham diagram (see Monk [15]) which is directly linked to Helmholtz decomposi-
tion

H1 gradÐ→ H(curl) curlÐ→ H(div) divÐ→ L2

⋃ ⋃ ⋃ ⋃

W1
r

gradÐ→ Wcurl
r

curlÐ→ Wdiv
r

divÐ→ W2
r

(3.1)

where WH1
r , Wcurl

r , Wdiv
r and W2

r are the spaces of order r discretizing respectively H1(Ω),
H(curl,Ω), H(div,Ω) and L2(Ω) (see Demkowicz [16]). The approximation spaces must
then verify

Im gradW1
r+1 =Ker Wcurl

r ={u∈Wcurl
r ∣curlu=0}, (3.2a)

Im curl Wcurl
r =Ker Wdiv

r ={u∈Wdiv
r ∣divu=0} , (3.2b)

Im divWdiv
r =Ker W2

r =W2
r (3.2c)

for the four types of elements. [17] proposed a formalism to construct tetrahedra, hexa-
hedra and triangular prisms respecting the De Rham diagram. For the pyramids, [12,13]
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and Zaglamayr cited in [16] have constructed approximation spaces or order r respecting
the exact sequence.

We now check that the approximation spaces constructed in this paper and in [1, 2]
respect the sequence (3.2).

Theorem 3.1. For any order r, the following sequence is exact

Im grad PH1

r =Ker P
H(curl)
r ={u∈PH(curl)

r ∣curlu=0}, (3.3)

Im curl P
H(curl)
r =Ker P

H(div)
r ={u∈PH(div)

r ∣divu=0} , (3.4)

Im div P
H(div)
r =Ker PL2

r =PL2

r , (3.5)

with the following spaces

P̂H1

r =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(x̂,ŷ,ẑ) for the tetrahedron,

Qr,r,r(x̂,ŷ,ẑ) for the hexahedron,

Wr,r(x̂,ŷ,ẑ) for the prism,

Br(x̂,ŷ,ẑ) for the pyramid,

P̂
H(curl)
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rr(x̂,ŷ,ẑ) for the tetrahedron,

Qr−1,r+1,r+1(x̂,ŷ,ẑ)×Qr+1,r−1,r+1(x̂,ŷ,ẑ)×Qr+1,r+1,r−1(x̂,ŷ,ẑ) for the hexahedron,

(Rr(x̂,ŷ)⊗Pr+1(ẑ))×(Pr+1(x̂,ŷ)⊗Pr−1(ẑ)) for the triangular prism,

Br(x̂,ŷ,ẑ) for the pyramid,

P̂
H(div)
r = P̂

s−opt
r ,

P̂L2

r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr−1(x̂,ŷ,ẑ) for the tetrahedron,

Qr,r,r(x̂,ŷ,ẑ)⊕ x̂r+1Qr,r(ŷ,ẑ)⊕ŷr+1Qr,r(x̂,ẑ)⊕ẑr+1Qr,r(x̂,ŷ)⊕ for the hexahedron,

Wr,r(x̂,ŷ,ẑ)⊕Pr−1(x̂,ŷ)ẑr+1 for the prism,

{ x̂iŷj

(1−ẑ)i+j−k
,

0≤ i, j≤k+1
−1≤k≤r−1

} for the pyramid.

Proof. The proof is completed for the hexahedron. Let us take a function u in Qr,r,r, ob-

viously its gradient will belong to Qr−1,r,r×Qr,r−1,r×Qr,r,r−1, which is the space P
H(curl)
r .

Therefore we have the inclusion

Im grad PH1

r ⊂Ker P
H(curl)
r .

Let us now take a function u in P
H(curl)
r such that curl u = 0. Because of polynomial
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identification, it is equivalent to consider a function of the following form:

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

αx̂i ŷj ẑk

βx̂i′ ŷj′ ẑk′

γx̂i′′ ŷj′′ ẑk′′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j′,k′′≤r−1, 0≤ i′,i′′, j, j′′,k,k′ ≤r+1, α,β,γ∈R.

The curl of this function is equal to:

∇̂×u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ j′′ x̂i′′ ŷj′′−1ẑk′′ − βk′ x̂i′ ŷj′ ẑk′−1

αkx̂i ŷj ẑk−1 −γi′′ x̂i′′−1ŷj′′ ẑk′′

βi′ x̂i′−1ŷj′ ẑk′ −α j x̂i ŷj−1 ẑk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us consider the case where i′,i′′, j, j′′,k,k′ ≥1, then α,β,γ≠0 otherwise u would be iden-
tically null. We obtain the following conditions in order to satisfy curl u = 0:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a = i′′ = i′ = i+1,

b = j′′ = j = j′+1,

c = k′ = k = k′′+1,

with 1≤a,b,c≤r since 0≤ i, j′,k′′≤r−1. α,β,γ are solution of the linear system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γb−βc = 0,

αc−γa = 0,

βa−αb = 0.

The rank of this system is equal to 2, a non-trivial solution is equal to

(α,β,γ) = (a,b,c).
Hence, we have obtained:

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax̂a−1 ŷb ẑc

bx̂a ŷb−1 ẑc

cx̂a ŷb ẑc−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∇̂(x̂aŷb ẑc).

Since 1≤ a,b,c≤ r, x̂aŷb ẑc ∈PH1

r . Other conditions on i,i′′, j, j′′,k,k′ lead to the same kind of
result, with 0≤a,b,c≤r. Therefore we have proved that

Ker P
H(curl)
r ⊂ Im grad PH1

r .
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Since we have the two inclusions, these two spaces are equal. Let us now study the
H(div) space, another way to write the space for the hexahedron is the following one:

P
H(div)
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂iŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂jŷi ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂jŷk ẑi

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i≤r+1, 0≤ j,k≤r, j+k≠2r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+2ŷj ẑk

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0

x̂jŷr+2ẑk

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂jŷk ẑr+2

⎤⎥⎥⎥⎥⎥⎦
, 0≤ j,k≤r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

x̂r+1ŷr ẑr

x̂r ŷr+1ẑr

x̂r ŷr ẑr+1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

The two last groups have clearly no intersection with Ker div, it is not possible to con-
struct a function u as a combination of the basis functions of the two last groups and
ensure div u =0. Therefore, we will restrict our interest to the first group. For this first
group, the condition is that j,k are lower than r but cannot be both equal to r. Let us

consider u in P
H(curl)
r , we have already computed the curl of such a representative func-

tion.The x-component of the curl is equal to

γ j′′ x̂i′′ ŷj′′−1ẑk′′ − βk′ x̂i′ ŷj′ ẑk′−1.

The first polynomial is such that:

deg x̂ = i′′≤r+1, deg ŷ = j′′−1≤r, deg ŷ = k′′≤r−1

and the second polynomial

deg x̂ = i′≤r+1, deg ŷ = j′≤r−1, deg ẑ = k′−1≤r.

These polynomial are indeed belonging to P
H(div)
r , since the degrees in y and z cannot be

both equal to r. Similar observations on y and z-components of the curl lead us to the
following inclusion

Im curl P
H(curl)
r ⊂Ker P

H(div)
r .

As for H(curl), we take a function u of the form:

u=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

αx̂i ŷj ẑk

βx̂i′ ŷj′ ẑk′

γx̂i′′ ŷj′′ ẑk′′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 0≤i, j′,k′′≤r+1, 0≤(j,k),(i′ ,k′),(i′′, j′′)≤r, but not both equal to r,α,β,γ∈R.

The divergence of u is equal to:

divu = αi x̂i−1 ŷj ẑk + β j′ x̂i′ ŷj′−1ẑk′ +γk′′ x̂i′′ ŷj′′ ẑk′′−1.
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Let us consider that i, j′,k′′≥1, then we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a−1= i′= i′′= i−1,

b−1= j= j′′= j′−1,

c−1=k=k′ =k′−1.

u is equal to

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

αx̂a ŷb−1 ẑc−1

βx̂a−1 ŷb ẑc−1

γx̂a−1 ŷb−1 ẑc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with the condition

αa+βb+γc = 0.

A set of non-trivial solutions is equal to

⎡⎢⎢⎢⎢⎢⎣
α
β
γ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

b
−a
0

⎤⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎣
c
0
−a

⎤⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎣
0
c
−b

⎤⎥⎥⎥⎥⎥⎦
.

Only two functions among these three are needed to generate all the solutions. Let us
consider the first non-trivial solution, u is then equal to:

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

bx̂a ŷb−1 ẑc−1

−ax̂a−1 ŷb ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= curl

⎡⎢⎢⎢⎢⎢⎣
0
0

x̂aŷb ẑc−1

⎤⎥⎥⎥⎥⎥⎦
.

If u belongs to the first group of P
H(div)
r , we have the following conditions

a,b,c≤r+1.

However if c = r+1, we have a,b≤r, since a−1,c−1 or a−1,b−1 can not be both equal to r.
But in that case, we are writing u as the curl of the following function

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bx̂a ŷb−1 ẑc−1

−ax̂a−1 ŷb ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= curl

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ax̂a−1ŷb ẑc−1

−bx̂aŷb−1ẑc−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This last function belongs to P
H(curl)
r since a,b≤ r. The two other sets of (α,β,γ) can be

treated in a symmetric manner.
Eventually, we have proved the inclusion

Ker P
H(div)
r ⊂ Im curl P

H(curl)
r

Since we have the two inclusions, these two spaces are equal.
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Remark 3.1. It should be noticed that the sequence is exact for super-optimal spaces

P̂
H(div)
r = P̂

s−opt
r . This exactness does not hold if we use optimal spaces P̂

H(div)
r = P̂

opt
r . In

that last case, we have only inclusions and not equalities. We have observed that:

• Hexahedron:

dimKer P̂
opt
r = dimIm curl P

H(curl)
r + (3r+5)

• Triangular prism:

dimKer P̂
opt
r = dimIm curl P

H(curl)
r + (r+2)

Therefore the additional functions of the optimal spaces (compared to super-optimal
spaces) are only contributing to the kernel of the divergence.

4 Numerical integration

The stiffness matrix of the variational formulation (1.2) reads (when ρ = 1)

Kij =∫
Ω

divϕi divϕjdx=∑
K
∫

K
divϕi divϕjdx,

where

∫
K

divϕi divϕj dx=∫
K̂

1

∣DF∣ ˆdiv ϕ̂i
ˆdivϕ̂j dx̂.

Because of the presence of 1
∣DF∣ , this integral can not be computed exactly by using nu-

merical integration based on Gauss points. This issue is also present for the mass matrix,
since

∫
K

ϕi ⋅ϕj dx=∫
K̂

1

∣DF∣DF∗DF ϕ̂i ⋅ ϕ̂j dx.

However, one can expect as for continuous elements (see [1]) that the use of numerical
integration does not deteriorate the order of convergence.

The main ingredients of the numerical integration consists of Gauss and Gauss-Jacobi
rules, which are quadrature formulas exact for respectively P2r+1(x) and (1−x)α(1+
x)β P2r+1(x), where we take α = 1, β = 0. In the sequel, we will not specify if the Gauss
formulas are adapted to the interval [0,1] or to the interval [−1,1], the interval for each
coordinate will depend on the reference element K̂. We also use symmetric rules adapted
for the integration over the unit triangle and unit tetrahedron (see [18] for a brief review
of these formulas).

Conjecture 4.1. The error of convergence ∣∣u−uh∣∣H(div,Ω) of the exact solution u of (1.1) toward
the solution uh of the discrete variational formulation (2.2) with optimal finite element spaces

P̂
opt
r (K̂) is in O(hr) when the integrals are computed numerically on each element K̂ with the

following rules:
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• Tetrahedron: A quadrature rule (ωtet
k ,ξtet

k ) exact for the integration of P2r(K̂)
• Hexahedron: A quadrature rule (ωk1,k2,k3

,ξk1 ,k2,k3
) exact for the integration of Q2r+5(K̂),

with Gauss points:

ωk1,k2,k3
=ωG

k1
ωG

k2
ωG

k3
, ξk1 ,k2,k3

= (ξG
k1

,ξG
k2

,ξG
k3
), 0≤k1,k2,k3≤r+2

with r+3 Gauss points (ωG
k1

,ξG
k1
)

• Prism: A quadrature rule (ωk1,k3
,ξk1 ,k3

) exact for the integration of P2r+2(x̂,ŷ)×P2r+5(ẑ),
with the following tensor structure:

ωk1,k3
=ωtri

k1
ωG

k3
, ξk1 ,k3

= (ξtri
k1

,ξG
k3
)

with r+3 Gauss points (ωG
k3

,ξG
k3
) and a quadrature rule adapted to triangles (ωtri

k1
,ξtri

k1
)

• Pyramid: A quadrature rule (ωk1,k2,k3
,ξk1 ,k2,k3

) exact for the integration of (1−
z̃)Q2r+3(x̃,ỹ,z̃) with the following tensor structure:

ωk1,k2,k3
= (1−ξG

k3
)ωG

k1
ωG

k2
ωGJ

k3
, ξk1 ,k2,k3

=((1−ξG
k3
)ξG

k1
,(1−ξG

k3
)ξG

k2
,ξGJ

k3
)

with r+2 Gauss points (ωG
k1

,ξG
k1
) and Gauss-Jacobi points (ωGJ

k3
,ξGJ

k3
) exact for the integra-

tion of (1−z)P2r+3(z).
Remark 4.1. Unlike the other elements, the quadrature rule used for the pyramid is ac-
tually not exact when the element is affine (DF being constant) because the divergence

of P̂
opt
r contains the singular function 1

1−z . To get an exact integration for affine pyramids,
Gauss quadrature rules should be preferred to Gauss-Jacobi rules:

ωk1,k2,k3
= (1−ξG

k3
)2 ωG

k1
ωG

k2
ωG

k3
, ξk1 ,k2,k3

= ((1−ξG
k3
)ξG

k1
,(1−ξG

k3
)ξG

k2
,ξG

k3
).

However with the quadrature rules using Gauss-Jacobi, we obtain numerically the ex-
pected order of convergence whereas we obtain a non-consistent method for any order

of approximation when using Gauss-Jacobi rules (ωGJ,2
k3

,ξGJ,2
k3
) exact for the integration of

(1−z)2P2r+3(z), that is the following quadrature rules:

ωk1,k2,k3
=ωG

k1
ωG

k2
ωGJ,2

k3
, ξk1 ,k2,k3

=((1−ξG
k3
)ξG

k1
,(1−ξG

k3
)ξG

k2
,ξGJ,2

k3
).

This is a specificity of H(div) space, since such a rule works very well for H1(Ω) (see [1])
and H(curl,Ω) (quadrature formula used to obtain the results in [2]).
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5 First family

Finite element spaces of Nedelec’s first family are denoted P̂1
r and equal (see [15]) to

• Tetrahedron:

P̂1
r =Dr(x̂,ŷ,ẑ)

• Hexahedron:

P̂1
r =Qr,r−1,r−1(x̂,ŷ,ẑ)×Qr−1,r,r−1(x̂,ŷ,ẑ)×Qr−1,r−1,r(x̂,ŷ,ẑ)

• Triangular prism:

P̂1
r =Dr(x̂,ŷ)Pr−1(ẑ)×Pr−1(x̂,ŷ)Pr(ẑ)

• Pyramid:

P̂1
r =Br−1(x̂,ŷ,ẑ)3

⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

x̂n+1 ŷm

(1−ẑ)m+1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎣

0
x̂m ŷn+1

(1−ẑ)m+1

0

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤m≤n≤r−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂m ŷn+1

(1−ẑ)m+1

⎡⎢⎢⎢⎢⎢⎣

x̂
(1−ẑ)

0
−1

⎤⎥⎥⎥⎥⎥⎦
⊕ x̂n+1 ŷm

(1−ẑ)m+1

⎡⎢⎢⎢⎢⎢⎣
0
ŷ

(1−ẑ)

−1

⎤⎥⎥⎥⎥⎥⎦
, 0≤m≤n≤r−2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⊕
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂iŷj

(1−ẑ)i+j−r

⎡⎢⎢⎢⎢⎢⎢⎣

x̂
(1−ẑ)

ŷ
(1−ẑ)

−1

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

There is no agreement about the finite element space for pyramids, the proposed space is
a slight modification of the optimal space such that the degrees of functions involved in
P̂1

r are lower or equal to r.

Remark 5.1. The normal traces of classical finite element spaces P̂1
r are equal to

Qr−1,r−1(x,y) for quadrilateral faces,

Pr−1(x,y) for triangular faces.

We remark that the spaces P̂1
r+1 and P̂

opt
r have the same number of degrees of freedom on

quadrilateral faces, therefore these two spaces will be often compared in the numerical
results.
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6 Hierarchical functions

We present here simple hierarchical basis for optimal finite element spaces P̂
opt
r by using

Jacobi polynomials P
α,β
i,j , but other choices could be considered.

Proposition 6.1. The following basis functions are an hierarchical basis H(div) conform-

ing of P̂
opt
r :

• Hexahedron:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE CUBE

Additional conditions and functions to get a hierarchical base of P̂
s−opt
r are indi-

cated with brackets.

For the faces:

⎡⎢⎢⎢⎢⎢⎣

x̂P0,0
i
(2ŷ−1)P0,0

j
(2ẑ−1)

0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

(1− x̂)P0,0
i
(2ŷ−1)P0,0

j
(2ẑ−1)

0
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r, (i+ j≠2r)

⎡⎢⎢⎢⎢⎢⎣

0

ŷP0,0
i (2x̂−1)P0,0

j (2ẑ−1)
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0

(1−ŷ)P0,0
i (2x̂−1)P0,0

j (2ẑ−1)
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r, (i+ j≠2r)

⎡⎢⎢⎢⎢⎢⎣

0
0

ẑP0,0
i
(2x̂−1)P0,0

j
(2ŷ−1)

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
0

(1−ẑ)P0,0
i
(2x̂−1)P0,0

j
(2ŷ−1)

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r, (i+ j≠2r)

For the interior functions:

⎡⎢⎢⎢⎢⎢⎢⎣

x̂(1− x̂)P1,1
i
(2x̂−1)P0,0

j
(2ŷ−1)P0,0

k
(2ẑ−1)

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j,k≤r, (i=r or j≠r or k≠r)

⎡⎢⎢⎢⎢⎢⎢⎣

0

ŷ(1−ŷ)P1,1
i
(2ŷ−1)P0,0

j
(2x̂−1)P0,0

k
(2ẑ−1)

0

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j,k≤r, (i=r or j≠r or k≠r)

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

ẑ(1−ẑ)P1,1
i
(2ẑ−1)P0,0

j
(2x̂−1)P0,0

k
(2ŷ−1)

⎤⎥⎥⎥⎥⎥⎥⎦
, 0≤ i, j,k≤r, (i=r or j≠r or k≠r)

(Linked function:) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(1− x̂)P1,1
r−1
(2x̂−1)P0,0

r (2ŷ−1)P0,0
r (2ẑ−1)

ŷ(1−ŷ)P1,1
r−1(2ŷ−1)P0,0

r (2x̂−1)P0,0
r (2ẑ−1)

ẑ(1−ẑ)P1,1
r−1(2ẑ−1)P0,0

r (2x̂−1)P0,0
r (2ŷ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• Triangular prism:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PRISM

For the faces:

P0,0
i
( 2x̂

1−ŷ −1)(1−ŷ)i P2i+1,0
j

(2ŷ−1)
⎡⎢⎢⎢⎢⎢⎣

0
0

1−ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i+ j≤r−1

P0,0
i
( 2x̂

1−ŷ −1)(1−ŷ)i P2i+1,0
j

(2ŷ−1)
⎡⎢⎢⎢⎢⎢⎣

0
0
ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i+ j≤r−1

P0,0
i
(2x̂−1)P0,0

j
(2ẑ−1)

⎡⎢⎢⎢⎢⎢⎣

x̂
ŷ−1

0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r

P0,0
i (2ŷ−1)P0,0

j (2ẑ−1)
⎡⎢⎢⎢⎢⎢⎣

x̂
ŷ
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r

P0,0
i
(2ŷ−1)P0,0

j
(2ẑ−1)

⎡⎢⎢⎢⎢⎢⎣

−(x̂−1)
−ŷ
0

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r

For the interior functions:

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

x̂ŷ
ŷ(ŷ−1)

0

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

x̂(x̂−1)
x̂ŷ
0

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

0
0

ẑ(1−ẑ)

⎤⎥⎥⎥⎥⎥⎦
,

with Pi,j,k =P0,0
i
( 2x̂

1−ŷ −1)(1−ŷ)i P2i+1,0
j

(2ŷ−1)P0,0
k
(2ẑ−1),

i, j,k≥0, i+ j≤r−1, k≤r

• Pyramid:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE PYRAMID

Conditions to get a hierarchical base of P̂1
r are indicated with brackets.

For the faces:

1
4 P0,0

i
( x̂

1−ẑ)P0,0
j (

ŷ
1−ẑ)(1−ẑ)max(i,j)−1

⎡⎢⎢⎢⎢⎢⎣

−x̂
−ŷ

1−ẑ

⎤⎥⎥⎥⎥⎥⎦
, 0≤ i, j≤r
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P1
i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1−ẑ

−2(1−ŷ−ẑ)−ŷẑ
1−ẑ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P1
i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̂ẑ
1−ẑ

2(1+ŷ−ẑ)−ŷẑ
1−ẑ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2
i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(1−x̂−ẑ)− x̂ẑ
1−ẑ

−ŷẑ
1−ẑ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P1
i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(1+x̂−ẑ)− x̂ẑ
1−ẑ

−ŷẑ
1−ẑ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with P1

i,j = 1
8 P0,0

i
( x̂

1−ẑ )(1−ẑ)i P2i+1,0
j

(2ẑ−1) and P2
i,j = 1

8 P0,0
i
( ŷ

1−ẑ)(1−ẑ)i P2i+1,0
j

(2ẑ−1),
i+ j≤r−1

For the interior functions:

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

−x̂ẑ
−ŷẑ
(1−ẑ)ẑ

⎤⎥⎥⎥⎥⎥⎦
, i, j,k≥0, i, j≤r−1, k ≤ r−1−max(i, j)

Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂ŷẑ
1−ẑ

1−ẑ−ŷ2

−ŷẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
i, j,k≥0, i, j≤r−1, k ≤ r−1−max(i, j)
(i, j,k≥0, i≤r−1, j≤r−2, k ≤ r−1−max(i, j))

Pi,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ẑ− x̂2

x̂ŷẑ
1−ẑ

−x̂ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
i, j,k≥0, i, j≤r−1, k ≤ r−1−max(i, j)
(i, j,k≥0, i≤r−2, j≤r−1, k ≤ r−1−max(i, j))

with Pi,j,k =P0,0
i
( x̂

1−ẑ)P0,0
j
( ŷ

1−ẑ)(1−ẑ)max(i,j)−1P
2max(i,j)+2,0
k

(2ẑ−1)

The hierarchic base for the first family for pyramids is constructed by changing the
bounds for the indices.

• Tetrahedron:

HIERARCHICAL H(DIV) FUNCTIONS FOR THE TETRAHEDRON

For the faces:

P0,0
i
( 2x̂

1−ŷ −1)(1−ŷ)i P2i+1,0
j

(2ŷ−1)
⎡⎢⎢⎢⎢⎢⎣

−x̂
−ŷ

1−ẑ

⎤⎥⎥⎥⎥⎥⎦

P0,0
i
( 2x̂

1−ẑ −1)(1−ẑ)i P2i+1,0
j (2ẑ−1)

⎡⎢⎢⎢⎢⎢⎣

x̂
ŷ−1

ẑ

⎤⎥⎥⎥⎥⎥⎦
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P0,0
i
( 2ŷ

1−ẑ −1)(1−ẑ)i P2i+1,0
j

(2ẑ−1)
⎡⎢⎢⎢⎢⎢⎣

1− x̂
−ŷ
−ẑ

⎤⎥⎥⎥⎥⎥⎦

P0,0
i
( 2ŷ

1−ẑ −1)(1−ẑ)i P2i+1,0
j

(2ẑ−1)
⎡⎢⎢⎢⎢⎢⎣

x̂
ŷ
ẑ

⎤⎥⎥⎥⎥⎥⎦
i, j≥0, i+ j≤r−1

For the interior functions:

Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

x̂ẑ
ŷẑ

ẑ(ẑ−1)

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

x̂ŷ
ŷ(ŷ−1)

ŷẑ

⎤⎥⎥⎥⎥⎥⎦
, Pi,j,k

⎡⎢⎢⎢⎢⎢⎣

x(x̂−1)
x̂ŷ
x̂ẑ

⎤⎥⎥⎥⎥⎥⎦
,

with Pi,j,k =P0,0
i
( 2x̂

1−ŷ−ẑ −1)(1−ŷ−ẑ)i P2i+1,0
j

( 2ŷ
1−ẑ −1)(1−ẑ)j P

2(i+j+1)+1,0
k

(2ẑ−1)
i, j,k≥0, i+ j+k≤r−2

7 Comparison between elements

7.1 Pyramidal elements

7.1.1 Theoretical point of view

We have compared our finite element spaces with the following spaces found in the lit-
erature. Below the remarks about this comparison on a theoretical point of view:

1. For r=1, the spaces proposed in [19], [14], [13] are the same, and almost coincide
with the space P̂1

r . P̂1
r contains six degrees of freedom: if the interior degree of

freedom is removed, and the basis function associated with the quadrilateral face
replaced by ⎡⎢⎢⎢⎢⎢⎣

x̂
ŷ

−(1−ẑ)
⎤⎥⎥⎥⎥⎥⎦

,

we obtain the coincidence with the “classical” space of the literature.

2. The proposed space P̂1
r satisfies the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P̂1
r ⊃Dr⇒ optimal estimate for affine pyramids,

P̂1
r ⊃ P̂

opt
r−1⇒ convergence in O(hr−1) for non-affine pyramids,

Degrees of basis functions in x̃,ỹ,z̃ is lower or equal to r

⇒ less expensive quadrature rules than for P̂
opt
r .

Therefore, we think that this space is quite attractive to use in conjunction with
finite element space of the first kind for the other elements.
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3. Basis functions proposed in [14] for r≥2 rely on the multiplication of first-order basis
functions with polynomials in x̂,ŷ,ẑ, but as we know, polynomials are not suitable
for the pyramid. As a result, Graglia’s space G2 of second-order have the following
properties: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G2⊂ P̂
opt
3 , but G2⊄ P̂

opt
2 ,

G2⊃D2,

G2⊅ P̂
opt
1 .

Therefore, these functions should lead to a convergence in O(h2) for affine pyra-
mids, and be non-consistent for non-affine pyramids. Furthermore, as for H(curl)
approximation, we have also found the presence of spurious modes, mainly con-
centrated on the lower part of the spectrum.

4. Finite element space proposed in [12] NPr has the following properties:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NPr ⊄ P̂
opt
r ,

NPr ⊃Dr,

NPr ⊅ P̂
opt
1 .

This space should give an optimal convergence in O(hr) for affine pyramids, but
should be non-consistent for non-affine pyramids. Furthermore the number of de-
grees of freedom becomes very large when r is high. In the numerical comparisons,
this space will be called the first Nigam Phillips space. The basis functions pro-
posed in the paper seem to be miswritten. The proposed representative function
of a triangular function does not belong to the space, a correct expression of this
function (with the notations of the paper) is equal to

1

(1+z)k+2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

2(1−y)xa zb

−xa zb+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, a+b≤k−1.

5. Finite element space proposed in [13] NPr is a nice attempt to reduce the number of
degrees of freedom of the first space. This second space has the following properties

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

NPr ⊂ P̂1
r ,

NPr ⊃Dr,

NPr ⊅ P̂
opt
1 .

Hence, we think that this space should give an optimal convergence in O(hr) for
affine pyramids, but should be non-consistent for non-affine pyramids. It should
be noticed that the dimension of this space is smaller than the dimension of P̂1

r . This
space seems attractive in the case where the mesh contains only affine pyramids.
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7.1.2 Dispersion analysis

A dispersion analysis (see [1] for more details) is performed, it consists of computing the
numerical pulsation ωh for a given wave vector k. The value ωh found should be close
to the continuous dispersion relation:

ω = ∣∣k∣∣.
We call dispersion error the following ratio:

dispersion error= ωh − ∣∣k∣∣∣∣k∣∣ .

The wave vector k is a 3-D vector, the dispersion error depends on its orientation. For
the sake of simplicity, we will always take this vector in the direction of x-coordinates:

k=
⎡⎢⎢⎢⎢⎢⎣

k
0
0

⎤⎥⎥⎥⎥⎥⎦
.

The dispersion analysis is performed on a periodic pattern, it is therefore equivalent to
decrease k and take a mesh size h=1 or decrease h and take a wave vector k=1. This is the
last case that will be chosen, and the dispersion error will be displayed versus the mesh
size.

The dispersion analysis is performed for affine pyramids, by using a regular pattern
(see Fig. 4) where each cube is split into six pyramids. The dispersion error found for
the different finite elements is represented in Fig. 2. It is observed that Graglia’s basis
functions provide a dispersion error in O(h2) (for r=2), whereas other spaces are provid-
ing a dispersion error in O(h2r). Nigam & Phillips spaces and P̂1

r have almost the same
dispersion error, whereas the optimal finite space seems less dispersive.

Figure 2: Dispersion error for different pyramidal spaces on a pattern containing only affine (left) and non-affine
(right) pyramids.
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The same analysis is conducted with a deformed pattern (see Fig. 4) containing both
affine and non-affine pyramids, in Fig. 2. It is observed that the classical first order func-
tions, Graglia’s basis functions (for r=2) and second Nigam & Phillips space are provid-
ing a dispersion error inO(1) (non-consistent), whereas first Nigam & Phillips space and
P̂1

r give almost the same dispersion error in O(h2r−2), and optimal elements are the less
dispersive elements with a convergence in O(h2r). These assumptions have also been
numerically checked for r=3. It should be noticed that the consistency error of second
Nigam & Phillips space is much smaller when r=2 than when r=1, and it decreases fur-
thermore for high orders. Therefore, we think that this space is not h-convergent but
probably p-convergent for non-affine pyramids.

7.1.3 Convergence for the source problem

Next, the convergence in H(div) norm is studied for the source problem (1.1) with f a
gaussian source (see solution in Fig. 7). The H(div) error is computed versus the inverse
of the cubic root of number of degrees of freedom (this quantity is equivalent to the mesh
size) for affine pyramids and non-affine pyramids (Fig. 3).

Figure 3: Relative H(div) error for different pyramidal spaces for the source problem with only affine (left) and
non-affine (right) pyramids.

Because of the presence of spurious modes, the use of Graglia’s functions lead to
a scheme which converge slowly and erratically. It can be seen that optimal elements
require less degrees of freedom to reach a given accuracy than other elements (for r=2).

7.2 Comparison between hexahedral elements

7.2.1 Dispersion analysis

A dispersion analysis will be performed for three kind of hexahedral patterns:

1. A regular pattern made of a single cube.
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2. A deformed pattern made of 8 cubes, but the middle point has been moved. As a
result the eight hexahedra are non-affine.

3. A split pattern made of 24 hexahedra, obtained by considering a cube containing 6
tetrahedra, and by splitting each tetrahedra into four hexahedra.

These three patterns are displayed in Fig. 4.

Figure 4: Patterns used to study the dispersion for hexahedral meshes. From left to right, the regular pattern,
deformed pattern and split pattern.

The dispersion errors obtained for the regular pattern are displayed in Fig. 5. We
observe that the dispersion error is in O(h2r) for Nedelec’s first family, in O(h2r+4) for
optimal and super-optimal finite elements. The dispersion for optimal and super-optimal
spaces is exactly the same in this case, that’s why we didn’t display the dispersion error

Figure 5: Dispersion error versus h/r for regular patterns (hexahedral mesh).
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Figure 6: Dispersion error versus h/r for the deformed patterns (left) and the split patterns (right).

for super-optimal elements in the figure. The extra-power of convergence obtained for
optimal elements (the dispersion error was expected to be in O(h2r+2)) is quite attractive,
it should be noted that first-order optimal elements are less dispersive than third-order
elements of the first kind.

The dispersion errors obtained for the deformed pattern and the split pattern are plot-
ted in Fig. 6.

For the deformed pattern, the observed dispersion error is in O(h2r−2) for elements
of the first kind, in O(h2r) for optimal and super-optimal finite elements. It should be
noted that optimal elements are much less dispersive than super-optimal elements for
r=1, whereas the difference is quite small for r=2.

For the split pattern, the observed dispersion error is in O(h2r−4) for elements of the
first kind, in O(h2r) for optimal and super-optimal finite elements. In that last case, op-
timal elements are less dispersive than super-optimal elements for r=1, and provide the
same dispersion error for r = 2. It is interesting to see that the loss of two orders by el-
ements of the first kind does not appear for every non-affine mesh, since the deformed
meshes exhibit a loss of one order only.

7.2.2 Convergence for the source problem

The wave equation (1.1) is considered with f a gaussian source oriented along ex. The
computation is performed on the cube [−1,1]with homogeneous Dirichlet condition u⋅n=
0 on the boundary and ω =1.96π. The solution of this source problem is plotted in Fig. 7.
The convergence in H(div) norm is displayed for a deformed pattern and for a split
pattern in Fig. 8. It is interesting to notice that for the split pattern, the first-order elements
are not converging at all, the error is greater than 90% and second-order elements seem
to slowly converge, we think that the convergence curve would probably stagnate for
smaller values of h. In x-coordinates of those figures, the inverse of the cubic root of dofs
is considered (so that it is equivalent to a mesh size h), we can compare the results for
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Figure 7: Divergence of u for the source problem in a cube (the source being a gaussian).

Figure 8: Numerical error in H(div) norm versus the cubic root of number of degrees of freedom for the gaussian
source in the cube. Meshes obtained with a deformed pattern (top) and with a split pattern (bottom).
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Figure 9: Divergence of u of diffracted field (real part) for the sphere.

a same number of degrees of freedom. In both kinds of meshes, it appears that optimal
elements require less degrees of freedom than elements of the first kind. The number of
needed degrees of freedom for third-order elements of the first kind is more important
than for first-order optimal elements. The difference between optimal and super-optimal
elements is of relative importance for first-order approximation, and negligible for higher
orders.

The wave equation is then solved for an incident wave field, and with a dielectric
sphere of radius 2:

ρ=1, µ={ 2 inside the sphere,
1 outside the sphere.

The boundary Σ is the border of the cube [−3,3]. The solution of this problem is plotted
in Fig. 9. The meshes considered here are fully hybrid, and contain mostly hexahedra,
and a small part of tetrahedra, pyramids and prisms, an example of mesh is represented

Table 1: Stats of meshes needed to obtain a H(div) relative error approximatively equal to 1% for the sphere.
On top, elements of the first kind, on bottom optimal elements.

Order 2 3 4 5
Number of dofs 5 604 255 1 567 977 528 896 444 515

H(div) error 1.34 % 0. 855 % 1.04 % 0.93 %

Order 1 2 3 4
Number of dofs 1 182 438 877 665 435 488 471 695

H(div) error 1.22 % 0.497 % 0.72 % 0.27 %
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Figure 10: Hybrid mesh used for the sphere.

in Fig. 10. On this test case, we have searched the needed mesh in order to obtain a
H(div) relative error equal to 1%. Curved elements are used in order to obtain a good
approximation of the geometry. The results are summarized in Table 1. The tables are

set such that we can directly compare the spaces P̂
opt
r and P̂1

r+1. It can be observed that
optimal elements require less degrees of freedom than classical elements, especially for
low orders.
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