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Abstract. In this paper a second-order two-scale (SOTS) analysis method is developed
for a static heat conductive problem in a periodical porous domain with radiation
boundary condition on the surfaces of cavities. By using asymptotic expansion for
the temperature field and a proper regularity assumption on the macroscopic scale,
the cell problem, effective material coefficients, homogenization problem, first-order
correctors and second-order correctors are obtained successively. The characteristics
of the asymptotic model is the coupling of the cell problems with the homogeniza-
tion temperature field due to the nonlinearity and nonlocality of the radiation bound-
ary condition. The error estimation is also obtained for the original solution and the
SOTS’s approximation solution. Finally the corresponding finite element algorithms
are developed and a simple numerical example is presented.
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Key words: Periodic structure, porous material, radiation boundary condition, second-order two-
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1 Introduction

Porous materials have many elegant qualities, such as low relative density, heat insula-
tion etc, and have been widely used in high technology engineering. As the materials
often have periodic configurations and the coefficients change rapidly in small cells, it
is needed to develop new effective numerical methods for predicting the physical and
mechanical performance.
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Based on the homogenization method proposed [2–6], the Second-Order Two-Scale
Analysis Method (SOTS) is introduced by Cui and Cao [15–18] to predict the physical
and mechanical behavior of the materials. By second order corrector, the microscopic
fluctuation of physical and mechanical behaviors inside the material can be captured
more accurately. In those methods, the original problem can be approximately solved
by solving a homogenized problem in original domain without holes and a series of cell
problems only in one normalized cell.

As we all known that some extreme conditions are often encountered in the modern
engineering. For example, the spacecraft’s flying out or reentry into the atmosphere, its
surface will bear strong aerodynamic force and heat. Under such conditions, the heat
radiation should not be omitted. Because of its nonlinearity, it is difficulty to solve this
kind of problems.

In the study of heat transfer model, there are few results concerning the heat radiation.
Tiihonen [9] discussed the radiation on non-convex surfaces, and proved the existence
and uniqueness of the stationary conduction radiation problem, Bachvalov [7] studied
an averaging method on the heat transfer process inside periodic media with radiation
and gave the asymptotic expansion of the temperature. Allaire and Ganaoui [8] studied
the homogenization method of heat transfer problem with radiation on the surface of
the cavities by a scaling hypothesis, and gave the homogenized solutions and first-order
two-scale approximate solution, but higher order correctors are not presented.

It should be noted that if substituting the first-order two-scale solution into origi-
nal equation, one can find that the residual is O(1) even though H1 norm of its error
is O(ε1/2). In practical engineering computation, however, ε is a constant less than the
structural size L and does not tend to zero. So the local error O(1) is not accepted for en-
gineer who wants to capture the local behavior of the solution. In this paper, the second-
order two-scale approximation solution is discussed even though its convergence order
is O(ε1/2) yet.

The remainder of this paper is organized as follows: The heat transfer model with ra-
diation boundary condition is discussed in Section 2. The second-order two-scale asymp-
totic analysis for the model is presented in Section 3. The error estimation on the asymp-
totic solution is analyzed in Section 4. The second-order two-scale algorithm and a simple
numerical example are shown in Section 5, followed by conclusions.

Throughout this paper, C (with or without subscripts) denotes a generic positive con-
stant with possibly different values in different contexts. By O(εk), k∈N, we denote that
there exists a constant C independent of ε and |O(εk)|≤Cεk. Also we use convention of
summation on repeated indices.

2 Heat transfer model with radiation boundary condition

2.1 Periodical porous materials and Radiative boundary condition

The materials occupy a periodical porous domain in two dimension, let ω be invariant
under the shifts by any z=(z1,··· ,zn)∈Z

n.
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Figure 1: (a) Unit cell Y∗; (b) Periodical porous domain Ωε.

Suppose that ω and Y∗ satisfy the following conditions:

(A1) ω is a smooth unbounded domain of Rn with a 1-periodic structure.

(A2) As the Fig. 1(a), the cell with periodicity is Y∗=ω
⋂

Y, Y=[0,1]n is a domain with
a Lipschitz boundary ∂Y. The boundary of Y∗ is ∂Y∗= ∂Y

⋃
Γ, where Γ is the surface of

the cavity.

(A3) The surface Γ of the cavity does not intersect the boundary ∂Y.

(A4) The porous domain Ωε has the form Ωε = Ω
⋂

εω, where Ω is a homogeneous
convex domain with Lipschitz boundary ∂Ω. Besides we assume Ωε is composed of
entire cells,

Ωε =
⋃

z∈I

(ε(Y∗+z)),

where I = {z∈Z
n|ε(Y∗+z)⊂Ω} is the index set. So the boundary of Ωε is the union of

∂Ω and the surface Γε =
⋃

z∈Iz
Γε

z of the cavities, i.e.

∂Ωε =∂Ω
⋃

Γε.

Let us take the surface Γ in the normalized cell Y∗ to consider the radiative boundary
condition. Suppose that the surface is not perfectly black, which implies that it partly
reflects the projected radiation. To simplify the treatment of reflections, we assume that
the surface is a grey-diffuse surface, i.e., it emits, absorbs and reflects radiation in the
same manner in all directions. The radiation then is characterized by its emissivity e, 0<
e≤1. We also assume that the medium in the cavities is transparent (neither conduction
nor absorption of radiation).

Denote the temperature by T and the intensity of emitted radiation by R(x), i.e. the
radiosity. For x∈Γ, R(x) can be expressed as

R(x)= eσT4(x)+(1−e)J(R)(x), (2.1)
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where σ is the Stefan-Boltzmann constant and J is a functional denoting the energy of
projected radiation on Γ. For any x∈Γ, J can be written by

J(R)(x)=
∫

Γ
k(x,s)R(s)dΓs , (2.2)

where k(x,s) is the view factor between two different points x and s of Γ. For convex
three dimensional enclosures the formula of view factor is

k(x,s)=
ns ·(x−s)nx ·(s−x)

π|s−x|4
, (2.3)

where ns denotes the unit normal at the point x. In two dimensional case the view factor
is

k(x,s)=
ns ·(x−s)nx ·(s−x)

2|s−x|3
. (2.4)

According to [8], there are following results.

Lemma 2.1. The function k defined in (2.3) or (2.4) satisfies the following properties: For any
x,s∈Γ

k(x,s)≥0, k(x,s)= k(s,x),
∫

Γ
k(x,s)dΓs =1. (2.5)

Lemma 2.2. The function J defined in (2.2) is an operator from Lp(Γ) to Lp(Γ), 1≤ p≤∞ and
has the following properties:

• J(c)= c, ∀c∈R.

• ‖J‖≤1.

• J is nonnegative: ∀ f ∈Lp(Γ), f >0→ J( f )≥0.

• J is symmetric (self adjoint for p=2) in the following sense
∫

Γ
J(ϕ)ψdΓ=

∫

Γ
J(ψ)ϕdΓ, ∀ϕ∈Lp(Γ), ψ∈Lp′(Γ), with

1

p
+

1

p′
=1.

Denote by q the heat flux transmitted by conduction from Y∗ to the cavity. From
Tiihonen [9] and Allaire [8], q is expressed as

q=G(σT4)=(I− J)(I−(I−E)J)−1E(σT4), (2.6)

where G is a linear nonlocal operator defined by

G(ϕ)=(I− J)(I−(I−E)J)−1E(ϕ),∀ϕ∈Lp(Ω). (2.7)

E is the operator induced by multiplier e and I is the Identity operator. From the prop-
erties of J, G is also symmetric and nonnegative. Particularly, when e = 1 (black body
radiation), q is simply

q=(I− J)(σT4)=σT4(x)−σ
∫

Γ
k(x,s)T4(s)dΓs. (2.8)

For the radiation condition acting on Γε we denote the operator Jε and Gε instead of J
and G.
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2.2 Conductive-radiative heat transfer problem

The heat conduction model with radiation is firstly studied by Bachvalov [7], in which
the radiation boundary condition in a closed cavity is essentially expressed as

−aij(
x

ε
)

∂Tε

∂xj
ni=(I− J)(σT4

ε ) on Γε, (2.9)

and the homogenized solution and the first order correctors are obtained successively. Al-
laire [8] considered the radiation condition with ε−1 scaling on Γε such that the radiation
behavior can be represented in the homogenized problem. The homogenized equation
obtained is like Rosseland equation [10,20] which is a conductive-radiative model for the
high porosity material. In this paper the heat conductive-radiative model with ε−1 scal-
ing is also considered, even though it is not completely correct for the materials with low
porosity.

The static heat conduction problem with ε−1 scaling radiation boundary condition on
the surface of cavities reads as follows:





−
∂

∂xi

(
aij

( x

ε

)∂Tε

∂xj

)
= f in Ωε,

−aij

( x

ε

)∂Tε

∂xj
ni= ε−1Gε(σT4

ε ) on Γε,

Tε = T̃ on ∂Ω,

(2.10)

where Tε is temperature field, T̃ is the prescribed temperature on ∂Ω, f is the source term,
n=(ni) is the outward unit normal to Ωε and ε is a small scale parameter.

Suppose that the following conditions are satisfied:

(B1) Let y= x
ε , the coefficients aij(y) be 1-periodic in y.

(B2) For v∈R
n, there exist 0<µ1≤µ2 such that µ1|v|

2 ≤ aij(y)vivj ≤µ2|v|2.

(B3) aij(y)= aji(y).

(B4) aij(y)∈L∞(Ωε).

(B5) f ∈L∞(Ω), f ≥0, still by f we denote its restriction on Ωε.

(B6) T̃∈C0,1(Ω̄), T̃∈ [τ1,τ2]. τ1,τ2 are two constants and τ1>0.

Define the following spaces

V(Ωε)=
{

vε ∈H1(Ωε)
∣∣vε = T̃ on ∂Ω

}
, (2.11a)

V0(Ω
ε)=

{
vε ∈H1(Ωε)

∣∣vε =0 on ∂Ω
}

. (2.11b)

We can see that Tε ∈V(Ωε) and the weak form of (2.10) can be obtained as

∫

Ωε
aij(

x

ε
)

∂Tε

∂xj

∂ϕε

∂xi
dx+ε−1σ

∫

Γε
T4

ε Gε(ϕε)dΓε =
∫

Ωε
f ϕεdx, ∀ϕε∈V0(Ω

ε). (2.12)
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Theorem 2.1. Suppose the conditions (B1)-(B6) are satisfied, there exists a unique solution Tε ∈
V(Ωε).

Proof. We refer to [9] for the proof.

From this weak form, Allaire and Ganaoui [8,12] use the two-scale convergence method
to obtain the homogenized problem and effective conductivity. In this paper based on the
form (2.10) we apply the SOTS to obtaining the asymptotic solutions for the black body
radiation, i.e. e=1. Note that the main difficulty is the nonlinear and nonlocal radiation
boundary condition, in the next section we will make use of Taylor expansion on Γε to
overcome it. The advantage to use this method is that we can find the higher correctors
and obtain a more accurate solution.

3 Second-order two-scale asymptotic analysis

3.1 Asymptotic expansion for the temperature field and Taylor expansion on
the boundary

Now we use the SOTS method to analyze the problem (2.10). Firstly assume that the
temperature Tε can be formally expanded as follows:

Tε(x)=T(x,
x

ε
)=T(x,y)=T0(x)+εT1(x,y)+ε2T2(x,y)+O(ε3), (3.1)

where x is in non-perforated domain Ω, y is in Y∗ and T0(x) is homogenized solution
that does not depend on the microscopic variable y. For T4

ε , we have

T4
ε =(T0+εT1+ε2T2+···)4

=T4
0 +ε(4T3

0 T1)+ε2(6T2
0 T2

1 +4T3
0 T2)+O(ε3). (3.2)

Respecting

∂Tε

∂xi
(x)=

∂T

∂xi
(x,y)+

1

ε

∂T

∂yi
(x,y), (3.3)

and denoting by Aε the operator

Aε =−
∂

∂xi

(
aij(y)

∂

∂xj

)
, (3.4)

consequently from (3.3) we can write

−
∂

∂xi

(
aij(y)

∂Tε

∂xj

)
=AεTε =(ε−2 A0+ε−1 A1+A2)T(x,y), (3.5)
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where




A0=−
∂

∂yi

(
aij(y)

∂

∂yj

)
,

A1=−
∂

∂yi

(
aij(y)

∂

∂xj

)
−

∂

∂xi

(
aij(y)

∂

∂yj

)
,

A2=−
∂

∂xi

(
aij(y)

∂

∂xj

)
.

(3.6)

Using (3.1), (3.5) and equating the power-like terms of ε, we can obtain the following
system of equations:

A0T0=0, (3.7a)

A0T1+A1T0=0, (3.7b)

A0T2+A1T1+A2T0= f , (3.7c)

A0T3+A1T2+A2T1=0, ··· . (3.7d)

Denote by Bε the operator

Bε=−aij(y)
∂

∂xj
ni, (3.8)

from (3.3), we can write

Bε= ε−1B0+B1, (3.9)

where

B0=−aij(y)
∂

∂yj
ni, B1=−aij(y)

∂

∂xj
ni. (3.10)

Our aim is to expand the operator Gε in ε power series. On one cavity Γε
i , Gε reads as

Gε(σT4
ε )=σ(I− J)(T4

ε )=σ(T4
ε (x)−

∫

Γε
i

k(x,s)T4
ε (s)dΓε

s). (3.11)

Note that T4
ε (s) in the integrand is different from T4

ε (x) in that s is on Γε other than x. We
expand this term as in (3.2)

T4
ε (s)=T4

0 (s)+ε(4T3
0 (s)T1(s,λ))

+ε2(6T2
0 (s)T

2
1 (s,λ)+4T3

0 (s)T2(s,λ))+O(ε3), (3.12)

where λ= s
ε . It is observed that double integration (both for s and λ) has to be performed.

From the idea of [7, 8], to separate the microscopic variable — s from the macroscopic
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variable — λ, we assume that Tε is smooth enough in Ω, and make the Taylor expansion
on x for the terms of T4

ε (s) as follows:

T4
0 (s)=T4

0 (x)+4T3
0

∂T0(x)

∂xi
(si−xi)+

∂

∂xj

(
2T3

0 (x)
∂T0(x)

∂xi

)
(si−xi)(sj−xj)+··· ,

4T3
0 (s)T1(s,λ)=4T0(x)3T1(x,λ)+

∂

∂xi

(
4T3

0 (x)T1(x,λ)
)
(si−xi)+··· ,

6T2
0 (s)T

2
1 (s,λ)+4T3

0 (s)T2(s,λ)=6T2
0 (x)T2

1 (x,λ)+4T3
0 (x)T2(x,λ)+··· .

Taking these into (3.12) and making a change of variable from s to λ such that Γε
i on Ωε

becomes Γ on cell Yε, we rewrite the expansion of
∫

Γε
i
k(x,s)T4

ε (s)dΓε
s as

∫

Γε
i

k(x,s)T4
ε (s)dΓε

s =
∫

Γ
k(y,λ)(T4

0 (x)+εT4
1,λ+ε2T4

2,λ)dΓλ+O(ε3), (3.13)

where

T4
1,λ(x,λ)=4T3

0 (x)
(

T1(x,λ)+
∂T0(x)

∂xi
(λi−yi)

)
, (3.14a)

T4
2,λ(x,λ)=6T2

0 (x)T2
2 (x,λ)+4T3

0 (x)T1(x,λ)+
∂

∂xi

(
4T3

0 (x)T1(x,λ)
)
(λi−yi)

+
∂

∂xi

(
2T3

0 (x)
∂T0(x)

∂xj

)
(λi−yi)(λj−yj). (3.14b)

Substituting them into (2.10), then

BεTε =σ
{

4T3
0 (x)T1(x,y)−

∫

Γ
k(y,λ)T4

1,λ(x,λ)dΓλ

}

+εσ
{

6T2
0 (x)T2

1 (x,y)+4T3
0 (x)T2(x,y)

}
−εσ

∫

Γ
k(y,λ)T4

2,λ(x,λ)dΓλ. (3.15)

Using (3.1) and (3.9) and also equating the power-like terms of ε, we can obtain

B0T0=0, (3.16a)

B0T1+B1T0=σ
{

4T3
0 (x)T1(x,y)−

∫

Γ
k(y,λ)T4

1,λ(x,λ)dΓλ

}
, (3.16b)

B0T2+B1T1=σ
{

6T2
0 (x)T2

1 (x,y)+4T3
0 (x)T2(x,y)

}

−σ
∫

Γ
k(y,λ)T4

2,λ(x,λ)dΓλ, ··· . (3.16c)
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From (3.7a)-(3.7d) and (3.16a)-(3.16c), T0(x) has already satisfied (3.7a) and (3.16a), so it
is sufficient to solve the following systems of equations:





−
∂

∂yi

(
aij

∂T1

∂yj

)
=

∂

∂xi

(
aij

∂T0

∂yj

)
+

∂

∂yi

(
aij

∂T0

∂xj

)
in Y∗,

−aij
∂T1

∂yj
ni= aij

∂T0

∂xj
ni+σ4T3

0 T1−σ
∫

Γ
k(y,λ)T4

1,λdΓλ on Γ,

T1(x,y) 1-periodic in y,

(3.17)





−
∂

∂yi

(
aij

∂T2

∂yj

)
= f +

∂

∂yi

(
aij

∂T1

∂xj

)
+

∂

∂xi

(
aij

(∂T1

∂yj
+

∂T0

∂xj

))
in Y∗,

−aij
∂T2

∂yj
ni= aij

∂T1

∂xj
ni+σ(6T2

0 T2
1 +4T3

0 T2)−σ
∫

Γ
k(y,λ)T4

2,λdΓλ on Γ,

T2(x,y) 1-periodic in y.

(3.18)

3.2 Cell problem, homogenized problem and homogenized conductivity

From (3.17), since T0(x) is independent of y, it can be rewritten as





−
∂

∂yi

(
aij

∂T1

∂yj

)
=

∂aij

∂yi

∂T0

∂xj
in Y∗,

−aij
∂T1

∂yj
ni = aij

∂T0

∂xj
ni+4σT3

0 T1(x,y)

−4σT3
0

∫

Γ
k(y,λ)

(
T1(x,λ)+

∂T0

∂xi
(λi−yi)

)
dΓλ on Γ,

T1(x,y) 1-periodic in y.

(3.19)

Setting T1(x,y) formally

T1(x,y)=Nα1
(T0,y)

∂T0

∂xα1

, (3.20)

where α1=1,··· ,n and substituting it into (3.19), we have





−
∂

∂yi

(
aij

∂Nα1

∂yj

) ∂T0

∂xα1

=
∂aiα1

∂yi

∂T0

∂xα1

in Y∗,

−aij
∂Nα1

∂yj
ni

∂T0

∂xα1

= aiα1
ni

∂T0

∂xα1

+4σT3
0 Nα1

∂T0

∂xα1

−4σT3
0

∫

Γ
k(y,λ)(Nα1

+λα1
−yα1

)dΓλ
∂T0

∂xα1

on Γ,

T1(x,y) 1-periodic in y.

(3.21)
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For the boundary condition on Γ, from Lemma 2.1

4σT3
0 Nα1

∂T0

∂xα1

−4σT3
0

∫

Γ
k(y,λ)(Nα1

+λα1
−yα1

)dΓλ
∂T0

∂xα1

=4σT3
0

∂T0

∂xα1

(
Nα1

−
∫

Γ
k(y,λ)(Nα1

+λα1
−yα1

)dΓλ

)

=4σT3
0

∂T0

∂xα1

(
Nα1

+yα1
−
∫

Γ
k(y,λ)(Nα1

+λα1
)dΓλ

)

=4σT3
0

∂T0

∂xα1

(I− J)(Nα1
+yα1

)=4σT3
0

∂T0

∂xα1

G(Nα1
+yα1

), (3.22)

then we define Nα1
(T0,y) that satisfies the following cell problem





−
∂

∂yi

(
aij

∂Nα1

∂yj

)
=

∂aiα1

∂yi
in Y∗,

−aij
∂Nα1

∂yj
ni= aiα1

ni+4σT3
0 G(Nα1

+yα1
) on Γ,

Nα1
(T0,y) 1-periodic in y.

(3.23)

Theorem 3.1. For T0>0, the cell problem (3.23) admits a unique solution Nα1
(T0,y) in Wper(Y∗),

where

Wper(Y
∗)=

{
v∈H1

per(Y
∗);

∫

Y∗
vdy=0

}
, (3.24)

and H1
per(Y) is the closure of subset C∞(Rn) of 1-periodic functions for the H1-norm.

Proof. The variational problem of (3.23) is
{

find Nα1
(T0,y)∈Wper(Y∗) such that

aY∗(Nα1
,ϕ)=(g1(T0),ϕ) ∀ϕ∈Wper(Y∗),

(3.25)

where

aY∗ (Nα1
,ϕ)=

∫

Y∗
aij

∂Nα1

∂yj

∂ϕ

∂yi
dy+4σT3

0

∫

Γ
G(Nα1

)ϕdΓy, (3.26a)

(g1(T0),ϕ)=−
∫

Y∗
aiα1

∂ϕ

∂yi
dy−4σT3

0

∫

Γ
G(yα1

)ϕdΓy. (3.26b)

Since T0>0 and ‖J‖≤1, we have

aY∗ (ϕ,ϕ)=
∫

Y∗
aij

∂ϕ

∂yj

∂ϕ

∂yi
dy+4σT3

0

∫

Γ
G(ϕ)ϕdΓy

≥µ1‖ϕ‖2
H1(Y∗)+4σT3

0

∫

Γ
(I− J)(φ)φdΓy ≥µ1‖ϕ‖2

H1(Y∗). (3.27)

Hence aY∗ is coercive on Y∗. By Lax-Milgram theorem, (3.23) admits a unique solution
Nα1

(T0,y) in Wper(Y∗).
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For the problem (3.18), we make a integral average over Y∗. Since T1(x,y) has the
form (3.20) and T2(x,y) is 1-periodic in y, we get

−
∂

∂xi

{
1

|Y∗|

∫

Y∗

(
aij+aik

∂Nj

∂yk

)
dy

∂T0

∂xj

}
+ I1+ I2+ I3= f , (3.28)

where

I1=
σ

|Y∗|

∫

Γ

{
6T2

0 T2
1 +4T3

0 T2−
∫

Γ
k(y,λ)(6T2

0 T2
1 (x,λ)+4T3

0 T2(x,λ))dΓλ

}
dΓy,

I2=−
σ

|Y∗|

∫

Γ

∫

Γ
k(y,λ)

∂

∂xi
(4T3

0 T1(x,λ)(λi−yi))dΓλdΓy,

I3=
σ

|Y∗|

∫

Γ

∫

Γ
k(y,λ)

∂

∂xi
(2T3

0

∂T0

∂xj
)(λi−yi)(λi−yj)dΓλdΓy.

From the properties of k(y,λ) in (2.1)

I1=0,

I2=−
σ

|Y∗|

∫

Γ

∫

Γ
k(y,λ)Nj(T0(x),λ)(λi−yi)dΓλdΓy

∂

∂xi

(
4T3

0

∂T0

∂xj

)

−
σ

|Y∗|

∫

Γ

∫

Γ
k(y,λ)

∂Nj(T0(x),λ)

∂xi
(λi−yi)dΓλdΓy4T3

0

∂T0

∂xj

=
σ

|Y∗|

∫

Γ
yi

[
Nj(x,y)−

∫

Γ
(k(y,λ)Nj(T0(x),λ))dΓλ

]
dΓy

∂

∂xi

(
4T3

0

∂T0

∂xj

)

+
σ

|Y∗|

∫

Γ
yi

[∂Nj(T0(x),y)

∂xi
−
∫

Γ
(k(y,λ)

∂Nj(T0(x),λ)

∂xi
)dΓλ

]
dΓy4T3

0

∂T0

∂xj

=
σ

|Y∗|

∫

Γ
yiG(Nj(T0(x),y))dΓy

∂

∂xi

(
4T3

0

∂T0

∂xj

)

+
σ

|Y∗|

∫

Γ
yiG

(∂Nj(T0(x),y)

∂xi

)
dΓy4T3

0

∂T0

∂xj
,

I3=
σ

|Y∗|

∂

∂xi

(
4T3

0

∂T0

∂xj

)∫

Γ
yi

[
yj−

∫

Γ
k(y,λ)λjdΓλ

]
dΓy

=
σ

|Y∗|

∫

Γ
yiG(yj)dΓy

∂

∂xi

(
4T3

0

∂T0

∂xj

)
.

Take I1, I2, I3 into (3.28) and then we obtain the homogenized problem





−
∂

∂xi

(
a0

ij(T0)
∂T0

∂xj

)
= f in Ω,

T0= T̃ on ∂Ω,

(3.29)
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where the homogenized conductivity a0
ij(T0) is

a0
ij(T0)=

1

|Y∗|

[∫

Y∗

(
aij+aik

∂Nj

∂yk

)
dy+4σT3

0

∫

Γ
yiG(Nj+yj)dΓy

]
. (3.30)

Theorem 3.2. For T0>0, the homogenized conductivity a0
ij(T0) is symmetric and coercive on Ω.

Proof. In fact, from (3.23), taking ϕ=Ni into the variational form (3.25), we have

∫

Y∗
amn

∂Ni

∂ym

∂(Nj+yj)

∂yn
dy+4σT3

0

∫

Γ
NiG(Nj+yj)dΓy =0.

Take the expression into (3.30)

a0
ij(T0)=

1

|Y∗|

[∫

Y∗
amn

∂(Ni+yi)

∂ym

∂(Nj+yj)

∂yn
dy+4σT3

0

∫

Γ
(Ni+yi)G(Nj+yj)dΓy

]
. (3.31)

From the symmetry and nonnegativity of G, it follows that

a0
ij(T0)= a0

ji(T0), a0
ji(T0)ξiξ j ≥µ1|ξ|

2, ∀ξ=(ξ1,··· ,ξn)∈R
n. (3.32)

This completes the proof of the theorem.

It directly follows that

Theorem 3.2.1. For f ∈L∞(Ω), f ≥0, the homogenized problem (3.29) admits a unique solution
in V(Ω)={ϕ∈H1(Ω)|ϕ= T̃ on ∂Ω}.

From the cell problem (3.23) and homogenized problem (3.29), it is observed that they
are coupling with each other. In the sequel we will prove the existence of the coupling
system (Nα1

(T0,y), T0(x)).
According to [12], we have the following two lemmas.

Lemma 3.1. For T0→∞, Nα1
is approaching to N0

α1
, which satisfies the following limit problem





−
∂

∂yi

(
aij(y)

∂N0
α1

∂yj

)
=

∂aiα1

∂yi
in Y∗,

N0
α1
=−yα1

on Γ,

N0
α1
(T0,y) 1-periodic in y.

(3.33)

Lemma 3.2. For T0→∞, the homogenized conductivity a0
ij(T0) has the following limit

lim
T0→∞

a0
ij(T0)=

1

|Y∗|

∫

Y∗
amn

∂(N0
i +yi)

∂ym

∂(N0
j +yj)

∂yn
dy. (3.34)
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In the sequel we always consider T0(x) in a closed positive interval, then it is obvious
that both Nα1

(T0,y) and a0
ij(T0) are uniformly bounded.

Lemma 3.3. For two different Tk1
, Tk2

∈ [M1,M2], where M1 and M2 are two constants and
M1>0, we have

(a) Two cell solutions Nα1
(Tk1

,y), Nα1
(Tk2

,y) satisfy

‖Nα1
(Tk1

,y)−Nα1
(Tk2

,y)‖H1(Y∗)≤C‖Tk1
−Tk2

‖C0(Ω), (3.35)

(b) The homogenized coefficients a0
ij(Tk1

), a0
ij(Tk2

) satisfy

|a0
ij(Tk1

)−a0
ij(Tk2

)|≤C‖Tk1
−Tk2

‖C0(Ω), (3.36)

where the constant C is independent y, Tk1
and Tk2

.

Proof. (a) For Tk1
and Tk2

, we have the following two weak forms

aY∗(Nα1
(Tk1

,y),ϕ)=(g1(Tk1
,ϕ) ∀ϕ∈Wper(Y

∗), (3.37a)

aY∗(Nα1
(Tk2

,y),ϕ)=(g1(Tk2
,ϕ) ∀ϕ∈Wper(Y

∗). (3.37b)

By subtracting of the two equations and taking ϕ=Nα1
(Tk1

,y)−Nα1
(Tk2

,y), we obtain

∫

Y∗
aij

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yj

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yi
dy

=−4σ(T3
k1
−T3

k2
)
∫

Γ
G(yα1

)(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))dΓy

−4σT3
k1

∫

Γ
G(Nα1

(Tk1
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

+4σT3
k2

∫

Γ
G(Nα1

(Tk2
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

=−4σ(T3
k1
−T3

k2
)
∫

Γ
G(yj)(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

−4σT3
k1

∫

Γ
G(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

−4σ(T3
k1
−T3

k2
)
∫

Γ
G(Nα1

(Tk2
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy. (3.38)

Then
∫

Y∗
aij

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yj

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yi
dy

+4σT3
k1

∫

Γ
G(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

=−4σ(T3
k1
−T3

k2
)
∫

Γ
G(Nα1

(Tk2
,y)+yj)(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy. (3.39)
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Since Tk1
>0

∫

Y∗
aij

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yj

∂(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))

∂yi
dy

+4σT3
k1

∫

Γ
G(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))(Nα1

(Tk1
,y)−Nα1

(Tk2
,y))dΓy

≥µ1‖Nα1
(Tk1

,y)−Nα1
(Tk2

,y)‖2
H1(Y∗). (3.40)

From the boundedness of Tk1
, Tk2

, Nα1
(Tk1

,y) and Nα1
(Tk2

,y)

−4σ(T3
k1
−T3

k2
)
∫

Γ
G(Nα1

(Tk2
,y)+yα1

)(Nα1
(Tk1

,y)−Nα1
(Tk2

,y))dΓy

≤C(Γ,M)‖Tk1
−Tk2

‖C0(Ω)‖Nα1
(Tk1

,y)−Nα1
(Tk2

,y)‖H1(Y∗). (3.41)

Therefore we obtain the result.

(b) From (3.30) we have

(a0
ij(Tk1

)−a0
ij(Tk2

))|Y∗|

=
∫

Y∗
aik

∂

∂yk
(Nj(Tk1

,y)−Nj(Tk2
,y))dy

+4σT3
k1

∫

Γ
yiG(Nj(Tk1

,y)+yj)dΓy−4σT3
k2

∫

Γ
yiG(Nj(Tk2

,y)+yj)dΓy

=
∫

Y∗
aik

∂

∂yk
(Nj(Tk1

,y)−Nα1
(Tk2

,y))dy+4σT3
k1

∫

Γ
yiG(Nj(Tk1

,y)−Nj(Tk2
,y))dΓy

+4σ(T3
k1
−T3

k2
)
∫

Γ
yiG(Nj(Tk2

,y))dΓy+4σ(T3
k1
−T3

k2
)
∫

Γ
yiG(yj)dΓy. (3.42)

From the boundedness of Tk1
, Tk2

, Nj(Tk1
,y) and Nj(Tk2

,y) and Lemma 3.3, we have

∫

Y∗
aik

∂

∂yk
(Nj(Tk1

,y)−Nj(Tk2
,y))dy

≤C1‖Nj(Tk1
,y)−Nj(Tk2

,y)‖H1(Y∗)≤C2‖Tk1
−Tk2

‖C0(Ω), (3.43a)

4σT3
k1

∫

Γ
yiG(Nj(Tk1

,y)−Nj(Tk2
,y))dΓy

≤C3‖Nj(Tk1
,y)−Nj(Tk2

,y)‖H1(Y∗)≤C4‖Tk1
−Tk2

‖C0(Ω), (3.43b)

4σ(T3
k1
−T3

k2
)
∫

Γ
yiG(Nj(Tk2

,y))dΓy ≤C5‖Tk1
−Tk2

‖C0(Ω), (3.43c)

4σ(T3
k1
−T3

k2
)
∫

Γ
yiG(yj)dΓy≤C6‖Tk1

−Tk2
‖C0(Ω). (3.43d)

Then we have the inequality (3.36).

To prove the existence of the coupled problem for Nα1
(T0,y) and T0, we use the fol-

lowing fixed point lemma.
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Lemma 3.4 (Corollary 11.2 [13]). Let C be a closed convex set in a Banach space B and let L be
a continuous mapping of C into itself such that the image LE is precompact. Then L has a fixed
point.

From the classical global boundedness estimation of elliptic equations we have the
following lemma.

Lemma 3.5. For v ∈ [τ1,τ2+C0], ∀C0 > 0, f ∈ L∞(Ω), f ≥ 0 and τ1 ≤ T̃ ≤ τ2, ω is the weak
solution of the following equation





−
∂

∂xi

(
a0

ij(v)
∂ω

∂xj

)
= f in Ω,

ω= T̃ on ∂Ω.

(3.44)

Then we have

τ1≤ω≤τ2+C1, (3.45)

where the constant C1 is independent of C0.

Proof. 1. Since a0
ij(v) is symmetric and coercive on Ω, ω exists and satisfies

∫

Ω
a0

ij(v)
∂ω

∂xj

∂ϕ

∂xi
dx=

∫

Ω
f ϕdx ∀x∈H1

0(Ω). (3.46)

For a0
ij(v) is fixed, (3.44) is simply an elliptic equation. Set

(ω−τ1)−=

{
ω−τ1, ω−τ1<0,
0, ω−τ1≥0,

(3.47)

since ω = T̃ ≥ τ1 on ∂Ω, (ω−τ1)− ∈ H1
0(Ω). Let ϕ = (ω−τ1)− and use the Poincaré’s

inequality, we have

∫

Ω
a0

ij(v)
∂(ω−τ1)−

∂xj

∂(ω−τ1)−
∂xi

dx≥C
∫

Ω
|(ω−τ1)−|

2dx≥0, (3.48a)

∫

Ω
f (ω−τ1)−dx≤0, (3.48b)

which implies (ω−τ1)−=0 a.e. in Ω. From the definition of (ω−τ1)−,

ω≥τ1. (3.49)

2. Use De Giorgi iteration to estimate the upper bound. Take k>τ2 and ϕ=(ω−k)+ with

(ω−k)+=

{
ω−k, ω−k>0,
0, ω−k≤0.

(3.50)
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Since ω= T̃≤τ2 on ∂Ω, (ω−k)+∈H1
0(Ω). From Poincaré’s inequality

∫

Ω
a0

ij(v)
∂ω

∂xj

∂(ω−k)+
∂xi

dx=
∫

Ω
a0

ij(v)
∂(ω−k)+

∂xj

∂(ω−k)+
∂xi

dx

≥C1

∫

Ω

∂(ω−k)+
∂xi

∂(ω−k)+
∂xi

dx≥C1C(n,Ω)‖(ω−k)+‖
2
H1(Ω). (3.51)

According to imbedding theorem

‖(ω−k)+‖
2
H1(Ω)≥C(n,Ω)‖(ω−k)+‖

2
Lp(A(k)), (3.52)

where A(k)={x∈Ω;ω> k} and

2< p<





+∞, n=1,2,
2n

n−2
, n≥3,

(3.53)

in other words

(∫

A(k)
|(ω−k)+|

pdx
) 2

p
≤C(n,Ω)

∫

A(k)
| f (ω−k)+ |dx. (3.54)

From this, using the Hölder inequality

∫

A(k)
| f (ω−k)+|dx≤

(∫

A(k)
|(ω−k)+|

pdx
) 1

p
(∫

A(k)
| f |qdx

) 1
q
, (3.55)

where 1
p+

1
q =1, we obtain

(∫

A(k)
|(ω−k)+|

pdx
) 1

p
≤C

(∫

A(k)
| f |qdx

) 1
q
. (3.56)

Since h > k implies A(h) ⊂ A(k), |A(k)| is a nonnegative and nonincreasing function,
(ω−k)+> (h−k) on A(h), we have

∫

A(k)
|(ω−k)+|

pdx≥
∫

A(h)
|(ω−k)+|

pdx≥ (h−k)p |A(h)|. (3.57)

This combined with (3.56) gives

(h−k)|A(h)|
1
p ≤C‖ f‖L∞(Ω)|A(k)|

1
q , (3.58)

i.e.

|A(h)|≤
(C‖ f‖L∞(Ω)

h−k

)p
|A(k)|

p
q . (3.59)
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Since p>2 implies p>q, use the De Giorgi iteration lemma, we obtain

|A(τ2+C1)|=0, (3.60)

where

C1=C(n,Ω)‖ f‖L∞(Ω)|A(τ2)|
p−q
pq 2

p
p−q . (3.61)

By the definition of A(k), we have

ω≤τ2+C1. (3.62)

Since C1 is independent of C0, we choose C0=C1=d.
Define operator Lv=ω, then L is from C0([τ1,τ2+d]) to C0([τ1,τ2+d]).
For fixed v the homogenized conductivity a0

ij(v) is invariant, so we have the global

regularity of ω

‖ω‖H2(Ω)≤C
(
‖ f‖L2(Ω)+‖T̃‖

H
3
2 (Ω)

)
, (3.63)

i.e., ω∈H2(Ω). Using imbedding theorem

‖ω‖C0,α(Ω)≤C‖ω‖H2(Ω) ∀α∈ (0,1), (3.64)

we obtain ω∈C0,α(Ω), 0<α<1, thus Lv=ω is precompact.
From Lemma 3.4 it is sufficient to prove the operator L is continuous.
In fact, for Tk1

, Tk2
∈ [τ1,τ2+d], let L(Tk1

)=Tβ1
, L(Tk2

)=Tβ2
, Tβ1

and Tβ2
satisfy

∫

Ω
a0

ij(Tk1
)

∂Tβ1

∂xi

∂ϕ

∂xj
dx=

∫

Ω
f ϕdx,

∫

Ω
a0

ij(Tk2
)

∂Tβ2

∂xi

∂ϕ

∂xj
dx=

∫

Ω
f ϕdx, (3.65a)

∫

Ω
a0

ij(Tk1
)

∂Tβ1

∂xi

∂ϕ

∂xj
dx=

∫

Ω
a0

ij(Tk2
)

∂Tβ2

∂xi

∂ϕ

∂xj
dx. (3.65b)

Moreover

∫

Ω
a0

ij(Tk1
)

∂(Tβ1
−Tβ2

)

∂xi

∂ϕ

∂xj
dx=−

∫

Ω
(a0

ij(Tk1
)−a0

ij(Tk2
))

∂Tβ2

∂xi

∂ϕ

∂xj
dx, (3.66)

take ϕ=Tβ1
−Tβ2

, from the regularity of Tβ1
−Tβ2

, Lemma 3.3, we have

‖Tβ1
−Tβ2

‖H2(Ω)≤C‖Tk1
−Tk2

‖C0(Ω). (3.67)

From the imbedding theorem

‖Tβ1
−Tβ2

‖C0(Ω)≤C‖Tk1
−Tk2

‖C0(Ω), (3.68)

then L is continuous, and thus there exists a fixed point.
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Remark 3.1. The homogenized problem (3.29), cell problem (3.23) and the homogenized
conductivity (3.31) is actually equivalent to the results of [8], which is obtained by the
two-scale convergence method.

Now the first order approximate solution of the temperature is obtained as

T0+εNα1
(T0,y)

∂T0

∂xα1

. (3.69)

To compare it with the original solution, we take T−(T0+εT1) into (2.10) and have

Aε(Tε−T0−εT1)= f −(ε−2 A0+ε−1A1+A2)(T0+εT1)

= f −
[

ε−2A0T0+ε−1(A0T1+A1T0)+(A1T1+A2T0)+εA2T1

]

= f −
∂

∂yi

(
aij

∂

∂xj

(
Nα1

∂T0

∂xα1

))
−

∂

∂xi

(
aij

∂

∂yj

(
Nα1

∂T0

∂xα1

))

−aij
∂T2

0

∂xi∂xj
−εaij

∂2

∂xi∂xj

(
Nα1

∂T0

∂xα1

)
. (3.70)

Note that residual is of order O(1) that does not equal to 0. In the practical engi-
neering computation, it can not be omitted for a constant ε, so engineer concludes that
the first order approximate solution can not be accepted and the micro-scale fluctuation
of the temperature is far from being captured. This is the reason why it is necessary to
consider the higher order expansions.

3.3 Higher order expansions

From (3.23), (3.29), it is noted that Nα1
depends on T0 directly, so we have

∂Nα1

∂xi
=

∂Nα1

∂T0

∂T0

∂xi
. (3.71)

Taking T0 and T1=Nα1
(T0,y) ∂T0

∂xα1
into (3.18), then

−
∂

∂yi

(
aij

∂T2

∂yj

)
=

[
−a0

ij(T0)+aij+
∂

∂yk
(aki Nj)+aik

∂Nj

∂yk

]
∂2T0

∂xi∂xj

−
1

|Y∗|

[∫

Γ
yiG(Nj+yj)dΓy

]
12σT2

0

∂T0

∂xi

∂T0

∂xj

−
1

|Y∗|

[∫

Y∗
aik

∂2Nj

∂T0∂yk
dy+4σT3

0

∫

Γ
yiG

(∂Nj

∂T0

)
dΓy

]
∂T0

∂xi

∂T0

∂xj

+

[
∂

∂yk

(
aki

∂Nj

∂T0

)
+aik

∂2Nj

∂T0∂yk

]
∂T0

∂xi

∂T0

∂xj
. (3.72)
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The boundary condition on Γ becomes

−aij
∂T2

∂yj
ni=4σT3

0 G(T2)+aki Nj
∂2T0

∂xi∂xj
nk+aki

∂Nj

∂T0

∂T0

∂xi

∂T0

∂xj
nk

+6σT2
0

∂T0

∂xi

∂T0

∂xj
G(NiNj)−4σT3

0

∂T0

∂xi

∂T0

∂xj

∫

Γ
k(y,λ)

∂Nj

∂T0
(λi−yi)dΓλ

−σ
∂

∂xi

(
4T3

0

∂T0

∂xj

)∫

Γ
k(y,λ)Nj(λi−yi)dΓλ

−σ
∂

∂xi

(
2T3

0

∂T0

∂xj

)∫

Γ
k(y,λ)(λi−yi)(λj−yj)dΓλ. (3.73)

Define T2 as the following form

T2(x,y)=Nα1α2(T0,y)
∂2T0

∂xα1
∂xα2

+Mα1α2(T0,y)
∂T0

∂xα1

∂T0

∂xα2

, (3.74)

where α1,α2=1,··· ,n, Nα1α2(T0,y) is the solution of the following problem




−
∂

∂yi

(
aij

∂Nα1α2

∂yj

)
= aα1α2−a0

α1α2
+

∂

∂yi
(aiα1

Nα2)+aα1 i
∂Nα2

∂yi
in Y∗,

−aij
∂Nα1α2

∂yj
ni=4σT3

0 G(Nα1α2)+aiα1
Nα2 ni

−4σT3
0

∫

Γ
k(y,λ)(λα1

−yα1
)Nα2 dΓλ

−2σT3
0

∫

Γ
k(y,λ)(λα1

−yα1
)(λα2−yα2)dΓλ on Γ,

Nα1α2(T0,y) 1-periodic in y,

(3.75)

and Mα1α2(T0,y) satisfies the following cell problem




−
∂

∂yi

(
aij

∂Mα1α2

∂yj

)
=

∂

∂yi

(
aiα1

∂Nα2

∂T0

)
+aα1i

∂2Nα2

∂T0∂yi
−

12σT2
0

|Y∗|

∫

Γ
yα1

G(Nα2+yα2)dΓy

−
1

|Y∗|

(∫

Y∗
aα1 i

∂2Nα2

∂T0∂yi
dy+4σT3

0

∫

Γ
yα1

G
(∂Nα2

∂T0

)
dΓy

)
in Y∗,

−aij
∂Mα1α2

∂yj
ni= aiα1

∂Nα2

∂T0
ni+4σT3

0 G(Mα1α2)+6σT2
0 G(Nα1

Nα2)

−4σT3
0

∫

Γ
k(y,λ)(λα1

−yα1
)

∂Nα2

∂T0
dΓλ

−12σT2
0

∫

Γ
k(y,λ)(λα1

−yα1
)Nα2 dΓλ

−6σT2
0

∫

Γ
k(y,λ)(λα1

−yα1
)(λα2−yα2)dΓλ on Γ,

Mα1α2(T0,y) 1-periodic in y.

(3.76)
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Theorem 3.3. For T0 > 0, problem (3.75) and (3.76) admit a unique solution Nα1α2(T0,y),
Mα1α2(T0,y) in Wper(Y∗), respectively.

Proof. The variational forms of (3.75) and (3.76) are respectively

{
find Nα1α2(T0,y)∈Wper(Y∗) such that
aY∗ (Nα1α2 ,ϕ)=(g2(T0),ϕ) ∀ϕ∈Wper(Y∗),

(3.77)

{
find Mα1α2(T0,y)∈Wper(Y∗) such that
aY∗ (Mα1α2 ,ϕ)=(g3(T0),ϕ) ∀ϕ∈Wper(Y∗),

(3.78)

where

(g2(T0),ϕ)=
∫

Y∗

(
aα1α2−a0

α1α2
+aα1 i

∂Nα2

∂yi

)
ϕdy−

∫

Y∗
aiα1

Nα2

∂ϕ

∂yi
dy

+4σT3
0

∫

Γ

(∫

Γ
k(y,λ)(λα1

−yα1
)Nα2 dΓλ

)
ϕdΓy

+2σT3
0

∫

Γ

(∫

Γ
k(y,λ)(λα1

−yα1
)(λα2 −yα2)dΓλ

)
ϕdy, (3.79)

(g3(T0),ϕ)=−
∫

Y∗
aiα1

∂Nα2

∂T0

∂ϕ

∂yi
dy+

∫

Y∗
aα1 i

∂2Nα2

∂T0∂yi
ϕdy

−
12σT2

0

|Y∗|

∫

Y∗

(∫

Γ
yα1

G(Nα2 +yα2)dΓy

)
ϕdy

−
1

|Y∗|

∫

Y∗

(∫

Y∗
aα1 i

∂2Nα2

∂T0∂yi
dy+4σT3

0

∫

Γ
yα1

G
(∂Nα2

∂T0

)
dΓy

)
ϕdy

−6σT2
0

∫

Γ
G(Nα1

Nα2)ϕdΓy+4σT3
0

∫

Γ

(∫

Γ
k(y,λ)(λα1

−yα1
)

∂Nα2

∂T0
dΓλ

)
ϕdΓy

+12σT2
0

∫

Γ

(∫

Γ
k(y,λ)(λα1

−yα1
)Nα2 dΓλ

)
ϕdΓy

+6σT2
0

∫

Γ

(∫

Γ
k(y,λ)(λα1

−yα1
)(λα2 −yα2)dΓλ

)
ϕdΓy. (3.80)

Here aY∗ is the same as (3.26a), so aY∗ is coercive in Y∗. By the same argument in the proof
of Theorem 3.1, we obtain the result.

4 Error estimation

Now we have obtained the first three terms of the expansion, let

T̂1(x,y)=T0+εT1=T0(x)+εNα1
(T0(x),y)

∂T0(x)

∂xα1

, (4.1a)
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T̂2(x,y)=T0+εT1+ε2T2

=T0(x)+εNα1
(T0(x),y)

∂T0(x)

∂xα1

+ε2Nα1α2(T0(x),y)
∂2T0(x)

∂xα1
∂xα2

+ε2Mα1α2(T0(x),y)
∂T0(x)

∂xα1

∂T0(x)

∂xα2

. (4.1b)

The following lemma follows from Oleinik [3, Chapter 1, Lemma 1.5].

Lemma 4.1. Let Ω be a bounded domain with a smooth boundary and Bδ ={x∈Ω|ρ(x,∂Ω)<
δ,δ>0}. Then there exists δ0>0 such that for every δ∈(0,δ0) and every v∈H1(Ω), the following
inequality holds

‖v‖L2(Bδ)
≤Cδ

1
2 ‖v‖H1(Ω), (4.2)

where C is a constant independent of δ and v.

Next we prove the following estimation.

Theorem 4.1. Let Tε be the weak solution of problem (2.10), T̃ ∈ H
3
2 (Ω), T0 ∈ H3(Ω), Nα1

,
Nα1α2 , Mα1α2 ∈ H2([τ1,τ2+d])×Wper(Y∗), where d is constant given by (3.61), the following
estimation holds:

‖Tε− T̂2‖H1(Ωε)≤Cε
1
2 ‖T0‖H3(Ω), (4.3)

where C is a constant independent of ε, T0.

Proof. Applying the operator Aε to Tε− T̂2, we obtain that

Aε(Tε− T̂2)=Aε(Tε)−Aε(T̂
2)

= f −(ε−2 A0+ε−1 A1+A2)(T̂
2)

= f −(ε−2 A0+ε−1 A1+A2)(T0+εT1+ε2T2)

= f −
[
ε−2 A0T0+ε−1(A0T1+A1T0)

+(A0T2+A1T1+A2T0)+ε(A1T2+A2T1)+ε2 A2T2

]

=−ε(A2T1+A1T2)−ε2 A2T2. (4.4)

From the definition of A1,A2,T1,T2 and the symmetry of aij, we have

A2T1=−aij
∂2Nα1

∂xi∂xj

∂T0

∂xα1

−2aij
∂Nα1

∂xi

∂2T0

∂xj∂xα1

−aij Nα1

∂3T0

∂xi∂xj∂xα1

, (4.5a)
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A1T2=−aij
∂2Nα1α2

∂xi∂yj

∂2T0

∂xα1
∂xα2

−aij
∂Nα1α2

∂yj

∂3T0

∂xi∂xα1
∂xα2

−aij
∂2Mα1α2

∂xi∂yj

∂T0

∂xα1

∂T0

∂xα2

−aij
∂Mα1α2

∂yj

∂

∂xi

( ∂T0

∂xα1

∂T0

∂xα2

)

−
∂

∂yi

(
aij

∂Nα1α2

∂xj

) ∂2T0

∂xα1
∂xα2

−
∂

∂yi
(aij Nα1α2)

∂3T0

∂xj∂xα1
∂xα2

−
∂

∂yi

(
aij

∂Mα1α2

∂xj

) ∂T0

∂xα1

∂T0

∂xα2

−
∂

∂yi
(aij Mα1α2)

∂

∂xj

( ∂T0

∂xα1

∂T0

∂xα2

)
, (4.5b)

A2T2=−aij
∂2Nα1α2

∂xi∂xj

∂2T0

∂xα1
∂xα2

−2aij
∂Nα1α2

∂xj

∂3T0

∂xi∂xα1
∂xα2

−aij Nα1α2

∂4T0

∂xi∂xj∂xα1
∂xα2

−aij
∂2Mα1α2

∂xi∂xj

∂T0

∂xα1

∂T0

∂xα2

−2aij
∂Mα1α2

∂xj

∂

∂xi

( ∂T0

∂xα1

∂T0

∂xα2

)
−aij Mα1α2

∂2

∂xi∂xj

( ∂T0

∂xα1

∂T0

∂xα2

)
. (4.5c)

For the last four terms of A1T2, we have

−
∂

∂yi

(
aij

∂Nα1α2

∂xj

) ∂2T0

∂xα1
∂xα2

=−ε
∂

∂xi

(
aij

∂Nα1α2

∂xj

∂2T0

∂xα1
∂xα2

)
+εaij

∂Nα1α2

∂xj

∂3T0

∂xi∂xα1
∂xα2

, (4.6a)

−
∂

∂yi
(aij Nα1α2)

∂3T0

∂xj∂xα1
∂xα2

=−ε
∂

∂xi

(
aij Nα1α2

∂3T0

∂xj∂xα1
∂xα2

)
+εaij Nα1α2

∂4T0

∂xi∂xj∂xα1
∂xα2

, (4.6b)

−
∂

∂yi

(
aij

∂Mα1α2

∂xj

) ∂T0

∂xα1

∂T0

∂xα2

=−ε
∂

∂xi

(
aij

∂Mα1α2

∂xj

∂T0

∂xα1

∂T0

∂xα2

)
+εaij

∂Mα1α2

∂xj

∂

∂xi

( ∂T0

∂xα1

∂T0

∂xα2

)
, (4.6c)

−
∂

∂yi
(aij Mα1α2)

∂

∂xj

( ∂T0

∂xα1

∂T0

∂xα2

)

=−ε
∂

∂xi

(
aij Mα1α2

∂

∂xj

( ∂T0

∂xα1

∂T0

∂xα2

))
+εaij Mα1α2

∂2

∂xi∂xj

( ∂T0

∂xα1

∂T0

∂xα2

)
. (4.6d)

Then (4.4) finally becomes

Aε(Tε− T̂2)= εFε
0+ε2 ∂

∂xi
Fε

i +ε2Wε, (4.7)
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where

Fε
0 =aij

∂2Nα1

∂xi∂xj

∂T0

∂xα1

+2aij
∂Nα1

∂xi

∂2T0

∂xj∂xα1

+aijNα1

∂3T0

∂xi∂xj∂xα1

+aij
∂2Nα1α2

∂xi∂yj

∂2T0

∂xα1
∂xα2

+aij
∂Nα1α2

∂yj

∂3T0

∂xi∂xα1
∂xα2

+aij
∂2Mα1α2

∂xi∂yj

∂T0

∂xα1

∂T0

∂xα2

+aij
∂Mα1α2

∂yj

∂

∂xi

( ∂T0

∂xα1

∂T0

∂xα2

)
, (4.8a)

Fε
i =aij

∂Nα1α2

∂xj

∂2T0

∂xα1
∂xα2

+aij Nα1α2

∂3T0

∂xj∂xα1
∂xα2

+aij
∂Mα1α2

∂xj

∂T0

∂xα1

∂T0

∂xα2

+aij Mα1α2

∂

∂xj

( ∂T0

∂xα1

∂T0

∂xα2

)
, (4.8b)

Wε =aij
∂2Nα1α2

∂xi∂xj

∂2T0

∂xα1
∂xα2

+aij
∂Nα1α2

∂xj

∂3T0

∂xi∂xα1
∂xα2

+aij
∂2Mα1α2

∂xi∂xj

∂T0

∂xα1

∂T0

∂xα2

+aij
∂Mα1α2

∂xj

∂

∂xi

( ∂T0

∂xα1

∂T0

∂xα2

)
. (4.8c)

It is noted that

∂Nα1

∂xj
=

∂Nα1

∂T0

∂T0

∂xj
, (4.9a)

∂2Nα1

∂xi∂xj
=

∂

∂xi

(∂Nα1

∂T0

∂T0

∂xj

)
=

∂2Nα1

∂T2
0

∂T0

∂xi

∂T0

∂xj
+

∂Nα1

∂T0

∂2T0

∂xi∂xj
, (4.9b)

and so are Nα1α2 and Mα1α2 .
On Γε

i , applying the operator Bε to Tε− T̃, we have

Bε(Tε− T̂2)=Bε(Tε)−Bε(T̂
2)

=ε−1σ
[

T4
ε (x)−

∫

Γε
i

k(x,s)T4
ε (s)dΓs

]
−(ε−1B0+B1)(T̂

2)

=ε−1σ
[

T4
ε (x)−

∫

Γε
i

k(x,s)T4
ε (s)dΓs

]
−(ε−1B0+B1)(T0+εT1+ε2T2)

=ε−1σ
[

T4
ε (x)−

∫

Γε
i

k(x,s)T4
ε (s)dΓs

]

−[ε−1B0T0+(B1T0+B0T1)+ε(B0T2+B1T1)+ε2B1T2]

=ε−1σ
[
(T4

ε (x)−T4
0 −ε(4T3

0 T1)−ε2(6T2
0 T2

1 +4T3
0 T2)

]

−ε−1σ
∫

Γ
k(y,λ)(T4

ε (s)−T4
0 −εT4

1,λ−ε2T4
2,λ)dΓλ+ε2niF

ε
i . (4.10)

From (3.2) and (3.12), we have

Bε(Tε− T̂2)=O(ε2)+ε2niF
ε
i . (4.11)
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On the outer boundary ∂Ω, we have

Tε− T̂2=Gε, (4.12)

where

Gε =−εNα1

∂T0

∂xα1

−ε2
(

Nα1α2

∂2T0

∂xα1
∂xα2

+Mα1α2

∂T0

∂xα1

∂T0

∂xα2

)
. (4.13)

So we conclude that Tε− T̂2 is a solution of the following boundary value problem:




Aε(Tε− T̂2)= εFε
0+ε2 ∂

∂xi
Fε

i +ε2Wε in Ωε,

Bε(Tε− T̂2)=O(ε2)+ε2niF
ε
i in Γε,

Tε− T̂2=Gε on ∂Ω.

(4.14)

By using Lemma 4.1 and the argument of cut-off function on the ∂Ω from the idea of
Oleinik [3, 4], we have

‖Gε‖
H

1
2 (∂Ω)

≤Cε
1
2 ‖T0‖H3(Ω). (4.15)

From the regularity of Nα1
, Nα1α2 , Mα1α2 and T0, one obtains

‖Fε
0‖L2(Ωε)≤C1‖T0‖H3(Ω), (4.16a)

n

∑
k=1

‖Fε
k‖L2(Ωε)≤C2‖T0‖H3(Ω), (4.16b)

‖Wε‖L2(Ωε)≤C3‖T0‖H3(Ω), (4.16c)

where the constants C1, C2 and C3 is independent of ε. Note that after integration and
summation over all cells, we obtain a remainder term for O(ε2) given by

∑
z∈Iz

|Γε
z|O(ε2)=O(ε−n)O(εn−1)O(ε2)=O(ε). (4.17)

Then the term O(ε2) is of order 1. From the assumption of Theorem 4.1 and a prior
estimation of elliptic problem, (4.3) is obtained.

We can only obtain the convergence order of O(ε1/2) because of the residual (4.13) on
the boundary ∂Ω, but inside Ωε T̂2(x,y) is more accurate than T̂1(x,y).

5 FE Algorithms for SOTS method and numerical example

5.1 FE Algorithms For SOTS method

Since the coupling occurs between the homogenized solution T0 and Nα1
, which needs

the iterative computation. It is noted that for the same temperature T0 at different x in Ω,
we can get the same cell solution. Then we propose following algorithms.
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1. FE computation of Nα1 for a range of temperature parameter T∈ [T1,T2].

From the weak formulation (3.25), N
h1
α1

can be obtained by solving

∫

Y∗
aij

∂N
h1
α1

∂yj

∂ϕ

∂yi
dy+4σT3

∫

Γ
G(N

h1
α1
)ϕdy

=−4σT3
∫

Γ
G(yα1)ϕdy−

∫

Y∗
aα1k

∂ϕ

∂yk
dy ∀ϕ∈Sh1(Y∗), (5.1)

where Sh1(Y∗) denotes the FE space of Y∗, and Y∗ is partitioned into FE set Sh1 , with the mesh size
h1.

2. Computation of homogenized conductivity a
0,h1
ij (T).

a
0,h1
ij (T)=

1

|Y∗|

[∫

Y∗

(
aij+aik

∂N
h1
j

∂yk

)
dy+4σT3

∫

Γ
yiG(N

h1
j +yj)dy

]
. (5.2)

3. FE computation of N
h1
α1α2

and M
h1
α1α2

in terms of a range of T∈ [T1,T2] and cell solution Nh
α1
.

From the weak formulation (3.77) and (3.78), N
h1
α1α2

and M
h1
α1α2

can be obtained by solving

∫

Y∗
aij

∂N
h1
α1α2

∂yj

∂ϕ

∂yi
dy+4σT3

∫

Γ
G(N

h1
α1α2

)ϕdy

=
∫

Y∗

(
aα1α2−a

0,h1
α1α2

+aα1i
∂N

h1
α2

∂yi

)
ϕdy−

∫

Y∗
aiα1

N
h1
α2

∂ϕ

∂yi
dy

+4σT3
∫

Γ

(∫

Γ
k(y,λ)(λα1−yα1)N

h1
α2

dΓλ

)
ϕdΓy

+2σT3
∫

Γ

(∫

Γ
k(y,λ)(λα1−yα1)(λα2−yα2)dΓλ

)
ϕdy ∀ϕ∈Sh1 (Y∗), (5.3a)

∫

Y∗
aij

∂M
h1
α1α2

∂yj

∂ϕ

∂yi
dy+4σT3

∫

Γ
G(M

h1
α1α2

)ϕdy

=−
∫

Y∗
aiα1

∂N
h1
α2

∂T

∂ϕ

∂yi
dy+

∫

Y∗
aα1i

∂2N
h1
α2

∂T∂yi
ϕdy−

12σT2

|Y∗|

∫

Y∗

(∫

Γ
yα1 G(N

h1
α2
+yα2)dΓy

)
ϕdy

−
1

|Y∗|

∫

Y∗

(∫

Y∗
aα1i

∂2N
h1
α2

∂T∂yi
dy+4σT3

∫

Γ
yα1 G

( ∂N
h1
α2

∂T

)
dΓy

)
ϕdy

−6σT2
∫

Γ
G(N

h1
α1

N
h1
α2
)ϕdΓy+4σT3

∫

Γ

(∫

Γ
k(y,λ)(λα1−yα1)

∂N
h1
α2

∂T
dΓλ

)
ϕdΓy

+12σT2
∫

Γ

(∫

Γ
k(y,λ)(λα1−yα1)N

h1
α2

dΓλ

)
ϕdΓy

+6σT2
∫

Γ

(∫

Γ
k(y,λ)(λα1−yα1)(λα2−yα2)dΓλ

)
ϕdΓy ∀ϕ∈Sh(Y∗). (5.3b)

To approximate
∂N

h1
α1

∂T and
∂2N

h1
α1

∂T∂yi
, we use the difference quotient

∂N
h1
α1

∂T
≈

N
h1
α1
(T,y)−N

h1
α1
(T+∆T,y)

∆T
, (5.4a)



1052 Q. Ma and J. Z. Cui / Commun. Comput. Phys., 14 (2013), pp. 1027-1057

∂2N
h1
α1

∂T∂yi
≈

∂N
h1
α1
(T,y)

∂yi
−

∂N
h1
α1
(T+∆T,y)

∂yi

∆T
. (5.4b)

4. FE computation of the nonlinear homogenized problem (3.29) on Ω using the fixed-point algorithm.

Firstly for n = 0, choose the initial temperate T(0) and get the cell solutions N
h1
α1
(T(0),y),

N
h1
α1α2

(T(0),y), M
h1
α1α2

(T(0),y) and homogenized conductivity a
0,h1
ij (T(0)).

Secondly set (a
0,h1
ij )n = a

0,h1
ij (T(0)) and solve the following linearized weak form at the step n

∫

Ω
(a

0,h1
ij )n

∂(Th0
0 )n

∂xj

∂ϕ

∂xi
=

∫

Ω
f ϕdx ∀ϕ∈Sh0(Ω), (5.5)

where Sh0(Ω) is the FE space with mesh size h0 on homogenized domain Ω.

Compute the average temperature (Th0
0 )∗ and find the temperature T ∈ [T1,T2] such that Tα1 ≤

(T
h0
0 )∗≤Tα2 . Then Compute the homogenized conductivity a0,h

ij (T(n+1)) by

(a
0,h1
ij )n+1=ηa

0,h1
ij (Tα1)+(1−η)a

0,h1
ij (Tα2) ∀0<η<1. (5.6)

Set n=n+1, solve the (5.5) and iterate the above procedure until the following convergence is satisfied

‖(T
h0
0 )n−(T

h0
0 )n+1‖H1(Ω)≤ǫ, (5.7)

where ǫ is tolerant error.

5. Computation of the T̂L,h.
For L=1,

T̂1,h=T
h0
0 +εN

h1
α1

∂T
h0
0

∂xα1

. (5.8)

For L=2

T̂2,h= T̂1,h+ε2
(

N
h1
α1α2

∂2T
h0
0

∂xα1 ∂xα1

+M
h1
α1α2

∂T
h0
0

∂xα1

∂T
h0
0

∂xα2

)
. (5.9)

On each cell, we compute the average temperature

Tm(x)=
1

|εY∗|

∫

εY∗
Th0

0 dy,

and find the temperature T∈ [T1,T2] such that Tβ1
≤Tm(x)≤Tβ2

.

The solution N
h1
α1

is evaluated as

N
h1
α1
=ηN

h1
α1
(Tβ1

,y)+(1−η)N
h1
α1
(Tβ2

,y) ∀0<η<1, (5.10)

and so are N
h1
α1α2

and M
h1
α1α2

.



Q. Ma and J. Z. Cui / Commun. Comput. Phys., 14 (2013), pp. 1027-1057 1053

6. Computation of the thermal gradient.

∂T̂1,h

∂xi
=

∂T
h0
0

∂xi
+

∂N
h1
α1

∂yi

∂T
h0
0

∂xα1

+ε

(
∂N

h1
α1

∂Th0
0

∂T
h0
0

∂xi

∂T
h0
0

∂xα1

+N
h1
α1

∂2T
h0
0

∂xα1 ∂xi

)
, (5.11a)

∂T̂2,h

∂xi
=

∂T̂1,h

∂xi
+ε

(
∂N

h1
α1α2

∂yi

∂2T
h0
0

∂xα1 ∂xα2

+
∂M

h1
α1α2

∂yi

∂T
h0
0

∂xα1

∂T
h0
0

∂xα2

)

+ε2

(
∂Nh1

α1α2

∂T
h0
0

∂Th0
0

∂xi

∂2Th0
0

∂xα1 ∂xα2

+
∂Mh1

α1α2

∂T
h0
0

∂Th0
0

∂xi

∂Th0
0

∂xα1

∂Th0
0

∂xα2

)

+ε2

(
N

h1
α1α2

∂3T
h0
0

∂xα1 ∂xα2 ∂xi
+M

h1
α1α2

( ∂2T
h0
0

∂xα1 ∂xi

∂T
h0
0

∂xα2

+
∂T

h0
0

∂xα1

∂2T
h0
0

∂xα2 ∂xi

))
, (5.11b)

where
∂N

h1
α1

∂yi
, N

h1
α1α2

, M
h1
α1α2

,
∂N

h1
α1α2

∂yi
and

∂M
h1
α1α2

∂yi

are evaluated the same way as (5.10). The terms

∂N
h1
α1

∂T
h0
0

,
∂N

h1
α1α2

∂T
h0
0

and
∂M

h1
α1α2

∂T
h0
0

are evaluated the way in (5.4a) and (5.10).

5.2 Numerical example

Here we make FE computations to show the effectiveness of the SOTS method for the
conductivity-radiative heat transfer problem. Take the dimension n= 2 and ε= 1

8 . The
periodical porous domain Ωε and the normalized cell domain Y∗ are shown in Fig. 2(a)
and (b), respectively and the homogeneous domain Ω=[0,1]2.

1
0

1

(a)

0.1 0.25 0.75 0.9 1
0

0.1

0.25

0.75

0.9

1

Y0

Y1

(b)

Figure 2: (a) Domain Ωε; (b) Unit cell Y∗.
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The cell is composed of two kinds of materials — Y0 and Y1, each of which is homo-
geneous and isotropic, and the heat conductivity aij are respectively

aij

∣∣∣
Y0

=

(
50 0
0 50

)
, aij

∣∣∣
Y1

=

(
0.5 0
0 0.5

)
. (5.12)

The information of the FE meshes is listed in Table 1.

Table 1: Mesh information.

Refined meshes Cell mesh Homogenized mesh

Number of elements 38272 15702 5862

Number of nodes 20673 8151 3032

According to the algorithms, for different temperature parameter, we can compute
the corresponding homogenized conductivity a0

ij. From the symmetry of our domains,

a0
11 = a0

22, a0
12 = a0

21 = 0. Fig. 3 shows the homogenized conductivity in terms of T. We
can see that, at low temperature the effect of radiation is not so important, but as the
temperature become higher, it plays a prominent role in the heat transfer.
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Figure 3: Homogenized Conductivity in terms of T.

Let the heat source f =10000 and the temperature T̃=500 on the outer boundary ∂Ω,
and black body radiation on the surfaces Γε. Since the exact solutions of (2.10) can not be

obtained, we take Th2
ε as the finite element approximate solutions in the fine mesh, and

compare the asymptotic solution with it. Here h2 is the size of the refined mesh, which is
quite small.

Fig. 4 shows FE solution of temperature on refined mesh and asymptotic solutions.
Denote by e0,e1,e2 the error between the refined solution and the asymptotic solution

as follows:

e0=Th2
ε −Th0

0 , e1=Th2
ε − T̂1,h, e2=Th2

ε − T̂2,h.
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Figure 4: (a) FE solution Th2
ε on refined mesh. Asymptotic solutions: (b) Th0

0 ; (c) T̂1,h; (d) T̂2,h.

Table 2 shows the computed relative errors, where |·|H1 denotes the semi-norm.

Table 2: Comparison of computation results.

‖e0‖L2

‖Tε‖L2

‖e1‖L2

‖Tε‖L2

‖e2‖L2

‖Tε‖L2

|e0|H1

|Tε|H1

|e1|H1

|Tε|H1

|e2|H1

|Tε|H1

0.0193521 0.0144525 0.005306 0.72689 0.567339 0.0210051

From the tables and figures, it can be seen that:

1. The computational amount of the SOTS FE algorithm is much less than the clas-
sical FE computation with refined mesh. For the SOTS FE algorithm the radiation
boundary condition is nonlocal but become linear, which is easier compared with
the original problem. On the other hand, we need not to deal with this condition
on each cavity, just in the reference cell domain.

2. The homogenized solution gives the original problem an asymptotic behavior,
which is not enough for ε that is not so small. So the correctors are necessary.
Table 2 shows that the second correctors give much better approximation of the
temperature and its gradient.
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6 Conclusions

The second-order two-scale approximate expression for the solution of heat conductive
problem with the black body radiation on the surfaces of cavities in periodical porous
domains is presented. By scaling ε−1 on Γε, the homogenized conductivity and homoge-
nized equation with radiation are obtained. The main difficulty lies in expansion of the
integrand of the view factor

∫
Γε

i
k(x,s)T4(s)dΓε

s. We make use of proper Taylor expansions

so that the two scales, i.e x and y are handled separately. The continuity of Nα1
(T0,y)

with respect to T0 and the existence of the coupled system (T0,Nα1
) are given to insure

the regularity of the solutions. The uniqueness of the coupled problem is difficulty to
prove, and will be studied in our future paper.

As is previously stated that the first-order two-scale approximation is not enough to
capture the microscopic behavior of the solution, the second order expansion is devel-
oped such that more detail information of radiation effect on the surfaces of the cavities
can be acquired. The H1-norm error estimation is followed by [3, 4] by the regularity
assumption of the homogenized solution and the correctors. Numerical example shows
the SOTS method is effective and only by adding the second order corrector can we more
precisely obtain the local oscillation of the solution.

For the general case of 0< e< 1, the paper in Allaire [8] says, “The rigorous conver-
gence of the homogenization process for the nonlinear model is an open problem”, it
is also quite difficult to expand the Tε to higher order because of the complex form of
Gε. Future work will concern higher expansion for 0< e< 1 and the coupling with the
mechanical behavior.
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