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Abstract. In this paper, we present the Multiscale Finite Element Method (MsFEM)
for problems on rough heterogeneous surfaces. We consider the diffusion equation on
oscillatory surfaces. Our objective is to represent small-scale features of the solution
via multiscale basis functions described on a coarse grid. This problem arises in many
applications where processes occur on surfaces or thin layers. We present a unified
multiscale finite element framework that entails the use of transformations that map
the reference surface to the deformed surface. The main ingredients of MsFEM are (1)
the construction of multiscale basis functions and (2) a global coupling of these basis
functions. For the construction of multiscale basis functions, our approach uses the
transformation of the reference surface to a deformed surface. On the deformed sur-
face, multiscale basis functions are defined where reduced (1D) problems are solved
along the edges of coarse-grid blocks to calculate nodal multiscale basis functions. Fur-
thermore, these basis functions are transformed back to the reference configuration.
We discuss the use of appropriate transformation operators that improve the accuracy
of the method. The method has an optimal convergence if the transformed surface
is smooth and the image of the coarse partition in the reference configuration forms
a quasiuniform partition. In this paper, we consider such transformations based on
harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied
Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configu-
ration. Numerical results are presented where we compare the MsFEM when two
types of deformations are used for multiscale basis construction. The first deformation
employs local information and the second deformation employs a global information.
Our numerical results show that one can improve the accuracy of the simulations when
a global information is used.
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1 Introduction

Complex processes on rough surfaces occur in many applications. These include surface
processes, such as diffusion on a rough terrains, or volume processes in geometrically
complicated 3D thin regions. In addition, complex processes on rough surfaces can hap-
pen when the dominant heterogeneities form complex geometrical shapes. For example,
if we consider the diffusion process in a heterogeneous media (i.e., coefficients represent-
ing conductivity are highly variable), then the diffusion in high-conductivity regions is a
dominant factor that determines the outcome of these processes. One can write the dif-
fusion equation restricted to the high conductivity region and approximate the resulting
model by a diffusion equation on a rough surface. In summary, the small scales inherent
to applications of diffusion problems on surfaces are caused by the presence of

e highly oscillatory geometrical properties;

e highly oscillatory conductivity coefficients.

Because of high spatial resolutions of these rough surfaces, the detailed simulations of
complex processes can be prohibitively expensive. For this reason, some type of coarsen-
ing or upscaling is needed (see [3,39]). In these approaches, oscillatory geometric proper-
ties are represented on a coarse grid by local shape functions. These local shape functions
are further coupled to solve the underlying problem on a coarse grid with a reduced com-
putational cost. In this paper, we propose a new class of MsFEMs where the underlying
fine-scale local problems are solved on a heterogeneous surface directly. In particular, we
consider the problem of approximating the solution of the equation

—div,(«xV,u)=finT and wu=gondl, (1.1)

where V, and div, denote the surface gradient and the surface divergence, respectively.

In this paper, we construct Multiscale Finite Element Methods (MsFEMs) to approxi-
mate equation (1.1). We note that, MsFEMs are suited to obtain inexpensive approxima-
tions of problems with underlying complicated multiscale structures. MsFEMs consist of
two major ingredients: (1) a small number of multiscale basis functions and (2) a global
numerical formulation which couples these multiscale basis functions. Multiscale basis
functions are designed to capture the effects on the solution caused by small scale pa-
rameters such as small scale geometrical variations of the domain where the problem is
posed. In general, important small scale features of the solution need to be incorporated
into these localized basis functions which contain information about the scales which are
smaller (as well as larger) than the local numerical scale defined by the basis functions. In
this paper, we study MsFEM approximation of multiscale elliptic problems on oscillatory
surfaces.

We present a unified framework for MsFEMs that depends on a general coordinate
transformation which deforms the reference surface and it is used to compute multiscale
basis functions. This is motivated by the work of Owhadi and Zhang and suits well to
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the framework of problems on rough surfaces; see [42]. In this framework, we introduce
a mapping of the rough surface, where the problem is posed, to another surface which is
possibly smoother (and it presents less roughness than the original surface or no rough-
ness at all). Using these coordinate transformations, one can define boundary conditions
for multiscale basis functions. In particular, boundary conditions for multiscale func-
tions are constructed as the solution of the reduced problem along the boundaries of the
coarse element on the deformed surface. These are nodal basis functions and, once their
values at the vertices are defined, the reduced one-dimensional problem along the edge is
well posed. Other standard constructions of appropriate boundary conditions can be also
used on the deformed surface. Furthermore, these boundary conditions are mapped back
to the reference surface which gives the boundary conditions for multiscale basis func-
tions in the reference configuration. Once boundary conditions are computed, multiscale
basis functions are defined as the solution of local problems in each coarse region. If
boundary conditions are chosen properly, MsFEM converges independent of small scale
(i.e., there are no resonance errors). In this sense, the correct choice of boundary condition
is dictated on the deformed surface. The correct choice of boundary conditions depends
mainly on two aspects: 1) the resulting equation after the change of coordinates and 2) the
coarse grid employed in the deformed surface. Thus, our goal is to achieve a smoothly
deformed surface and a regular partition on deformed surface in order to guarantee that
MsFEM converges independent of small scales. In this paper, we discuss these issues and
show that appropriate domain transformation can help to reduce the error substantially.

In a previous work [3], the authors designed multiscale solution techniques using
Heterogeneous Multiscale Method (HMM). In this construction, local problems in rep-
resentative volume are solved to construct a coarse-grid approximation of the solution.
Though MsFEM and HMM share many similarities, there are some differences (see [25]
for details). In particular, the approaches designed here are intended for problems with-
out scale separation. We also plan to use the proposed methods to construct efficient
solvers for problems with both small scales and high contrast ( [20-22]). As we have
shown in [20-22], multiscale basis functions such as those constructed here are crucial
for efficient solvers. We would also like to mention that there are investigations where
the domain has oscillations near or along the (exterior) boundaries (see [39]). In these ap-
proaches, multiscale basis functions are constructed for coarse elements near the bound-
aries where the oscillation is present.

In our numerical tests, we consider various rough surfaces that are obtained by per-
turbing a planar surface, a sphere and a torus. These surfaces are perturbed by quasi-
periodic functions. As we noted earlier, these perturbations do not result to periodic
problems that can be solved using a period as a representative element. We present
in detail two main coordinate transformation choices. Our first choice is the identity
which results to boundary conditions constructed by solving a reduced problem on the
boundary. More precisely, the boundary condition solves a local one-dimensional prob-
lem along the rough edges of the boundary of coarse regions. Our second choice is the
use of harmonic-like coordinates. The new coordinates are constructed using the solution
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of a (vector-valued) Laplace-Beltrami equation. In this case, the boundary conditions are
constructed by solving reduced problems along the edges in the new coordinates. We
show that the second choice provides much better accuracy compared to the first ap-
proach. This fact is known for problems posed in two dimensional domains if the coarse
grid in the original (or transformed) domain is chosen properly; see [42]. For problems
posed in two dimensional domains, when the coarse grid in the transformed domain
satisfies requirements that guarantee good approximation in finite element methods, we
observe a standard convergence for MsFEM in the original domain. In general, one has
to select oscillatory coarse grids in the reference configuration that are obtained from a
regular coarse grid in the deformed configuration. The computational construction of
such adequate grids is more involved for the cases where the transform surface is not
a planar surface. We discuss these issues. We also briefly discuss how one can enrich
coarse spaces as an alternative approach to avoid the construction of complicated grids.

The paper is organized as follows. In the next section, we describe diffusion on rough
surfaces and introduce some preliminary notations. In Section 3, we discuss the general
framework for MsFEM. Section 4 is devoted to the construction of coarse spaces that are
used in MsFEM. Finally, we present numerical results in Section 5.

2 Description of problems on rough surfaces

Let T be an orientable compact smooth 2-dimensional surface embedded in R® with
boundary. Let v:T — R3 be the unit normal given by the orientation. Our goal is to
construct numerical approximations of the elliptic equation

—div, (kV,u)=f inT and wu=g ondl, (2.1)

where V, and div, denote the surface gradient and the surface divergence, respectively,
and (for later use) A, denotes the Laplace-Beltrami operator. These differential operators
can be equivalently defined by either using function extensions to an ambient neighbor-
hood of I and Euclidean differential calculus in the neighborhood [14, 29, 44] or through
local parametrization [15]. In the latter case, if X:() — T is a local parametrization and
u is a scalar function defined on I’, then V u = DXG Vi, where G=DX*DX, i=uoX
and DX is the derivative of X. The quantity V,u is independent of the parametrization.

The second fundamental form is V,v. This symmetric tensor has the eigenvector v with
zero eigenvalue. The remaining eigenvalues are the principal curvatures. In local coor-
dinates this curvature tensor is given by G 1B, where bijj=<v,0;;X > and 0;; denotes
second derivatives.

To obtain a weak formulation of equation (1.1), we use Sobolev spaces on surfaces.
Let H'(T) be the square integrable functions in L?(I') with weak tangential derivatives
up to order [ in L?(T'). The Sobolev norms are defined in the usual way and Hj(T) is the
completion of C}(T) with the H'-norm. We recall that, in order for the definition of H'(T)
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Figure 1: Oscillating surface constructed by blending together five different distinctive periodic roughnesses.
The central region is flat and each corner of the square generates a local region of different roughnesses. In
color we see the measure of the e-roughness. The values of € vary from 0 (red) to 0.0002 (blue). The smaller
epsilon indicates the more roughness, whereas the larger epsilon indicates more smoothness.

to make sense, it is necessary that I is Ck® with k+a >1 and I <k+a if k+« is a natural
number and with strict inequality otherwise. For details the reader is referred to [4,45].

After multiplying both sides of equation (1.1) by a smooth test function v vanishing
on dI and integrating by parts, we obtain the weak form of (2.1) which is to find ue H'(T)
with # =g on dI' and such that

/VSZ}~KVSMI/fZ) for all v€ H}(T). (2.2)
r r

Usual existence and regularity results hold for this problem; see [4] p.104.

Our goal is to approximate equation (2.2) using multiscale basis functions. We want
to construct multiscale basis functions that represent the roughness of the surface in the
sense that these basis capture the effect of the roughness of the surface on the solution of
(2.2). Before discussing further about the basis functions, we take a time to describe the
idea of roughness of a surface. Intuitively, we can characterize the geometric “roughness”
of a surface in terms of its curvature. To make compatible the multiscale idea of an e-
rough coefficient (whose features are of scale €) with the geometric idea of an e-rough
surface, we say that a surface I' is e-rough in a given region if for the points p in this region

the quantity % is bounded from below by €. The smaller the € the rougher the
S

surface and vice-versa. For example, in Fig. 1 we show the roughness, i.e., the quantity
Area(TI’
IVSV((P))\Z’
In this paper, we also assume that the conductivity coefficient x does not affect the
local behavior of the solution in the sense that multiscale basis functions constructed
for the Laplace-Beltrami operator, are also effective for equation (2.2). The general case
of constructing efficient numerical methods in the presence of (possible uncorrelated)

oscillations in the geometry and the media properties is a topic of future research.

on a surface with regions of distinctive geometric scales.
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3 Multiscale finite element methods on surfaces

3.1 Finite element for surfaces

Before describing the MsFEM approximation on surfaces, we briefly describe a classical
(fine scale) finite element approximation of elliptic problems on surfaces. This method
was first proposed for the Laplace-Beltrami equation in [18].

We assume that the surface I' can be approximated by polyhedral triangulations where
we can define finite element spaces to approximate the continuous spaces. More pre-
cisely, we work on polyhedral surfaces. Let h>0. A pair (I"",7") is a polyhedral surface
if [, CR® and 7y, is a finite family of closed, non degenerate, cells in R® (triangles or
quadrilaterals for two dimensional surfaces) such that the intersection of two cells in the
family is either empty or a (2—k)-dimensional sub-cell of both cells 1 <k < 2.

We denote the fine-grid cells by K!, i = 1,---,Ntf, the edges by ¢, i = 1,---,N/, and
vertex points by pl', i=1,--- ,N{:.

Equation (2.2) can be discretized using low-order continuous parametric finite ele-
ments following [18]. Let K c R? be the master cell. Given a cell K in R, let FI? :K— K"
be an injective affine-linear (bilinear) map such that the vertices of K are mapped onto the
vertices of K. A C-finite element space on the polyhedral surface I, can then be defined
as follows:

ViI") = {®ec (") : ®oFu eP(K) forall K"eT"}, (3.1)

where P(K) is the space of linear (bilinear) functions on K.
The discrete version of (2.2) is: find 1" € V(I'*) such that

a"(u, ") = f'(v"), forall o € V(I"), (3.2)
where
ah(u,v):/hVSU-KVSu:Z/hVSv-KVSu for all u,0 € V(T") (3.3)
r K
and

f'(v)= rhfvzg/wfv for all v € V(I'"),

with f being some projection of f from T to I'". A simple application of the usual Hilbert
space method shows existence and uniqueness of the discrete problem. The problem
above is equivalent to the solution of a linear system

Aly=p", (3.4)

where the matrix A" = [a?j] and the vector b = [b]h] are defined by

ul A =a"(u,v) (3.5)
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and vTb" = f(v), respectively. Here and from now on, we use the same notation for
finite element functions and their vectors of coordinates in the usual basis of the space of
CO-finite element functions.

The formulation (3.4) (or (3.2)) is our fine-scale (fine-grid) formulation and we assume
that this fine resolution is smaller than the length scales associated with surface oscilla-
tions, i.e., h <e€. Essentially, we are assuming that, at the fine resolution, we can describe
all coefficients and geometrical oscillations accurately. We mention that it is typically
prohibitively expensive to compute approximations of solutions at these fine resolutions.
This is especially true for applications that require solving (3.4) many times for different
right-hand sides.

It is also important to mention [18] that the usual error estimates |u—u | < ch* K with
k=0,1, hold in this case. With ¢ depending linearly on the curvature (geometric depen-
dence) and also linearly on the quotient between the maximum and minimum eigenvalue
of x (contrast dependence).

3.2 Coarse-grid definitions

As before, we are given a fine-grid triangulation (and recall that we denote the fine-grid
cells by Kf-l, i=1,--- ,Ntf, the edges by e?, i=1,--- ,NJ, and vertex points by p?, i=1,--- ,N{:).
Here and below, we consider the triangulation elements as closed sets (relatively to the
surface).

In this section, we assume that a coarse triangulation is given. More precisely, we as-
sume that we can use an agglomeration algorithm to obtain coarse-grid elements, coarse
edges and coarse vertices that satisfy the usual requirements of admissible triangulations.
We require a coarse-grid partition where

e each coarse-grid element K is a simply connected domain and it is a union of fine-
grid elements, i.e., Kf{ = UiES,’tK?’ where S;, is a subset of {1, ,Ntf}, I=1,---,Nf;

e each coarse edge is a simply connected union of fine-grid edges, i.e., e}l =J;c Siee?,
where S;, is a subset of {1,~-~,N§(}, [=1,---,N¢;
e each coarse vertex p!! corresponds to some fine vertex;

o the following relations between coarse elements, coarse edges and coarse vertices
hold:

1. the intersection of two different coarse-grid elements is either empty, a coarse
vertex or a whole coarse edge;

2. the boundary of each coarse-grid element is a union of coarse edges;
3. the intersection of two different coarse edges is either empty or a coarse vertex;
4. the boundary of each coarse edge is the union of coarse vertices.



986 Y. Efendiev, J. Galvis and M. S. Pauletti / Commun. Comput. Phys., 14 (2013), pp. 979-1000

For each coarse vertex, pi, we denote by w the coarse-grid neighborhood of p! that

is defined by
wi=J{K['eP"; pi'eK;}. (3.6)
See Fig. 4 for an illustrative example.

The coarse discretization size H may be too coarse, in the sense that a polyhedral sur-
face with representative size H, say I'"?, does not describe accurately all the oscillations
of the geometry and variations of the coefficients that occur at scale e. We use MsFEM
methods that use inexpensive global formulations and still capture fine grid effects accu-
rately.

Remark 3.1 (Extension beyond surfaces). All the methods and results of this paper could
be, in principle, extended to other dimensions. For example, curves in the plane or space,
open sets or even higher dimensional manifolds. We do not pursue this extension here
for the following reasons:

e Problems on surfaces are by far the most useful case for applications.

e Working with surfaces allows us to use simpler notation and to make a better pre-
sentation of the method in terms of readability.

3.3 Global coupling of MsFEM on surfaces

We construct multiscale basis functions for each coarse node y;. We denote the basis
functions for the node p¥, x;, and assume that the basis functions are supported in w;.
As in standard finite element methods, once multiscale basis functions are constructed
(see Figs. 2 and 3 for the illustration), we seek 1y =);crx;, the Galerkin projection into
the coarse subspace

Vo=span{x;}.
More precisely, we seek ug € Vj such that

" (up,0) = f(v), forall ve V. (3.7)

The system above, determines the coordinates of 1y with respect to the basis functions.
Once ¢;’s are determined, one can define a fine-scale approximation of the solution by re-
constructing via basis functions, o=} _;c;x;. To write the matrix form of (3.7), we assume
that the basis functions are defined on a fine grid and each basis x has vector representa-
tion &, I=1,---,N;, where N, is the number of basis functions. Given these coarse-scale
basis functions, the coarse matrix is given by

Ao=RoAR],

where A is defined in (3.5) and Rg =[®,--,Dn,]. Here, ®;’s are discrete coarse-scale basis
functions defined on a fine grid (i.e., vectors). The coarse problem (3.7) is equivalent to
the coarse linear system

Aoco= fo,



Y. Efendiev, J. Galvis and M. S. Pauletti / Commun. Comput. Phys., 14 (2013), pp. 979-1000 987

Figure 2: lllustration of a multiscale basis function defined over an oscillatory surface. The graph shows the
basis function plotted on top of the surface in the direction of its normal vector.

Figure 3: lllustration of some multiscale basis functions. Here we have included a few of the basis function for
the same surface shown in Fig. 2 shows.

Figure 4: Schematic description of coarse regions. The figure shows an oscillatory surface constructed over a
toroidal region. The light and dark regions show different coarse blocks. The four coarse blocks with a common
vertex that are colored by red, green, blue, and black, constitute the support of the basis function xj, where

p? is the vertex where the blocks intersect.

where f! = RIb and ¢y denotes the vector of coordinates of the solution of the coarse
problem (3.7), ug € V#(T").
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4 Coarse spaces

In this section, we discuss some coarse spaces constructed to capture the fine-scale fea-
tures of the solution. We first introduce a transformation of the original surface to a mod-
ified surface where boundary conditions of basis functions are constructed and mapped
back to the original surface. First, we assume this transformation is given and describe
our multiscale methods. Then, we discuss how an appropriate choice of the transforma-
tion can improve the accuracy of the method. We also describe some procedures that can
be used to enrich the coarse spaces in order to obtain better approximations if needed.

4.1 Unified definition of coarse basis functions using domain transformations

We introduce a transformation F": " — R® and denote by I the image of the original
surface I'" under the transformation F”; that is,

" =F1h).

We refer to I'" as the transformed (or deformed) surface. We use similar notations for the
images of fine- and coarse-grid elements, edges and vertices associated to I that is, we
use IZ?, Ef?, ]5?, IZI-H, E?{ and ﬁZH For instance, IZ? = Fh(Kf-l).

Multiscale basis functions satisfy the leading order homogeneous equation in each
KH and our goal is to construct boundary conditions to compute these multiscale basis
functions. The boundary conditions are constructed on the deformed surface T". We
construct the boundary condition for the I-th coarse node in the following way. We start
with the value at the coarse-grid vertex,

bi(p}') =0y
and, on each coarse-grid edge, El (+) will be assumed to satisfy
—Asb; =0, in every edge ¢.

Here, —A is Laplace-Beltrami operator along the edge ¢". Next, for each vertex p! in
the original surface ", we define a multiscale basis function by

—div, (xV,x1)=0 in KFcwk, (4.1a)
x1=broF" on K. (4.1b)

See Fig. 5 for an illustration. We introduce the coarse space

vy = span{x}. (4.2)
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Figure 5: lllustration of the computation of the boundary conditions in the transformed surface to compute
basis functions in the original surface.

Remark 4.1. We would like to remark that the MSFEM formulation allows one to take
advantage of scale separation. In particular, instead of the coarse element K in (4.1), a
representative smaller volume can be chosen. See [25] for discussions.

Remark 4.2. Global information can also be incorporated in the construction of multi-
scale basis functions. See for instance [24,42] where various choices of global information
are proposed. Energy minimizing procedures are considered in [47].

Remark 4.3. In the case of open domains, that is I being an open subset of R3, it is well
known that, with the use of linear boundary conditions, resonance errors appear. This
is due to the fact that the fine-scale solution is, in general, not piecewise linear on the
boundary of the coarse-grid elements. In order to overcome resonance errors, different
multiscale techniques can be used to impose the boundary conditions of the multiscale
basis functions. Many other boundary conditions are introduced and analyzed in the
literature. For instance, an oversampling technique can be employed (see [32,33]). Another
example is the reduced boundary conditions which are found to be efficient in many
porous media applications (see [36]).

4.2 Examples of domain deformations

4.2.1 Identity

When F" = Id, where Id is the identity operator in T, the corresponding coarse space is
denoted by VI?= span{x;}. When I'" is an open domain in IR?, the space V“ coincides
with the multiscale space that uses an auxiliary one-dimensional problem over the edges.
See [25].

4.2.2 Harmonic coordinates

We follow metric-based upscaling ideas developed in [42,43] for open subdomains. We
extend some of the ideas in [42,43] to problems posed on surfaces. The main idea is to
find a domain transformation such that, the oscillatory problem in current coordinates,
transforms into a smoother problem in the new coordinates. The change of coordinates
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Figure 6: lllustration of harmonic deformations. We show the original domain (on the left) and its image
through the harmonic deformation (on the right) for different surfaces. By row: square domain with periodic
diffusion coefficient, oscillatory surface over a hemi-sphere and oscillatory bended pipe. Observe that for the
first two cases, the deformed domains are on a plane, and for the oscillatory surfaces, the deformed surfaces are
“smooth” (without oscillations); this being a typical property of the proposed harmonic map.

is given by Fl{ :T —R® such that Fl}, is the fine-scale finite element approximation of
—div (kV,F)=0 in T (4.3)
with one of the following boundary conditions: Dirichlet boundary condition
F=Id on dI, (4.4)
or Neumann boundary condition
kV . F-vs=vs on dTI, (4.5)

where v; denotes the co-normal vector. The corresponding coarse space is denoted by

h
V(f Hor — gpan{ x;}. Fig. 6 illustrates the harmonic deformation obtained for different sur-
faces.
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4.3 Discussion on the convergence

To motivate the proposed harmonic coordinates transformation, consider the case when
the boundary curve of the surface lies on a plane. In this case, it is not difficult to show
that the image of F! will be the plane region bounded by the curve representing the
boundary of the surface.
Using this transformation as a change of variables, one can also show that the surface
equation
—div,(xV,u)=f in T

transforms to
—x:D*t=f in F}_(T).

For example, let us consider the Laplace-Beltrami equation (x = I) on different rough
surfaces that share the same boundary. In this case, even though F};  will be different for
the different surfaces, the image = Pﬁar(l“) will be the same for all of them. And, the
deformed problem is —Ai#l=g¢ for each surface. Any roughness of the surface is reduced to
appear only on the boundary condition and/or in the source term. Then, assuming that
1) the transformed grid is adequate and 2) the transform boundary condition is smooth,
we see that using standard basis on the deformed domain will give the classical finite
element error behavior, and thus our MsFEM does not suffer of resonance errors in this
case.

Remark 4.4 (Implementation using appropriate grids). Itis important to note that, for im-
plementation purposes, it has to be decided the amount of computational time and work
dedicated to the construction of coarse-grids. One can construct a grid in the original
surface and then map this grid to the deformed surface. One can also construct a coarse-
grid on the deformed surface and map it back to the original surface. As suggested by
our previous discussions, the latter choice results in no resonance errors. Unfortunately,
constructing grids on deformed surfaces is complicated since, in general, only a polyhe-
dral description of the transformed surface is available. For this reason, we will present
only numerical examples where we construct coarse-grids only on the original surfaces.
This choice does not guarantee the absence of resonance errors (especially for surfaces
with complicated boundaries), but it is a more practical choice from the computational
point of view. This discrepancy will show as a resonance error in some simulations that
would disappear by developing a better way to grid the deformed mesh. We mention
that, in Section 4.4, we propose an alternative way to reduce resonance errors without
constructing complicated grids that uses local spectral information to enrich the coarse
spaces constructed with standard grids on the original surfaces. This is a topic where we
plan to do further research.

Remark 4.5 (Analitical issues). In the paper, our goal is to propose a computational ap-
proach. The analysis of the proposed methods will be studied in future. It is worth
mentioning a couple of relevant question in the analytical context. One question is under
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what conditions is the solution of the harmonic equation a diffeomorphism and related to
this one are the conditions for the finite element approximation to this solution to be one
to one. Also, it would be important to analytically quantify how much the oscillations on
the deformed surface are reduce through the harmonic transformation. We are currently
working on these questions.

4.4 Enrichment using local spectral information for complicated diffusion
coefficients

In many cases, e.g., in the presence of high-contrast media properties, one needs to enrich
the space to achieve better approximation of the solution. These issues have been studied
for equations that are described in R2 and R3. In this section, we discuss how initial
coarse space, defined as above, can be enriched in a systematic way. See [20,22,23] and
references therein.

In general, we can consider the basis functions given, as before, by

—div,(kV,x1)=0 in Kl cwl, (4.6a)
X1=b; on dwf, (4.6b)

where the boundary conditions b; are determined using procedures that involve the
transformation of the reference surface. Using these multiscale basis functions, we de-
fine a function on the surface (see [20,22,23])

%:ZKVS)(pVS)Q.
i

Using «, we define an eigenvalue problem

—div, (kV @) =AxD;; in KF cwl, (4.7a)
V.®;;-v=0 on dwk. (4.7b)

Using dominant eigenvalues (starting with the smallest), we enrich our initial multiscale
space that is spanned by x; with x;®;;, [=1,---,L;. This leads to a more accurate approx-
imation of the fine-scale solution. In particular, convergence is expected as L; increases,
where Lj is the number of eigenvectors included in the coarse space. The convergence
rate is related to the rate of growth of the eigenvalues above. We expect the rate of growth
of the eigenvalues to be similar the case of problems posed in open domains where the
rate of growth of the eigenvalues and the number of dominant modes are determined
by the variations of the coefficient. This and related approaches are shown to be effec-
tive when the coefficient varies widely and the problem domain is an open subset of
R, See [20,22,23] and references therein. The results of this procedure and related ones
(applied to equations on surfaces) will be reported elsewhere.
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5 Numerical simulations

We implemented MsFEM described in Section 4.1 with two domain transformations: (1)
the no-deformation (i.e. where the deformation is the identity) of Section 4.2.1 (we call
MSsFEM-Id) and (2) the harmonic transformation of Section 4.2.2 (we call MsFEM-Hr). At
the implementation level, the surface is given by the fine grid; no analytic expression is
necessary and no restrictions as far as of its shape or topology are required. Every aspect
of the method is developed on the (discrete fine) surface itself. The coarse-grid is formed
by an agglomeration of fine cells (see Fig. 4 for illustration). The implementation is coded
with the help of the Deal Il library [6], and the figures were generated with Paraview [11].

For the first simulation, we solve a quasiperiodic coefficient elliptic problem on a
square (special case of a smooth surface). We consider the oscillatory coefficients given

by

X4 . X4 . X4 . X4
Kdd—6—|—sm< )—l—sm(G\/,)—|—sm<€\/ﬁ)—|—sm<em)+sm<em) (5.1)

and take € = 0.03. The fine mesh is taken to be a regular Cartesian mesh with the total
degrees of freedom of 263169 (this is about 10 points per € in each direction). First, we
show some harmonic coordinates in Fig. 7 where we show the deformation of a uniform
Cartesian grid in the original domain. We present numerical convergence for varying
coarse-mesh size in Table 1. The first column shows the number of total basis functions
used in MsFEM and the third column presents the ratio between the coarse-mesh size and
€. As in standard MsFEM, we expect to observe a resonance error when H /€ is close to
unity for MsFEM-Id. This can be observed for both L? and H! errors from columns 4 and
5. On the other hand, when MsFEM-Hr is employed, we see that there is no resonance
error (see Columns 6 and 7 in Table 1) and the method has first-order convergence in the
H! norm. coefficients.
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Figure 7: Harmonic deformation (view on a coarser grid) corresponding to the elliptic problem with rough
coefficients on the unit square whose convergence behaviour is shown in Table 1.
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Table 1: Relative errors for the approximate solution of Eq. (1.1) on the unit square with a diagonal diffusion
Xd

tensor Kd,d:6+sin(%)+sin(%)Jrsin(Em)Jrsin(exﬁ)Jrsin(e\x/d%) and €=0.03, €/h=10.9 and fine problem
number of dofs 263169.

# basis H H/e MsFem-Id MsFem-Hr
L2 error | EOC | HY error | EOC | L2 error | EOC | H! error | EOC
9 0.707 | 23.6 | 0.320 - 0.567 - 0.332 - 0.581 -

25 0.354 | 11.8 | 0.081 2.0 0.287 1.0 0.090 1.9 0.299 1.0
81 0.177 | 5.9 0.029 1.5 0.179 0.7 0.024 1.9 0.157 0.9
289 | 0.088| 29 0.025 0.2 0.162 0.1 0.006 2.0 0.075 1.1
1089 | 0.044 | 1.5 0.014 0.8 0.118 0.5 0.002 1.6 0.036 1.1

Next, we consider the Laplace-Beltrami equation on a quasi-periodic rough surface
that can be described as a graph over the unit square. More precisely, we consider the
graph of f(x1,x2) =Y2(e/c;)(cos(cix1/€)+cos(cixa/€)) with (x1,xp) in the unit square
and c= (1,\/5,\/E). In Fig. 8, we depict the original surface (left picture) and the illus-
tration of the harmonic deformation for a coarse block shown with light color on the left
plot. In Table 2, we present convergence results for MsFEM-Id and MsFEM-Hr. As be-
fore, the number of multiscale basis functions are shown on Column 1. We observe that
MsFEM-Id has a resonance error and, in particular, the error does not decrease much as
the coarse mesh decreases when H/¢€ is close to unity. On the other hand, MsFEM-Hr
has better accuracy compared to MsFEM-Id when H/¢ is close to unity. As mentioned
earlier, the reason for MsFEM-HTr to exhibit a slow convergence rate at H/e~1 is that the
coarse mesh in the deformed configuration, that is obtained from the coarse mesh in the

K"= Fh(kh)

Figure 8: |lllustration of the surface obtained as quasi-periodic perturbation of a plane and the harmonic
deformation Fpy,,. Bottom left: actual surface where the problem is posed and solved. Top right: zoom out of
a the grayed piece of the surface. Bottom right: piece of the deformed domain corresponding to the image by
Fryar of the grayed piece of surface. Convergence behavior for the elliptic problem on this surface is shown in
Table 2.
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Table 2: Relative errors for the approximate solution of Eq. (1.1) on a surface that oscillates about a square
with an identity diffusion tensor. The surface is generated as (xl,xz,Z? (e/¢;)(cos(cix1/€)+cos(cixa/€)) with
(x1,%2) in the unit square, ¢=(1,1/5,4/10) and €=0.005, ¢/h=7.6 and fine problem number of dofs 1050625.

# basis H H/e MsFem-Id MsFem-Hr
L2 error | EOC | H! error | EOC | L? error | EOC | H! error | EOC
9 0.707 | 22.5 0.332 - 0.580 - 0.329 - 0.577 -

25 0.356 | 11.3 | 0.095 1.8 0.312 0.9 0.091 1.9 0.301 0.9
81 0179 | 5.7 0.036 1.4 0.196 0.7 0.028 1.7 0.170 0.8
289 | 0.090| 29 0.039 | -0.1 0.195 0.0 0.020 0.5 0.140 0.3
1089 | 0.062 | 2.0 0.049 | -0.3 0.221 -0.2 0.021 -0.1 0.144 0.0
4225 | 0.053 | 1.7 0.038 0.4 0.195 0.2 0.009 1.2 0.095 0.6
16641 | 0.031 | 1.0 0.017 1.2 0.129 0.6 0.005 0.8 0.069 0.5

reference configuration by our harmonic map, is not regular and thus we do not have a
standard convergence in the deformed configuration.

For the third example, we consider an oscillatory surface that is obtained by per-
turbing a semi-sphere with a quasiperiodic function. This perturbation is obtained in
the following way. First, we select a few points on the sphere (in this case 12 points
quasi-equidistributed) and consider the tangent planes through these points. Over each
tangent plane we consider the function e(cos(x;/€)+cos(x2/€)), where x; and x, are
the local plane coordinates. This function defined on each plane is then projected to the
sphere and gives the particular plane contribution to the amplitude of the normal pertur-

Figure 9: lllustration of the surface obtained as normal perturbation of a semisphere and the harmonic defor-
mation Fp,,. Left: actual surface where the problem is posed and solved. Top right: zoom out of a the grayed
piece of the surface. Bottom right: piece of the deformed domain corresponding to the image by Fp,, of the
grayed piece of surface. Convergence behavior for the elliptic problem on this surface is shown in Table 3.
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Table 3: Relative errors for the approximate solution of Eq. (1.1) on an oscillatory surface around a half sphere
with an identity diffusion tensor. Here, €=0.005, € /h=4.6 and fine problem number of dofs 1311745.

# basis H H/e MsFem-Id MsFem-Hr
LZ2 error | EOC | H! error | EOC | L? error | EOC | H! error | EOC
25 0.947 | 30.1 0.041 - 0.192 - 0.034 - 0.176 -

89 0.504 | 16.0 | 0.011 1.9 0.099 1.0 0.009 1.9 0.090 1.0
337 | 0.257| 82 0.004 1.5 0.058 0.8 0.003 1.6 0.049 0.9
1313 | 0129 | 4.1 0.003 0.4 0.052 0.2 0.002 0.6 0.036 0.4
5185 | 0.066 | 2.1 0.005 | -0.7 0.065 -0.3 0.002 0.0 0.042 -0.2

20609 | 0.035| 1.1 0.008 | -0.7 0.080 -0.3 0.003 | -0.6 0.045 -0.1
82177 1 0.023 | 0.7 0.004 1.0 0.052 0.6 0.001 1.6 0.030 0.6

Table 4: Relative errors for the approximate solution of Eq. (1.1) on an oscillatory surface around a torus section
with an identity diffusion tensor. Here, €=0.05, € /h=8.4 and the fine problem has the number of dofs 787968.

# basis H H/e MsFem-Id MsFem-Hr
L2 error | EOC | H! error | EOC | L2 error | EOC | H! error | EOC
18 0.518 | 16.5 0.239 - 0.487 - 0.184 - 0.422 -

60 0278 | 89 0.064 1.9 0.252 1.0 0.047 2.0 0.209 1.0
216 | 0.142| 45 0.023 1.5 0.153 0.7 0.015 1.6 0.117 0.8
816 | 0.073 | 2.3 0.020 0.2 0.141 0.1 0.008 0.9 0.087 0.4
3168 |0.039 | 1.2 0.033 | -0.7 0.182 -0.4 0.008 0.0 0.086 0.0

bation on the sphere. More precisely, we set a cut-off radius (in this case 0.7) for all the
planes and we blend the contribution of each with a partition of unity over the sphere.
We then solve the Laplace-Beltrami equation with the right-hand-side f =1 and homo-
geneous boundary conditions. In Fig. 9, we depict the original oscillatory sphere and
a coarse region (left picture) and the transformation of this coarse region (right figure).
Numerical results are presented in Table 3. As we observe from this table, MsFEM-Hr
has a better accuracy compared to MsFEM-Id and a better convergence rate. However,
we observe the resonance error in MsFEM-Hr due to the gridding issue discussed earlier.

For our last numerical example, we study MsFEM-Id and MsFEM-Hr for the Laplace-
Beltrami equation on an oscillating torus, see Fig. 10 (left picture). In this case, a sectional
piece of torus is normally perturbed by e(cos(0/€)+cos(¢/€)), where 6 and ¢ are the
angles of the major and minor circles corresponding to the point. The Laplace-Beltrami
equation is solved with the source term f =1 and homogeneous Dirichlet boundary con-
ditions. Numerical results are presented in Table 4 for varying coarse-mesh size and fixed
€. In Fig. 5, we plot these errors against the coarse-mesh size. As we observe from these
numerical results, MsFEM-Hr converges faster and the error for decreasing H reduces
faster for MSFEM-Hr compared to MsFEM-Id. These results show that MsFEM-Hr has
smaller resonance effects though, as we discussed it, still contains resonance errors due
to coarse-grid ding.
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Figure 10: Oscillating toroidal section surface and its harmonic deformation. Top left: actual surface where
the problem is posed and solved. Bottom left: Deformed surface. Right: piece of the deformed domain
corresponding to the image by Fp,, of the grayed piece of surface. Convergence behavior for the elliptic
problem on this surface is shown in Table 4.

0.8

T T
— L2 error MsFEM-Id
g4ask | ——— L2 error MsFEM-Hr
— H1 error for MsFEM-Id
——=H1 error for MsFEM-Hr

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Goarse Mesh Size

Figure 11: Error comparisons between MsFEM-Id and MsFEM-Hr. Solid lines designate MsFEM-Id error (red
lines are for H' errors and black lines for L? errors) and dashed lines represent the errors for MsFEM-Hr.

6 Conclusions

In this paper, we develop multiscale finite element methods (MsFEMSs) for problems on
rough surfaces. The proposed approach consists of two parts: (1) multiscale basis func-
tion computations; (2) coupling multiscale basis functions in a global variational formula-
tion. We consider the diffusion problem, though the proposed concepts can be applied to
more general equations. The multiscale basis computation entails the use of transforma-
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tions that map the reference surface to the deformed surface. On the deformed surface,
the computation of basis functions is defined and then these basis functions are used in
the reference domain. In particular, reduced (1D) problems are solved along the edges of
coarse-grid blocks to calculate nodal multiscale basis functions in the deformed domain.
We discuss the use of appropriate transformation operators that improve the accuracy
of the method. The method has an optimal convergence if the transformed surface is
smooth and the image of the coarse partition in the reference configuration forms a qua-
siuniform partition. Numerical results are presented where we compare two different
multiscale basis functions: (1) basis functions that are computed using local deforma-
tions; (2) basis functions that are computed using global deformations. Our numerical
results show that the second approach is more accurate and we discuss the convergence
of the method.
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