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Abstract. Due to the rapid advances in micro-electro-mechanical systems (MEMS), the
study of microflows becomes increasingly important. Currently, the molecular-based
simulation techniques are the most reliable methods for rarefied flow computation,
even though these methods face statistical scattering problem in the low speed limit.
With discretized particle velocity space, a unified gas-kinetic scheme (UGKS) for en-
tire Knudsen number flow has been constructed recently for flow computation. Con-
trary to the particle-based direct simulation Monte Carlo (DSMC) method, the unified
scheme is a partial differential equation-based modeling method, where the statistical
noise is totally removed. But, the common point between the DSMC and UGKS is that
both methods are constructed through direct modeling in the discretized space. Due
to the multiscale modeling in the unified method, i.e., the update of both macroscopic
flow variables and microscopic gas distribution function, the conventional constraint
of time step being less than the particle collision time in many direct Boltzmann solvers
is released here. The numerical tests show that the unified scheme is more efficient
than the particle-based methods in the low speed rarefied flow computation. The main
purpose of the current study is to validate the accuracy of the unified scheme in the
capturing of non-equilibrium flow phenomena. In the continuum and free molecular
limits, the gas distribution function used in the unified scheme for the flux evaluation
at a cell interface goes to the corresponding Navier-Stokes and free molecular solu-
tions. In the transition regime, the DSMC solution will be used for the validation of
UGKS results. This study shows that the unified scheme is indeed a reliable and accu-
rate flow solver for low speed non-equilibrium flows. It not only recovers the DSMC
results whenever available, but also provides high resolution results in cases where
the DSMC can hardly afford the computational cost. In thermal creep flow simulation,
surprising solution, such as the gas flowing from hot to cold regions along the wall
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surface, is observed for the first time by the unified scheme, which is confirmed later
through intensive DSMC computation.

PACS: 51.10.+y, 47.11.-j, 47.11.St, 47.45.-n

Key words: Unified scheme, non-equilibrium microflow, thermal creep flows.

1 Introduction

The flow regimes are characterized by the Knudsen number Kn, which is defined as the
ratio of molecular mean free path to a characteristic length scale. The continuum regime
is in the range of Kn<0.001, followed by the slip regime 0.001<Kn<0.1. The Knudsen
number in the transition regime is between 0.1 and 10. Even though it is commonly be-
lieved that the Navier-Stokes equations are applicable in the continuum and slip regimes,
the validity of these macroscopic description depends on the physical quantities to be
evaluated. Even in a fully continuum flow regime, the Navier-Stokes equations cannot
be claimed to describe everything properly, where the ghost effect may appear in some
cases [25], especially for those related to heat. Simulation of gas flow around microscale
structures becomes important with the rapid development of micro-electro-mechanical
systems (MEMS) [15]. As the scale of designed devices goes to µm and nm length scale,
the use of the formal description of macroscopic equations becomes problematic. Un-
fortunately, experimental study of microflow is also difficult due to the small physical
dimensions. Therefore, the development of accurate numerical algorithm for microflow
simulation will play an important role, especially for non-equilibrium flow with heat
transfer. The numerical challenge for flow in microdevices is that the flow transport may
cover the whole flow regimes, from continuum to free molecular ones.

The direct simulation Monte Carlo (DSMC) method is a particle-based simulation
method for rarefied flows [6, 10]. The validity of this method has been presented in
an enormous amount of research papers. Due to the particle based nature, the DSMC
method cannot effectively reduce the statistical scattering encountered in microscale
flows, which presents a very large noise to information ratio for flows having low speed
and/or small temperature variation. Since the statistical scattering inherent in DSMC de-
creases with the inverse square root of the sample size, an extremely large sample size is
required to reduce it to a level that is small in comparison with the small macroscopic ve-
locity. This makes DSMC simulation of MEMS flows extremely time-consuming. Many
small temperature variation phenomena can be hardly identified. Even with so many
limitations in the DSMC method for the microflow computations, the DSMC method is
still a reliable and accurate method here. In order to improve its efficiency, many at-
tempts have been tried. One of the attractive scheme is the information preservation
(IP) method for low speed rarefied gas flows [14, 20, 26, 40]. Since IP-DSMC updates the
macroscopic variables for each DSMC particle, how to evolve the macroscopic variables
when two DSMC particles get collision is still an active research topic. Another promising
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approach to improve the efficiency of the DSMC method is the low-noise DSMC through
the modeling of linearized Boltzmann equation [11, 22]. In terms of direct kinetic equa-
tion solvers, many schemes have been developed [4, 7, 21, 28–30]. In the transport part
of these Boltzmann solvers, the collisionless Boltzmann equation is usually used for the
flux evaluation, i.e., the so-called Discrete Ordinate Method (DOM). As a result, simi-
lar to the DSMC method, the time step in these explicit schemes should be smaller than
the particle collision time in order to make the numerical discretization to be consistent
with the physical reality. Therefore, great difficulties will be encountered as well in these
methods in the low Knudsen number limit, where the cell size may be much larger than
the particle mean free path.

In the past decade, without discretizing the particle velocity space many attempts
have been made to develop gas-kinetic schemes for the non-equilibrium flow computa-
tion [35,38,39]. But, the success is limited. In recent years, based on the Boltzmann-model
equations, i.e., the BGK and Shakhov models, with the discretization of particle velocity
space we have successfully developed unified schemes for flows in the entire Knudsen
number regimes [17, 36, 37]. The unified scheme is a multi-scale method with the up-
date of both macroscopic conservative flow variables and microscopic gas distribution
function. The novelty of the approach is the coupled treatment of particle transport and
collision in the evaluation of interface fluxes for the update of both macroscopic flow
variables and microscopic gas distribution function. The integral solution of the kinetic
equation is used to determine the time-dependent gas distribution function at a cell in-
terface. This solution covers flow physics in different scales: the hydrodynamic scale NS
distribution function from the integration of the equilibrium state and the kinetic scale
free transport mechanism from the initial non-equilibrium gas distribution function. The
final determination of the distribution function at a cell interface depends on the ratio
between the time step to the local particle collision time. Extensive numerical tests and
comparison with DSMC data and experimental measurements have been conducted in
the previous studies [13, 17, 32, 36, 37].

The purpose of this paper is to validate the unified scheme for micro-flow computa-
tions. The test cases presented are mostly considered as difficult ones in the literature.
Traditionally, due to the intrinsic noise in the DSMC solution, in order to speed up the
computation some test cases are designed by using an unreasonable assumption in its
flow condition, such as a 200K temperature jump over a distance of 200nm. Besides us-
ing these cases for validating the unified scheme, we have also tried more practical ones,
such as the cases with small temperature variation in the thermal creep flows. The nu-
merical efficiency of the unified scheme does not sensitively depend on the magnitude
of temperature variation. But, the smaller the temperature variation is, the more efficient
the unified scheme is to get the steady state solution.

This paper is organized as the following. Section 2 is about the introduction of the
unified scheme. Section 3 includes tests to demonstrate the performance of the scheme.
The last section is the discussion and conclusions.
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2 Unified scheme for microflow simulations

Microflows are usually associated with low speed and the flow can cover the whole flow
regimes from continuum to free molecular. Due to the low speed, the number of mesh
points in the particle velocity space can be much reduced. The numerical experiments in
the next section show that a velocity space with 28×28 mesh points in the 2D calculations
seems adequate in the transition regime. Here we summarize the unified method.

The two-dimensional gas-kinetic BGK-Shakhov equation can be written as [8, 12, 23]

ft+u fx+v fy =
f+− f

τ
, (2.1)

where f is the gas distribution function and f+ is the heat flux modified equilibrium state
which is approached by f ,

f+= g
[

1+(1−Pr)c·q
( c2

RT
−5

)/

(5pRT)
]

= g+g+,

with random velocity c=u−U and the heat flux q. In the above model, the Prandtl num-
ber is automatically fixed by choosing the proper value Pr. Both f and f+ are functions
of space (x,y), time t, particle velocity (u,v) in x- and y-directions and the particle ve-
locity w in z-direction. The particle collision time τ is related to the viscosity and heat
conduction coefficients, i.e., τ=µ/p, where µ is the dynamic viscosity coefficient and p is
the pressure. In this paper, we only consider monatomic gas in 2D case, the equilibrium
Maxwellian distribution is,

g=ρ
( λ

π

)
3
2
e−λ((u−U)2+(v−V)2+w2),

where ρ is the density, (U,V) is the macroscopic velocity in the x and y directions, λ
is equal to m/2kT, m is the molecular mass, k is the Boltzmann constant and T is the
temperature. The relation between mass ρ, momentum (ρU,ρV) and energy ρE densities
with the distribution function f is









ρ
ρU
ρV
ρE









=
∫

ψα f dΞ, α=1,2,3,4, (2.2)

where ψα is the component of the vector of moments

ψ=(ψ1,ψ2,ψ3,ψ4)
T =

(

1,u,v,
1

2
(u2+v2+w2)

)T
,

and dΞ = dudvdw is the volume element in the phase space. Since mass, momentum
and energy are conserved during particle collisions, f and g satisfy the conservation con-
straint,

∫

(g− f )ψαdΞ=0, α=1,2,3,4, (2.3)
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at any point in space and time.
The unified scheme is a finite volume method. The physical space is divided into

control volume, i.e., Ωi,j=∆x∆y with the cell sizes ∆x and ∆y in the rectangular case. The
temporal discretization is denoted by tn for the nth time step. The particle velocity space
is discretized by a rectangular mesh points with velocity spacing ∆u and ∆v, with the
center of the (k,l)-velocity interval at (uk,vl)=(k∆u,l∆v). The averaged gas distribution
function in a physical control volume Ωi,j, at time tn and around particle velocity (uk,vl),
is given by

f (xi,yj,t
n,uk,vl)= f n

i,j,k,l =
1

∆x∆y∆u∆v

∫ ∫

Ωi,j

∫ ∫

∆u∆v

∫ +∞

−∞
f (x,y,tn,u,v,w)dxdydΞ. (2.4)

The kinetic BGK-Shakhov equation (2.1) can be written as

ft =−u fx−v fy+
f+− f

τ
. (2.5)

Integrating the above equation in a physical control volume and keeping the particle
velocity space continuous, the above differential equation becomes an integral equation

f n+1
i,j = f n

i,j+
1

Ωi,j

∫ tn+1

tn

m=n

∑
m=1

um f̂m(t)∆Smdt+
1

Ωi,j

∫ tn+1

tn

∫ ∫

Ωi,j

f+− f

τ
dΩdt, (2.6)

where f̂m is the gas distribution function at a cell boundary, n is the total number of piece-
wise linear interfaces of a control volume Ωi,j, um is the particle velocity normal to the cell
interface and ∆Sm is the m-th interface length. Actually, Eq. (2.6) can be considered as a
direct flow modeling in a control volume and the volume integration of the source term
can be written generally as an integration of a reasonable particle collision term Q, such
as the BGK, Shakhov, ES-BGK, or even full Boltzmann model. Physically, Eq. (2.6) is
more fundamental than Eq. (2.5), because it can be derived directly by physical modeling
on a realistic numerical framework with limited cell size and time step. If we consider
Eq. (2.6) as a direct modeling and think of how to get a time-dependent gas distribution
function at a cell interface, we can understand why we call the unified scheme as a PDE-
based modeling method, because we use the PDE to construct such an evolution solution
around the cell interface. And this PDE’s evolution solution can be valid over a large time
scale, such as to the hydrodynamic time scale, rather than being confined to the kinetic
time scale of the equation, such as the particle collision time. If we consider Eq. (2.5) as
the fundamental equation, it will not be surprising that we can easily take an inappropri-
ate numerical approximation, such as using the collisionless Boltzmann solution to get
the interface distribution function through the so-called upwinding approximation for
the transport part.

Taking conservative moments ψα on Eq. (2.6), due to the conservation of conservative
variables during particle collision process, the update of conservative variables becomes

Wn+1
i,j =Wn

i,j+
1

Ωi,j

∫ tn+1

tn

m=n

∑
m=1

∆Sm ·Fm(t))dt, (2.7)
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where W is the cell averaged conservative mass, momentum and energy densities inside
each control volume and F is the fluxes of the macroscopic flow variables across the cell
interface. This flux will be calculated through the local solution of the kinetic equation.

The critical step for the unified scheme is to evaluate a time-dependent gas distribu-
tion function at a cell interface. In a local coordinate system with the x-direction as the
normal one, the distribution function from the kinetic equation at a cell interface can be
written as [18, 34],

f̂ j+1/2,k,l = f (xj+1/2,t,uk,vl ,w)

=
1

τ

∫ tn+1

tn
f+(x′,t′,uk,vl ,w)e−(t−t′)/τdt′

+e−(t−tn)/τ f n
0,k,l(xj+1/2−uk(t−tn),tn,uk,vl ,w), (2.8)

where f+=g+g+ will be approximated separately. Here x′=xj+1/2−uk(t−t′) is the par-
ticle trajectory and f n

0,k,l is the initial gas distribution function of f at time t=tn around the
cell interface xj+1/2 at the particle velocity (uk,vl), i.e., f n

0,k,l = f n
0 (x,tn,uk,vl,w). Even the

integral solution of the kinetic equation is exact, but it still needs modeling to determine
each term in the integral solution, especially in the case with discontinuous initial data.

The above integral equation covers flow physics in many scales. The initial term f0

accounts for the free transport mechanism along particle trajectory, which represents the
kinetic scale physics. The integration of the equilibrium state along the particle path rep-
resents the accumulating effect of a Maxwellian, which is related to the hydrodynamic
scale flow physics. The integration of the Maxwellian actually presents a NS distribution
function. The flow behavior here at the cell interface depends on the ratio of time step
and local particle collision time. It covers all flow regimes from free molecular transport
to the NS solution. If a Chapman-Enskog expansion is used for the reconstruction of
the initial gas distribution function f0, the corresponding scheme for the update macro-
scopic variables in Eq. (2.7) is the gas-kinetic BGK-NS method for the NS solutions [34].
However, for the unified scheme, the gas distribution function itself is updated and f n

0,k,l
is known at the beginning of each time step tn. Therefore, a high-order reconstruction
scheme can be used directly to obtain its subcell solution of f0 without using Chapman-
Enskog expansion. In this aspect, the unified scheme does not require any knowledge of
the kinetic theory, such as the Chapman-Enskog expansion. For most other DOM meth-
ods, instead of using the integral solution for the interface gas distribution function, only
f0 is used for the flux evaluation. Therefore, it will mis-interpret the flow physics in the
continuum flow regime, except the mesh size is smaller than the particle mean free path
and the time step is less than the particle collision time.

Around each cell interface xj+1/2, at time step tn the initial distribution function be-
comes,

f0(x,tn,uk,vl ,w)= f0,k,l(x,0)=

{

f L
j+1/2,k,l+σj,k,l x, x≤0,

f R
j+1/2,k,l+σj+1,k,lx, x>0,

(2.9)
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where nonlinear limiter is used to obtain f L
j+1/2,k,l , f R

j+1/2,k,l and the corresponding slopes

σj,k,l , σj+1,k,l . The van Leer limiter will be used in the reconstruction.
There is one-to-one correspondence between an equilibrium state and macroscopic

flow variables. For an equilibrium state g around a cell interface (xj+1/2=0,t=0), it can
be expanded with two slopes [34],

g= g0

[

1+(1−H[x])āL x+H[x]āRx+ Āt
]

, (2.10)

where H[x] is the Heaviside function defined as

H[x]=

{

0, x<0,
1, x≥0.

Here g0 is a local Maxwellian distribution function located at x = 0. Even though, g is
continuous at x=0, but it has different slopes at x<0 and x≥0. In the equilibrium state
g, āL, āR and Ā are related to the derivatives of a Maxwellian distribution in space and
time.

The determination of g0 depends on the determination of the local macroscopic values
of ρ0, U0, V0 and λ0 in g0, i.e.,

g0=ρ0

(λ0

π

)

3
2

e−λ0((u−U0)
2+(v−V0)

2+w2),

which is determined uniquely using the compatibility condition of the BGK model. The
conservation constraint at (x= xi+1/2,t=0) gives

W0=
∫

g0ψdΞ=∑
(

f L
i+1/2,k,l H[uk]+ f R

i+1/2,k,l(1−H[uk])
)

ψ, (2.11)

where W0 =(ρ0,ρ0U0,ρ0V0,ρE0)T is the conservative macroscopic flow variables located
at the cell interface at time t = 0. Since f L

i+1/2,k,l and f R
i+1/2,k,l have been obtained ear-

lier in the initial distribution function f0 around a cell interface, the above moments can
be evaluated explicitly. Therefore, the conservative variables ρ0, ρ0U0, ρ0V0 and ρ0E0 at
the cell interface can be obtained, from which g0 is uniquely determined. Based on the
same distribution functions f L

i+1/2,k,l and f R
i+1/2,k,l, the corresponding heat flux q at the cell

interface can be also evaluated according to the definition

q=
1

2

∫

(u−U0)((u−U0)
2+(v−V0)

2+w2)
(

f L
i+1/2,k,l H[uk]+ f R

i+1/2,k,l(1−H[uk])
)

dΞ,

where the above integration can be replaced by summation over the discrete particle
velocity. For the equilibrium state, λ0 in g0 can be found from

λ0=3ρ0

/(

4
(

ρ0E0−
1

2
ρ0(U

2
0+V2

0 )
))

.
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Then, āL and āR of g in Eq. (2.10) can be obtained through the relation of

W̄j+1(xj+1)−W0

ρ0∆x+
=

1

ρ0

∫

āRg0ψdΞ= M̄0
αβ











āR
1

āR
2

āR
3

āR
4











= M̄0
αβāR

β ,

W0−W̄j(xj)

ρ0∆x−
=

1

ρ0

∫

āLg0ψdΞ= M̄0
αβ











āL
1

āL
2

āL
3

āL
4











= M̄0
αβāL

β ,

where the matrix M̄0
αβ =

∫

g0ψαψβdΞ/ρ0 is known, and ∆x+ = xi+1−xi+1/2 and

∆x− = xi+1/2−xi are the distances from the cell interface to cell centers. Therefore,
(āR

1 , āR
2 , āR

3 , āR
4 )

T and (āL
1 , āL

2 , āL
3 , āL

4 )
T can be found following the procedure as BGK-NS

method [34]. In order to evaluate the time evolution part Ā in the equilibrium state,
we can apply the following condition

d

dt

∫

(g− f̂ )ψdΞ=0,

at (x=0, t=0) and get

M̄0
αβ Āβ=

1

ρ0
(∂ρ/∂t,∂(ρU)/∂t,∂(ρV)/∂t,∂(ρE)/∂t)T

=− 1

ρ0

∫

[

u
(

āLH[u]+ āR(1−H[u])
)

g0

]

ψdΞ.

With the determination of equilibrium state and the heat flux at the cell interface, the
additional term g+ in the Shakhov model can be well-determined as well.

In the above calculation of the equilibrium state in space and time, it is not necessary
to use a discretized particle velocity space. Based on the macroscopic flow distributions,
we can construct the integral solution in a continuous particle velocity space first, then
take its corresponding value at the specific particle velocity when necessary. After substi-
tuting Eq. (2.9) and Eq. (2.10) into Eq. (2.8) and taking (u=uk,v=vl) in g0, āL, āR and Ā,
the gas distribution function f̂ (xj+1/2,t,uk,vl ,w) at the discretized particle velocity (uk,vl)
can be expressed as

f̂ j+1/2,k,l(xj+1/2,t,uk,vl ,w)

=(1−e−t/τ)(g0+g+)+
(

τ(−1+e−t/τ)+te−t/τ
)

(

āLH[uk]+ āR(1−H[uk])
)

ukg0

+τ(t/τ−1+e−t/τ)Āg0+e−t/τ
(

( f L
j+1/2,k−uktσj,k)H[uk]

+( f R
j+1/2,k−uktσj+1,k)(1−H[uk])

)
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,g̃j+1/2,k,l+ f̃ j+1/2,k,l , (2.12)

where g̃j+1/2,k,l includes all terms related to the integration of the equilibrium state g and

g+ and f̃ j+1/2,k,l is the terms from initial condition f0. The collision time τ in the above
distribution function is determined by τ=µ(T0)/p0, where T0 is the temperature and p0

is the pressure.
In order to discretize the collision term in Eq. (2.6) efficiently, the unified scheme will

update the macroscopic variables first through Eq. (2.7), where the flux F is evaluated as

F=
∫

uψ f̂ j+1/2,k,ldΞ.

In the continuum flow region, due to sufficient number of particle collisions and with
the condition of time step being much larger than the particle collision time, the contribu-
tion of the integration of the equilibrium state g̃j+1/2 will be dominant in the final solution

of the distribution function f̂ j+1/2,k,l . The g̃j+1/2 itself gives a corresponding NS distribu-

tion function [33] and the contribution from initial term f̃ j+1/2,k,l vanishes. In the highly
non-equilibrium flow regime, Eq. (2.7) for the update of conservative variables is correct
as well. For example, in the collisionless limit, the non-equilibrium part f̃ j−1/2,k,l will take
dominant effect and the contribution from the equilibrium part vanishes. Therefore, the
unified scheme has the correct collision-less limit. The final solution to be obtained in
the unified scheme depends on the ratio of t/τ locally. In order words, it depends on the
relative mesh size with respect to the local particle mean free path. For example, in the
nozzle gas exhausting into vacuum case with density ratio 104 [13], inside the nozzle the
time step is much larger than the local particle collision time and outside the nozzle the
time step is less than the local particle collision time. Therefore, the scheme can capture
flow physics in different regions, i.e., the pressure wave inside the nozzle and particle
free transport outside.

With the trapezoidal rule for the evaluation of particle collision term inside each con-
trol volume, the unified scheme for the update of gas distribution function is

f n+1
i,j,k,l =

(

1+
∆t

2τn+1
i,j

)−1
[

f n
i,j,k,l+

1

Ωi,j

∫ tn+1

tn
∑
m

∆Smum f̂m,k,ldt

+
∆t

2

( f+(n+1)
i,j,k,l

τn+1
i,j

+
f+(n)

i,j,k,l− f n
i,j,k,l

τn
i,j

)

]

, (2.13)

where no iteration is needed for the update of the above solution. The particle collision
times τn

i,j and τn+1
i,j are defined based on the temperature and pressure in the cell, i.e., τn

i,j=

µ(Tn
i,j)/pn

i,j and τn+1
i,j =µ(Tn+1

i,j )/pn+1
i,j , which are known due to the updated macroscopic

flow variables in Eq. (2.7) at the next time level.
The following is the boundary treatment for the unified scheme, specifically for the

microflow at the solid boundary. Suppose that we have a solid wall at the left side, the
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incoming gas is moving to the left and impinging on the wall. In all simulations in the
next section, the Maxwellian boundary treatment with accommodation coefficient 1 is
implemented. Assume that the Maxwellian distribution at the wall is set to be

gw =ρ
(λw

π

)
3
2
exp

(

−λw(u
2+v2+w2)

)

, u>0, (2.14)

where λw = m/2kTw and the density in the above Maxwellian for the outgoing gas is
determined by

∫ tn+1

tn

∫

u>0
ugwdudvdwdt+

∫ tn+1

tn

∫

u<0
u findudvdwdt=0, (2.15)

where fin is the distribution function of particles impinging on the wall. Then, the final
gas distribution function on the surface of the wall becomes

fw = fin(1−H(u))+gw H(u),

which can be used to evaluate the fluxes across the solid boundary. For example, for the
update of macroscopic flow variables, the fluxes across the wall can be calculated as

F=









Fρ

FρU

FρV

FρE









=
∫

u>0
ugwψdudvdw+

∫

u<0
u f inψdudvdw. (2.16)

3 Low speed microflow simulations

3.1 Couette flow

The Couette flow is a steady flow that is driven by the surface shear stresses of two
infinite and parallel plates moving oppositely along their own planes [14]. The Knudsen
number is defined as Kn=λHS/h, where λHS is the mean free path and h is the distance
between the plates.

In the transition regime, three Knudsen numbers are considered: 0.2/
√

π, 2/
√

π and
20/

√
π. To resolve the flow fields well, 100 cells are employed in the current calculation

for all the three cases. Fig. 1(a) compares the velocity profiles given by the unified scheme,
the linearized Boltzmann equation [25] and IP-DSMC results [14]. The unified solution
has excellent agreement with others. Fig. 1(b) also compares the relation of the surface
shear stress versus the Knudsen number given by various methods. The normalization
factor is the collisionless solution [14]. The unified solution agrees nicely with linearized
Boltzmann solution in the whole flow regimes.

Simple heat conduction problem in rarefied gas is also a valuable case to test the ca-
pability to capture thermal effect. This consists of two stationary parallel surfaces main-
tained at different temperatures. The set up of the problem and the parameters adopted
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Figure 1: Couette flow. (a) Comparison of velocity profiles in the upper half channel given by the IP method [14],
linearized Boltzmann equation [25] and unified Scheme. (b) Relation of drag versus Knudsen number.
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Figure 2: Thermal Couette flow at Kn=0.01,0.1,1,10 and 100 calculated by DSMC and unified scheme.

correspond to those used to test the IP-DSMC method [20,26]. The up and down surfaces
are maintained at temperature of 173K and 373K separately with a 1m gap between them
and the intervening space is filled with argon gas at various densities to have the corre-
sponding Knudsen numbers Kn= 0.01,0.1,1,10 and 100. The 1D computational domain
is discretized with 100 cells in the physical space and 28×28 grid points in the veloc-
ity space. Fig. 2 presents the temperature profiles and heat flux results from the unified
scheme and the benchmark DSMC solution. In comparison with IP-DSMC method, the
unified scheme seems get accurate solutions in the rarefied regimes, such as the capturing
of heat flux at Kn=100.

3.2 Rayleigh flow

The Rayleigh flow is an unsteady flow in which a plate below a gas at rest suddenly
acquires a constant parallel velocity and a constant temperature. The set up of this test
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Figure 3: Rayleigh problem at times t= 0.1τ,τ,10τ and 100τ, which cover the free molecular, transition and
continuum regimes. The exact solution at 0.1τ means the solution from collisionless Boltzmann equation.

follows the work by Sun [27]. The initial argon gas is at rest with a temperature of 273K.
When t>0, the plate obtains a constant velocity 10m/s and a constant temperature 373K.
There is an analytical solution to the Rayleigh flow for times much less than the mean
collision time τ0 = λm/νm, where λm is the particle mean free path and νm is the mean
molecular speed with νm =

√
8RT/π [10]. Fig. 3(a) shows the simulated results at 0.1τ0

from the unified scheme and the DSMC solution along with the analytical solution of
the collisionless Boltzmann equation at early times. All three solutions agree with each
other very well. In comparison with DSMC method, the unified scheme has no statistical
scattering in the velocity Vx profile. At time t=0.1τ0, the unified scheme recovers the exact
collisionless Boltzmann solution. As the time increases to t=1τ0 and 10τ0 in the transition
regime, the unified solutions and the DSMC solutions are shown in Figs. 3(b) and (c). The
small wiggles in Vx and Vy of the DSMC solution are absent in the unified results. The
largest discrepancy appears in the peak Vy value at t = 10τ0. This discrepancy is most
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likely due to the low resolution in the DSMC solution. As time goes to t=100τ0, the flow
goes to the continuum flow regime. Fig. 3(d) presents the results from the unified scheme
and the DSMC method. Continuing in this limit, the unified scheme will recover the
Navier-Stokes solution accurately. The excellent agreement between unified and DSMC
solutions validates the unified scheme in the unsteady flow computation, at least in this
simple case.

The main difference between the unified scheme and the traditional DOM method is
due to the different ways to evaluate the cell interface flux. For the unified scheme, the
integral solution (2.8) is used for the determination of the interface gas distribution func-
tion, which covers both hydrodynamic and kinetic scales gas evolution physics. For the
DOM methods, only the f0 term in (2.8) is kept, such as using the collisionless Boltzmann
solution for the interface flux. As a result, the DOM methods lack the flow mechanism
in the hydrodynamic scale and will have problem in cases where the numerical cell size
is much larger than the particle mean free path. For the same Rayleigh problem, as time
increases, the wave starting from the wall will propagate upward into a large domain.
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Figure 4: Rayleigh problem at times t=
100τ and 200τ. The comparison of the
unified and DOM solutions with different
physical mesh points.
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With the same number of cells to resolve the flow in a large domain, such as 100 or 200
cells, the ratio of the cell size over the particle mean free path will become large. Then,
the hydrodynamic effect will gradually become important. So, there will have deviation
between the solutions of the unified scheme and the DOM method. Figs. 4(a) and (b)
present the solutions of the unified and DOM at t=100τ with 100 and 200 physical mesh
points. It is clear that the numerical solution of DOM depends sensitively on the mesh
size, but the unified scheme gives the same result even with the change of the ratio of the
cell size over particle mean free path. When time goes to 200τ, the difference between
unified and DOM solutions becomes more obvious, see Fig. 4(c). Therefore, if we go fur-
ther into the continuum flow regime, the DOM method will not properly recover the NS
solutions when the mesh size is hundreds even thousands of the particle mean free path.
Fortunately, for the unified scheme there is no hybrid technique needed to simulate flows
with both continuum and rarefied regions.

3.3 Response of a gas to a spatially varying boundary temperature

We simulate the response of argon gas to a boundary temperature with a sinusoidal spa-
tial variation [22]. Here, the lower boundary y=0 is diffusely reflecting with a tempera-
ture given by TB =T0(1−ǫcos2πx/L); an identical boundary is located at y= L and the
Knudsen number based on the separation between the two boundaries L is Kn=1.

Due to the underlying symmetries in the x and y directions, the DSMC simulation
domain is usually chosen as 0<x,y<L/2 [22]. However, due to the high efficiency of the
unified scheme, a full domain with L×L is used in the simulation. Here we show results
for two choices of ǫ = 0.001, 0.05. The temperature profiles are shown in Fig. 5, where
the DSMC solutions included are from [22]. Reasonable agreement has been obtained for
these cases between unified and DSMC solutions.
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Figure 5: Temperature variations in the thermal creep flow due to nonlinear variation of boundary temperature.
Dash-red line: DSMC [22]; solid-blue line: unified scheme.
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3.4 Thermal transpiration

This test case follows exactly the cases in Masters and Ye’s OSIP-DSMC paper [20]. Con-
sider a system wherein two cavities are maintained at the same initial pressure but dis-
similar temperatures and joined by a tube of some length. If the width of the tube is
large in comparison to the mean free path of the gas, the Navier-Stokes equations have
a uniform pressure solution and a purely diffusion solution for the temperature field
without fluid velocity. As the tube becomes narrow, such that the flow goes to transition
and free molecular flows, then molecules will creep through the tube from the cold to
the hot reservoir. If the reservoirs are sealed, the result will be a static pressure gradi-
ent. If they are open, then the result will be a continuous transport or pumping the gas
from the cold to the hot reservoir. The detailed explanation can be found in [15, 20]. In
the transition regime, the creep flow may eventually be balanced by reverse Poiseuille
flow driven by the induced pressure gradient. Many experimental observations of ther-
mal transpiration have been reported [2, 19] as well as practical application of the effect
in Knudsen pumps and micropropulsion systems [1, 16, 31]. From a modeling stand-
point, a number of different techniques have been proposed, including various solutions
of the linearized Boltzmann transport equation [24], near continuum slip models [9, 15]
and DSMC simulations [1, 16]. Linearized BTE methods are suitable for problems with
small thermal gradients, i.e., weakly non-equilibrium, but are likely inadequate for the
complex geometries and large thermal gradients that may be encountered in micro- and
nanoscale systems. Near continuum models are only applicable for a small range of flow
conditions.

The problem we will first consider in this work is the same cases as presented in [20].
There is a sealed 2D microchannel with a rectangular cross section and geometry suitable
for MEMS applications as shown in Fig. 6. The two ends of the channel are maintained
at two different temperatures T1<T2 with T1=273K and T2=573K. The temperature of
the side walls varies linearly along the surface of the channel and the working argon gas
is initially in thermal equilibrium with the walls, i.e., T(x,y)=(T2−T1)x/L+T1 and at a
uniform pressure of one atmosphere, i.e., P(x,y)=P=1atm. Therefore, the mean free path
of the gas is about 64nm. The channel is discretized using 200 cells along the length and
40 along the width. Again, the particle velocity space is discretized with 28×28 points
for the unified scheme. The wall accommodating coefficient is equal to 1.

T1=273 K T2=573 KInitial Pressure :1 atm

T(x,y)=(T2-T1) x /L+T1

T(x,y)=(T2-T1) x /L+T1

Figure 6: Set-up of thermal creep flow with closed walls. Channel length to width ratio is 5.
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(a) channel width 1µm

(b) channel width 100nm
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Figure 7: Thermal creep flow with closed walls. Streamline distributions with channel widths 1µm, 100nm,
20nm.

Fig. 7 presents streamline distribution inside the tube calculated by the unified
scheme at different channel widths 1µm, 100nm, 20nm. At h = 1µm, the flow is mov-
ing from low temperature region to the high temperature along the boundary and the
flow returns in the central region. However, at h=100nm, the flow direction is reversed,
even though the flow velocity is very small. This phenomena of reversing gas velocity
along the wall surface had been observed first by the current unified scheme and later it
was confirmed by our intensive DSMC calculation. The obtained pressure distributions
along the central line of the tube is shown in Fig. 8 for all three cases. The solutions from
the unified scheme match with the DSMC solution very well [20]. Physically, nano-scale
confined gas flows are not dynamically similar to the low pressure rarefied gas flows,
since the forcing from the wall molecules will effectively cover a significant region of the
flow domain [5].
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solutions.

At width h = 1µm, the comparison of temperature and velocity contours between
unified and DSMC solutions is shown in Fig. 9, where perfect match has been obtained,
especially for the temperature distribution. In order to compare the solution differences
between the closed tube and a tube connected with two cavities, we test all three cases
of the same tube with widths 1µm, 100nm, 20nm, which are connected with two cavities
with the same initial pressure and two temperatures T1 and T2, see Fig. 10 for set up.
Different from the closed tube case, initially the gas will flow from the low temperature
cavity to high temperature one. As the pressure piles up inside the high temperature
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(a) Temperature contours. Solid line: UGKS; dash-dot line: DSMC.
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(b) Velocity contours. Solid line: UGKS; dash-dot line: DSMC.

Figure 9: Temperature and velocity contours for the thermal creep flow at channel width 1µm calculated by
unified and DSMC method.



1164 J.-C. Huang, K. Xu and P. B. Yu / Commun. Comput. Phys., 14 (2013), pp. 1147-1173

Thermal Creep Flow with two Cavities

T2=573 K

P2=1 atm

T1=273 K

P1=1 atm

T(x,y)=(T2-T1) x/L+T1

Figure 10: Micro-channel connected with two cavities.

cavity, a back-flow will be formed inside the tube. To the steady state solution, the final
mass flux through the tube will be zero, but the pressure gradient is kept along the tube.
Fig. 11 shows the streamlines for all three cases. The pressure distributions in these cases

(a) channel width 1µm

(b) channel width 100nm

(c) channel width 20nm

Figure 11: Streamlines for the thermal creep flow with cavities.
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Figure 12: Pressure distribution along
the central line with cavities. As a com-
parison, the solution from closed tube is
also included.

are compared with the pressure distribution with closed tube in Fig. 12. As shown in
these figures, with the inclusion of two cavities the whole pressure curves are shifted up,
but similar pressure differences are kept.

3.5 Flows arising from temperature discontinuities

This case is from the paper by Masters and Ye [20]. In a sealed 2D domain, there is
temperature discontinuities at the boundaries. Here we consider two cases with different
temperature discontinuous distributions. The schematic of the boundary temperature
distribution is shown in Fig. 13.

Case 3.1. The first case was described by Aoki et al.. It consists of a 1µm square domain
with the right and left halves of the boundary assigned different temperatures (T1=200K
and T2=400K) such that temperature discontinuities are located at the midpoints of the
upper and lower boundaries [4], Fig. 13(a). The unified scheme is applied to this problem:
discretizing the lower half of the domain with 40×20 mesh points in the physical space
and 28×28 mesh points in the velocity space. Fig. 14 shows the velocity field distribution
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200k 400k 

400k 

400k 

(b) Case 3.2

Figure 13: Two schematic cases with discontinuous temperature.

obtained from Boltzmann solution in [4]. The velocity arrows in this figure point out an
interesting phenomena, where the velocity vectors suddenly change the direction along
the boundary. It seems that there is a sink and source on the boundary. The IP-DSMC
solutions in [20] do not clearly show this phenomena. Fig. 15 presents the streamlines ob-
tained from the unified simulation. In comparison with the DSMC and linearized Boltz-
mann solution in [20], much detailed flow structure has been obtained using the unified
scheme. The source and sink at the boundary in the Boltzmann solution are coming from
two weak vortices around the corners.

Figure 14: Case 3.1 test at Kn= 0.2 and TL = 200K, TR = 400K. Results for the half domain from the kinetic
solution of Aoki, et al. [4]. The arrows point to the locations where the velocity vectors change direction at the
boundary.
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Figure 15: Case 3.1 test at Kn= 0.2 and TL = 200K, TR = 400K: unified scheme streamlines. There are two
small vortices around the lower left and right corners, which explain the velocity direction reverse in Fig. 14
along the boundary.
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Case 3.2. The next example again consists of a 1µm square domain, with one side main-
tained at T1=200K and other three sides at T2=400K, see Fig. 13(b). For unified scheme,
the whole physical domain are covered by 80×80 mesh points and the velocity space has
28×28 mesh points. The initial uniform pressure of inside the domain is 1atm, which cor-
responds to Kn=0.1. The results of the unified scheme and DSMC solutions are presented
in Figs. 16 for the velocity vector field in Fig. 16(a), streamline in Fig. 16(b) and tempera-
ture distributions in Fig. 16(c). Reasonable agreements have been obtained between these
two solutions. The above DSMC solution is obtained using the original DSMC method
without IP technique. The streamline in the above solution seems different from the
OSIP-DSMC result in [20].
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(c) Up: Unified, Down: DSMC

Figure 16: Comparison between uni-
fied and DSMC solutions for the case
with temperature difference 200K at
boundary. (a): velocity vector field;
(b): streamline; (c): temperature
contours.

Convergence study

In order to validate the unified scheme further, we conducted the convergence study
with different mesh points in physical and velocity space. For the above Case 3.2, the
converged temperature contours with physical space mesh points, i.e., 40×40, 60×60
and 80×80 and velocity mesh points, i.e., 20×20, 25×25 and 28×28, are shown in Fig. 17.
Identical results can be obtained by the unified scheme with a variation of the mesh points
in both physical and velocity space.
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Figure 17: Convergence study using dif-
ferent mesh points in physical space in all
above figures: 40×40 (white solid lines),
60×60 (black dash lines) and 80×80
(purple dash-doted lines). The mesh
points in velocity space are: (a) 20×20,
(b) 25×25 and (c) 28×28.

In order to further test the sensitivity of the unified scheme to the temperature dif-
ferences in the above Case 3.2, we reduce the temperature difference from 200K to 2K.
With different temperature differences, the converged flow patterns are shown in Fig. 18.
With the same physical space mesh points 80×80, Fig. 18 presents the results with differ-
ent mesh points in the velocity space, i.e., 20×20, 25×25 and 28×28. Since the x and y
direction fluid velocities are relatively sensitive variables, Fig. 18 basically confirms the
accuracy of the unified scheme with 28×28 mesh points in the low speed microflows. It is
also interesting to see the velocity magnitude generated by the temperature differences at
Kn=0.1. With ∆T=200K, the maximum velocity can reach 0.5m/s, but it goes to around
0.01m/s for ∆T=2K.

Efficiency study

In order to show the speed of the unified scheme to get to the converged solution and
the computational efficiency, in the above test cases with temperature differences of 200K
and 2K, we define a maximum error at each computational step using the data from the
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Figure 18: Convergence study for different temperature differences. The physical space mesh points is fixed by
80×80. Left columns: ∆T= 2K. Right Columns: ∆T= 200K. With fixed mesh points in the physical space,
mesh points in velocity space in all above figures are 20×20 (red solid line), 25×25 (blue dashed line), 28×28
(black dash-dotted line).

explicit unified scheme,

ǫn =Maxi,j

(

|ρn+1−ρn|,|(ρU)n+1−(ρU)n|,|(ρV)n+1−(ρV)n|,|(ρE)n+1−(ρE)n|
)

,

in the whole physical domain and use the condition ǫn ≤10−7 for convergence. The fol-
lowing Table 1 presents the mesh points, temperature difference, total steps for conver-
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Table 1: Maximum error ǫ≤10−7 based on machine: Intel (R) Core TM I5-2500, CPU @ 3.30GHz 3.30GHz.

Physical space Velocity space ∆T Total steps CPU time (min)
80×80 28×28 200 5667 40.2
80×80 25×25 200 5667 39.5
80×80 20×20 200 6661 22.5
60×60 28×28 200 5159 18.0
60×60 25×25 200 5159 17.8
60×60 20×20 200 5159 9.8
40×40 28×28 200 3703 5.9
40×40 25×25 200 3703 5.7
40×40 20×20 200 3703 4.2
80×80 28×28 2 3148 19.2
80×80 25×25 2 3148 18.8
80×80 20×20 2 3148 10.5
60×60 28×28 2 2775 9.5
60×60 25×25 2 2775 9.4
60×60 20×20 2 2775 5.2
40×40 28×28 2 1466 2.4
40×40 25×25 2 1585 2.3
40×40 20×20 2 1485 1.2

gence and total CPU time for the machine Intel (R) Core TM I5-2500, CPU3.3GHz, which
is used in our calculations. Since it is very hard to compare the efficiency for different
schemes using different machines and different style of programming, the above table
gives a good reference for others to figure out the relative speed of the unified scheme in
comparison with their in-house codes.

At end, Fig. 19 presents the error changes with the computational time steps for the
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Figure 19: Convergence history with fixed physical space mesh (80×80) and different mesh points in velocity
space, i.e., 20×20, 25×25 and 28×28. (a) ∆T=200K, (b) ∆T=2K. With lower temperature difference, the
convergence is faster.
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above simulation using unified scheme and different mesh points in the velocity space.
As shown in this figure, the same error reducing for each step with different velocity
mesh points is observed. Also, an interesting phenomena for the unified scheme is that
as the temperature difference becomes smaller, the unified scheme gets the steady state
faster. This property is different from the DSMC method for microflow simulations.

4 Discussion and conclusions

In this paper, a unified scheme has been applied to microflow simulations. The numerical
examples cover a whole range of flow regimes from free molecular to the continuum one.
The capacity of the unified scheme in capturing non-equilibrium flow behavior has been
fully explored in this study. The success of the current method is mainly due to the
use of the integral solution of the kinetic model for the evaluation of interface fluxes.
Instead of solving the collisionless Boltzmann equation for the particle transport, the full
physics of particle movement, i.e., free transport and collision, has been included in the
interface flux modeling. As a result, both hydrodynamic and kinetic scale physics has
been naturally merged into the time evolution of a single gas distribution function at
the cell interface. In the transition flow regime, both scale physics contributes to the
flow evolution and to the capturing of non-equilibrium flow behavior. In comparison
with the particle-based DSMC method, there is no statistical scattering in the unified
solution and the non-equilibrium flow motion due to the small temperature variation
can be fully identified. For the low speed microflow, the non-equilibrium effect can be
captured reasonably using a limited number of grid points. The efficiency of the unified
scheme has been demonstrated as well.

The merit of the unified scheme is in the modeling of interface flux. If the collision-
less Boltzmann equation is used for the flow transport at a cell interface, even with the
same strategy of updating both macroscopic flow variables and microscopic gas distribu-
tion function, in the near continuum flow regime where the cell size is much larger than
the particle mean free path, the updated macroscopic variables would not be accurate
enough to recover the NS solution, because the collisionless mechanism introduces a cell
size proportional numerical dissipation which can become much larger than the physical
one. In conclusion, the unified scheme is a useful method for low speed microflow study,
especially for the cases with the co-existing of continuum and rarefied flow regimes and
with small temperature variations.
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