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Abstract. In this paper, we study numerically quantized vortex dynamics and their in-
teraction in the two-dimensional (2D) Ginzburg-Landau equation (GLE) with a dimen-
sionless parameter ε>0 on bounded domains under either Dirichlet or homogeneous
Neumann boundary condition. We begin with a review of the reduced dynamical laws
for time evolution of quantized vortex centers in GLE and show how to solve these
nonlinear ordinary differential equations numerically. Then we present efficient and
accurate numerical methods for discretizing the GLE on either a rectangular or a disk
domain under either Dirichlet or homogeneous Neumann boundary condition. Based
on these efficient and accurate numerical methods for GLE and the reduced dynami-
cal laws, we simulate quantized vortex interaction of GLE with different ε and under
different initial setups including single vortex, vortex pair, vortex dipole and vortex
lattice, compare them with those obtained from the corresponding reduced dynami-
cal laws, and identify the cases where the reduced dynamical laws agree qualitatively
and/or quantitatively as well as fail to agree with those from GLE on vortex inter-
action. Finally, we also obtain numerically different patterns of the steady states for
quantized vortex lattices under the GLE dynamics on bounded domains.
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1 Introduction

A quantized vortex in two-dimensional (2D) space is a particle-like or topological defect,
whose center is zero of the order parameter, possessing localized phase singularity with
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integer topological charge called also as winding number or index. Quantized vortices
have been widely observed in many different physical systems, such as the liquid helium,
type-II superconductors, Bose-Einstein condensates, atomic gases and nonlinear optics
[1, 5, 10, 12, 23, 28]. They are key signatures of superconductivity and superfluidity and
their study retains as one of the most important and fundamental problems since they
were predicted by Lars Onsager in 1947 in connection with superfluid Helium.

In this paper, we are concerned with the vortex dynamics and interactions in 2D
Ginzburg-Landau equation (GLE) for modelling superconductivity [15, 23, 25]:

λε∂tψ
ε(x,t)=∆ψε+

1

ε2
(1−|ψε|2)ψε, x∈Ω, t>0, (1.1)

with initial condition
ψε(x,0)=ψε

0(x), x∈ Ω̄, (1.2)

and under either Dirichlet boundary condition (BC)

ψε(x,t)= g(x)= eiω(x), x∈∂Ω, t≥0, (1.3)

or homogeneous Neumann BC

∂ψε(x,t)

∂n
=0, x∈∂Ω, t≥0. (1.4)

Here, Ω⊂R
2 is a 2D smooth and bounded domain, t is time, x=(x,y)∈R

2 is the Carte-
sian coordinate vector, ψε :=ψε(x,t) is a complex-valued function describing the ‘order
parameter’ for a superconductor, ω is a given real-valued function, ψε

0 and g are given
smooth and complex-valued functions satisfying the compatibility condition ψε

0(x)=g(x)

for x∈ ∂Ω, n=(n1,n2) and n⊥=(−n2,n1)∈R
2 satisfying |n|=

√

n2
1+n2

2 = 1 are the out-

ward normal and tangent vectors along ∂Ω, respectively, ε> 0 is a given dimensionless
constant, and λε is a positive function of ε. Denote the Ginzburg-Landau (GL) functional
(‘energy’) as [15, 23, 25]

E ε(t) :=
∫

Ω

[

1

2
|∇ψε|2+ 1

4ε2

(

|ψε|2−1
)2
]

dx=E ε
kin(t)+E ε

int(t), t≥0, (1.5)

where the kinetic and interaction parts are defined as

E ε
kin(t) :=

1

2

∫

Ω
|∇ψε|2dx, E ε

int(t) :=
1

4ε2

∫

Ω

(

|ψε|2−1
)2

dx, t≥0,

then it is easy to see that, for GLE (1.1) with either Dirichlet BC (1.3) or homogeneous
Neumann BC (1.4) for general domain Ω, or periodic BC when Ω is a rectangle, the GL
functional decreases when time increases, i.e.

d

dt
E ε(t)=−λε

∫

Ω
|∂tψ

ε|2dx≤0, t≥0.



W. Bao and Q. Tang / Commun. Comput. Phys., 14 (2013), pp. 819-850 821

There have been many analytical and numerical studies recently that deal with quan-
tized vortex states and their interaction of the GLE (1.1) in the whole space R

2 or on
bounded domains under different scalings regarding to the distances between different
vortices. Neu [28] studied vortex states and their stability of the GLE (1.1) in the whole
space R

2 with λε = ε=1 for superconductivity. Under this scaling, the vortex core size is
O(1). He found numerically that quantized vortices with winding number m=±1 are
dynamically stable, and respectively, |m|>1 dynamically unstable [28]; and obtained for-
mally the reduced dynamical laws governing the motion of the vortex centers under the
assumption that these vortices are distinct and well-separated, i.e. the reduced dynami-
cal laws are asymptotically valid when the distances between vortices become larger and
larger [28]. Based on the reduced dynamical laws which are sets of ordinary differential
equations (ODEs) for the vortex centers, one can obtain that two vortices with opposite
winding number attract each other, while the ones with the same winding number re-
pel. Recently, by proposing efficient and accurate numerical methods for discretizing
the GLE in the whole space, Zhang et al. [37, 38] compared the dynamics of quantized
vortices from the reduced dynamical laws obtained by Neu with those from the direct
numerical simulation results from GLE under different parameter and/or initial setups.
They identified numerically the parameter regimes for quantized vortex dynamics when
the reduced dynamical laws agree qualitatively and/or quantitatively and fail to agree
with those from GLE dynamics [37, 38].

Neu’s results were extended to the GLE with impurities by Jian et al. [16–18] or on
bounded domain with different BCs by Lin [23–25] and the full Ginzburg-Landau model
by Peres & Rubinstein [29] and later by E [12] by introducing a small dimensionless pa-
rameter 0< ε< 1 which is proportional to the core size of a vortex. In these extensions,
the authors obtained the reduced dynamical laws for the dynamics of vortices under the
GLE dynamics when ε→ 0 with fixed distances between different vortices initially, see
for instance [2, 3, 8, 11, 25–27] and references therein. In fact, for the GL functional (1.5),
Bethuel et al. [7] obtained rigorously that the core size of each vortex is of O(ε) when
0< ε≪ 1. In addition, formal analysis indicate that, if initially ψε

0 has isolated vortices,
these vortices move with velocities of the order of |lnε|−1 in the GLE (1.1) dynamics with
λε =1 [6, 23, 24]. Therefore, to obtain nontrivial vortex dynamics, in this paper and from
now on, we always assume 0< ε<1 and choose

λε =
1

|lnε| =
1

ln(1/ε)
, 0< ε<1. (1.6)

In fact, for the GLE (1.1) with λε chosen in (1.6) on a bounded domain, if initially ψε
0 has

isolated vortices, when ε→ 0, the reduced dynamical laws for vortex centers have been
obtained formally and rigorously for different boundary conditions by many authors, see
for instance [6, 9, 12, 14, 15, 21, 25, 30, 36] and references therein.

The main aims of this paper are: (i) to present efficient and accurate numerical meth-
ods for discretizing the reduced dynamical laws governing the motion of vortex centers
and the GLE (1.1) on either a rectangle or a disk under different BCs, (ii) to study numer-
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ically vortex interaction under the GLE dynamics with different initial setups and com-
pare them with those from the reduced dynamical laws in different parameter regimes,
and (iii) to identify the cases where the reduced dynamical laws agree qualitatively and/or
quantitatively as well as fail to agree with those from GLE on vortex interaction.

The paper is organized as follows. In Section 2, we briefly review the reduced dy-
namical laws of vortex interaction of the GLE (1.1) with either Dirichlet or homogeneous
Neumann BC and present numerical methods to discretize them. In Section 3, efficient
and accurate numerical methods are presented for discretizing the GLE in a rectangle or a
disk with different BCs. In Section 4, numerical results are reported for vortex interaction
of GLE under Dirichlet BC, and similar results for GLE under homogeneous Neumann
BC are reported in Section 5. Finally, some conclusions are drawn in Section 6.

2 Reduced dynamical laws and their discretization

In this section, we review two different forms of the reduced dynamical laws for dynam-
ics of vortex centers in the GLE (1.1) with either Dirichlet or homogeneous Neumann BC,
show their equivalence and present efficient numerical methods to discretize them.

We assume that, in the initial data ψε
0, there are exactly M isolated and distinct vortices

whose centers are located at x0
1 = (x0

1,y0
1), x0

2 = (x0
2,y0

2), ···, x0
M = (x0

M,y0
M) with winding

numbers n1, n2, ··· , nM , respectively. The winding number of each vortex can be chosen
as either 1 or −1, i.e. nj = 1 or −1 for j = 1,2,··· ,M. At time t ≥ 0, the M isolated and
distinct vortex centers are located at x1(t) = (x1(t),y1(t)), x2(t) = (x2(t),y2(t)), ···, and
xM(t)=(xM(t),yM(t)). Denote

X0 :=(x0
1,x0

2,··· ,x0
M), X :=X(t)=(x1(t),x2(t),··· ,xM(t)), t≥0,

then the renormalized energy associated to the M vortex centers is defined as [7, 23]

W(X) :=W(X(t))=− ∑
1≤j 6=l≤M

njnl ln
∣

∣xj(t)−xl(t)
∣

∣, t≥0. (2.1)

2.1 Under the Dirichlet BC

For the GLE (1.1) with Dirichlet BC (1.3), when ε → 0, two different forms of reduced
dynamical laws have been obtained in the literatures for governing the motion of the M
vortex centers.

The first one which is widely used has been derived formally and rigorously in the
literature, see for instance [7, 9, 12, 25, 33] and references therein:

d

dt
xj(t)=−∇xj [W(X)+Wdbc(X)], j=1,··· ,M, t>0, (2.2)

with initial condition
xj(0)=x0

j , j=1,2,··· ,M. (2.3)
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Here the renormalized energy Wdbc(X) comes from the effect of the Dirichlet BC associ-
ated to the M vortex centers X=X(t) and it is defined as [7, 23]:

Wdbc(X)=−
M

∑
j=1

njR(xj;X)+
∫

∂Ω

[

R(x;X)+
M

∑
j=1

nj ln|x−xj|
]

∂n⊥ω(x)

2π
ds, (2.4)

where, for any fixed X∈ΩM, R(x;X) is a harmonic function in x, i.e.

∆R(x;X)=0, x∈Ω, (2.5)

with the following Neumann BC

∂R(x;X)

∂n
=∂n⊥ω(x)− ∂

∂n

M

∑
l=1

nl ln|x−xl|, x∈∂Ω. (2.6)

Using an identity in [7] (see Eq. (51) on page 84),

∇xj
[W(X)+Wdbc(X)]=−2nj∇x

[

R(x;X)+
M

∑
l=1&l 6=j

nl ln|x−xl |
]

x=xj

,

the above reduced dynamical law (2.2) can be simplified, for 1≤ j≤M, as

d

dt
xj(t)=2nj

[

∇xR(x;X)|x=xj(t)+
M

∑
l=1&l 6=j

nl

xj(t)−xl(t)

|xj(t)−xl(t)|2

]

, t>0. (2.7)

The second one which is easier from the computational point of view has been ob-
tained by Jerrard and Soner [15], for 1≤ j≤M, as

d

dt
xj(t)=2nj

[

J∇xQ(x;X)|x=xj(t)+
M

∑
l=1&l 6=j

nl

xj(t)−xl(t)

|xj(t)−xl(t)|2

]

, t>0; (2.8)

where J is a 2×2 symplectic matrix defined as

J=

(

0 1
−1 0

)

,

and for any fixed X∈ΩM, Q(x;X) is a harmonic function in x and satisfies the following
Dirichlet BC

Q(x;X)=ω(x)−
M

∑
l=1

nlθ(x−xl), x∈∂Ω, (2.9)

with the function θ : R
2→ [0,2π) defined as

cos(θ(x))=
x

|x| , sin(θ(x))=
y

|x| , 0 6=x=(x,y)∈R
2. (2.10)

In the above two different forms of the reduced dynamical laws for GLE, although
the two harmonic functions R(x;X) and Q(x;X) satisfy different BCs, the two different
forms of the reduced dynamical laws are indeed equivalent.



824 W. Bao and Q. Tang / Commun. Comput. Phys., 14 (2013), pp. 819-850

Lemma 2.1. For any fixed X∈ΩM, we have the following identity

∇xR(x;X)= J∇xQ(x;X) , x∈Ω, (2.11)

which immediately implies the equivalence of the two reduced dynamical laws (2.7) and (2.8).

Proof. For any fixed X ∈ ΩM, since ∇·(J∇xQ(x;X)) = ∂yxQ(x;X)−∂xyQ(x;X) = 0, there
exists a function ϕ(x) such that

J∇xQ(x;X)=∇ϕ(x), x∈Ω.

Thus, ϕ(x) satisfies the Laplace equation

∆ϕ(x)=∇·(J∇xQ(x;X))=∂yx ϕ(x)−∂xy ϕ(x)=0, x∈Ω, (2.12)

with the following Neumann BC

∂n ϕ(x)=(J∇xQ(x;X))·n=∇xQ(x;X)·n⊥=∂n⊥Q(x;X), x∈∂Ω. (2.13)

Noticing (2.9), we obtain

∂n ϕ(x)=∂n⊥ω(x)− ∂

∂n⊥

N

∑
l=1

nlθ(x−xl)=∂n⊥ω(x)− ∂

∂n

N

∑
l=1

nl ln|x−xl|, x∈∂Ω. (2.14)

Combining (2.12), (2.14), (2.5) and (2.6), we get

∆(R(x;X)−ϕ(x))=0, x∈Ω, ∂n (R(x;X)−ϕ(x))=0, x∈∂Ω. (2.15)

Thus
R(x;X)= ϕ(x)+constant, x∈Ω,

which immediately implies the equality (2.11).

2.2 Under the homogeneous Neumann BC

Similarly, for the GLE (1.1) with the homogeneous Neumann BC (1.4), when ε→0, there
are also two different forms of the reduced dynamical laws that govern the motion of the
M vortex centers.

Again, by using the renormalized energy Wnbc which comes from the effect of the
homogeneous Neumann BC associated to the M vortex centers X=X(t)

Wnbc(X)=−
M

∑
j=1

njR̃(xj;X), (2.16)

where, for any fixed X∈ΩM, R̃(x;X) is a harmonic function in x and satisfies the following
Dirichlet BC

R̃(x;X)=−
M

∑
l=1

nl ln|x−xl|, x∈∂Ω, (2.17)
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the first one has been derived formally and rigorously by many authors in the literatures
[9, 12, 25, 31, 32] as

d

dt
xj(t)=−∇xj [W(X)+Wnbc(X)], j=1,··· ,M, t>0. (2.18)

Using the following identity

∇xj
[W(X)+Wnbc(X)]=−2nj∇x

[

R̃(x;X)+
M

∑
l=1&l 6=j

nl ln|x−xl |
]

xj

, (2.19)

the above reduced dynamical laws collapse, for 1≤ j≤M, as

d

dt
xj(t)=2nj

[

∇xR̃(x;X)|x=xj(t)+
M

∑
l=1&l 6=j

nl

xj(t)−xl(t)

|xj(t)−xl(t)|2

]

, t>0. (2.20)

Similarly, the second one in this case has been obtained by Jimbo and Morita [19–21],
for 1≤ j≤M, as

d

dt
xj(t)=2nj

[

J∇xQ̃(x;X)|x=xj(t)+
M

∑
l=1&l 6=j

nl

xj(t)−xl(t)

|xj(t)−xl(t)|2

]

, t>0; (2.21)

where, for any fixed X∈ΩM, Q̃(x;X) is a harmonic function in x and satisfies the follow-
ing Neumann BC

∂Q̃(x;X)

∂n
=− ∂

∂n

M

∑
l=1

nlθ(x−xl), x∈∂Ω. (2.22)

Similar to the proof of Lemma 2.1, we can establish the equivalence of the above
two different forms of the reduced dynamical laws for the GLE under homogeneous
Neumann BC.

Lemma 2.2. The reduced dynamical laws (2.20) and (2.21) are equivalent.

In order to compare the solution of the reduced dynamical laws (2.7) or (2.8) and
(2.20) or (2.21) with those from the GLE under Dirichlet or homogeneous Neumann BC,
respectively, the ODEs (2.7) or (2.8) and (2.20) or (2.21) are discretized by the standard
fourth order Runge-Kutta method. For each fixed X∈ΩM, when the domain Ω is a rect-
angle, the Laplace equation (2.5) with BCs (2.6) or (2.17) or (2.9) or (2.22) is discretized by
the standard second order finite difference method; and respectively, when the domain
Ω is a disk, they are discretized in θ-direction via the Fourier pseudospectral method and
in r-direction via the finite element method (FEM) with (r,θ) the polar coordinates. For
details, one can see similar discretizations in subsections 3.2 & 3.3 below and we omit
them here for brevity.
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3 Numerical methods

In this section, we present efficient and accurate numerical methods for discretizing the
GLE (1.1) on either a rectangle or a disk with initial condition (1.2) and under either
Dirichlet or homogeneous Neumann BC. The key ideas in our numerical methods are
based on: (i) applying a time-splitting technique which has been widely used for nonlin-
ear partial differential equations [13, 35] to decouple the nonlinearity in the GLE; and (ii)
adapt proper finite difference and/or spectral method to discretize a gradient flow with
constant coefficient.

3.1 Time-splitting

Let τ :=△t> 0 be the time step size, denote tn = nτ for n≥ 0. For n= 0,1,··· , from time
t= tn to t= tn+1, the GLE (1.1) is solved in two splitting steps. One first solves

λε∂tψ
ε(x,t)=

1

ε2
(1−|ψε|2)ψε, x∈Ω, t≥ tn, (3.1)

for the time step of length τ, followed by solving

λε∂tψ
ε(x,t)=∆ψε , x∈Ω, t≥ tn, (3.2)

for the same time step. Eq. (3.2) is discretized in the next two subsections on a rectangle
and a disk, respectively. For t∈ [tn ,tn+1], we easily obtain the following ODE for ρ(x,t)=
|ψε(x,t)|2:

∂tρ(x,t)=
2

ε2λε
[1−ρ(x,t)]ρ(x,t), x∈Ω, tn ≤ t≤ tn+1. (3.3)

Solving the above ODE, we get

ρ(x,t)=
ρ(x,tn)

ρ(x,tn)+(1−ρ(x,tn))exp[− 2
ε2λε

(t−tn)]
. (3.4)

Plugging (3.4) into (3.1), we can integrate it exactly to get

ψε(x,t)=
ψε(x,tn)

√

|ψε(x,tn)|2+(1−|ψε(x,tn)|2)exp(− 2
ε2λε

(t−tn))
. (3.5)

We remark here that, in practice, we always use the second-order Strang splitting [35],
that is, from time t= tn to t= tn+1: (i) evolve (3.1) for half time step τ/2 with initial data
given at t= tn; (ii) evolve (3.2) for one step τ starting with the new data; and (iii) evolve
(3.1) for half time step τ/2 again with the newer data.
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3.2 Discretization when Ω is a rectangle

Let Ω= [a,b]×[c,d] be a rectangular domain, and denote mesh sizes hx= b−a
N and hy= d−c

L
with N and L being two even positive integers.

Firstly, we present a Crank-Nicolson 4th-order compact finite difference (CNFD) method
for discretizing Eq. (3.2) with Dirichlet BC (1.3) by using the 4th-order compact finite dif-
ference discretization for spatial derivatives followed by a Crank-Nicolson scheme for
temporal derivative. To this end, for j = 0,1,··· ,N, l = 0,1,··· ,L and n ≥ 0, we denote
(xj,yl) with xj = a+ jhx and yl = c+lhy as the grid points, and let ψε,n

j,l be the numerical

approximation of ψε(xj,yl,tn). Moreover, we define the finite difference operators as

δ2
xψε,n

j,l =
ψε,n

j+1,l−2ψε,n
j,l +ψε,n

j−1,l

h2
x

, δ2
yψε,n

j,l =
ψε,n

j,l+1−2ψε,n
j,l +ψε,n

j,l−1

h2
y

,

then a CNFD discretization for (3.2) reads, i.e. for 1≤ j≤N−1 and 1≤ l≤ L−1

λε

τ

[

I+
h2

x

12
δ2

x+
h2

y

12
δ2

y

]

(

ψε,n+1
j,l −ψε,n

j,l

)

=

[

δ2
x+δ2

y+
h2

x+h2
y

12
δ2

xδ2
y

](

ψε,n+1
j,l +ψε,n

j,l

2

)

, (3.6)

where I is the identity operator and the BC (1.3) is discretized as

ψε,n+1
0,l = g(a,yl), ψε,n+1

N,l = g(b,yl), l=0,1,··· ,L,

ψε,n+1
j,0 = g(xj,c), ψε,n+1

j,L = g(xj,d), j=0,1,··· ,N.

Here although an implicit time discretization is applied for (3.2), the linear system in
(3.6) can be solved explicitly via direct Poisson solver through discrete sine transform
(DST) [22] at the computational cost of O(NLln(NL)).

Combining the above CNFD discretization with the second order Strang splitting pre-
sented in the previous subsection, we obtain a time-splitting Crank-Nicolson finite dif-
ference (TSCNFD) discretization for the GLE (1.1) on a rectangle with Dirichlet BC (1.3).
This TSCNFD discretization is unconditionally stable, second order in time and fourth
order in space, the memory cost is O(NL) and the computational cost per time step is
O(NLln(NL)).

Secondly, we present a cosine pseudospectral method for Eq. (3.2) with homogeneous
Neumann BC (1.4) by using cosine spectral discretization for spatial derivatives followed
by integrating in time exactly. To this end, let

YNL =span
{

φpq(x)=cos(µx
p(x−a))cos(µ

y
q(y−c)), 0≤ p≤N−1, 0≤q≤ L−1

}

,

with

µx
p =

pπ

b−a
, p=0,1,··· ,N−1; µ

y
q =

qπ

d−c
, q=0,1,··· ,L−1,



828 W. Bao and Q. Tang / Commun. Comput. Phys., 14 (2013), pp. 819-850

then the cosine spectral discretization for (3.2) with (1.4) is as follows: Find ψε
NL(x,t)∈YNL,

i.e.

ψε
NL(x,t)=

N−1

∑
p=0

L−1

∑
q=0

ψ̂ε
pq(t)φpq(x), x∈Ω, t≥ tn, (3.7)

such that
λε∂tψ

ε
NL(x,t)=∆ψε

NL(x,t), x∈Ω, t≥ tn. (3.8)

Plugging (3.7) into (3.8), noticing the orthogonality of the cosine functions, for 0≤p≤N−1
and 0≤q≤ L−1, we find

λε
d

dt
ψ̂ε

pq(t)=−
[

(µx
p)

2+(µ
y
q)

2
]

ψ̂ε
pq(t), t≥ tn. (3.9)

The above ODE can be integrated exactly in time, i.e.

ψ̂ε
pq(tn+1)= e−[(µ

x
p)

2+(µ
y
q)

2]τ/λε ψ̂ε
pq(tn), 0≤ p≤N−1, 0≤q≤ L−1. (3.10)

However, the above procedure is not suitable in practice due to the difficulty of comput-
ing the integrals in (3.7). In practice, we need to approximate the integrals by a quadra-
ture rule on grids. For j=0,1,··· ,N−1, l=0,1,··· ,L−1 and n≥0, we denote (xj,yl) with

xj+ 1
2
= a+(j+ 1

2 )hx and yl+ 1
2
= c+(l+ 1

2)hy as the grid points, and let ψε,n

j+ 1
2 ,l+ 1

2

be the nu-

merical approximation of ψε(xj+ 1
2
,yl+ 1

2
,tn), then, by choosing ψε,0

j+ 1
2 ,l+ 1

2

=ψε
0(xj+ 1

2
,yl+ 1

2
), a

cosine pseudospectral approximation for (3.2) with (1.4) reads as:

ψε,n+1

j+ 1
2 ,l+ 1

2

=
N−1

∑
p=0

L−1

∑
q=0

αx
pα

y
qe−[(µ

x
p)

2+(µ
y
q)

2]τ/λε ψ̂ε,n
pq φpq(xj+ 1

2
,yl+ 1

2
), n≥0, (3.11)

where

ψ̂ε,n
p,q=αx

pα
y
q

N−1

∑
j=0

L−1

∑
l=0

ψε,n

j+ 1
2 ,l+ 1

2

φpq(xj+ 1
2
,yl+ 1

2
), 0≤ p≤N−1, 0≤q≤ L−1,

with

αx
p=







√

1
N , p=0,

√

2
N , 1≤ p≤N−1,

α
y
q =







√

1
L , q=0,

√

2
L , 1≤q≤ L−1.

Again, combining the above cosine pseudospectral discretization with the second or-
der Strang splitting presented in Subsection 3.1, we obtain a time-splitting cosine pseu-
dospectral (TSCP) discretization for the GLE (1.1) on a rectangle with homogeneous Neu-
mann BC (1.4). This TSCP discretization is unconditionally stable, second order in time
and spectral order in space, the memory cost is O(NL) and the computational cost per
time step is O(NLln(NL)) via discrete cosine transform (DCT) [34].
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Remark 3.1. If the homogeneous Neumann BC (1.4) is replaced by periodic BC, the above
TSCP discretization for the GLE (1.1) is still valid provided that we replace the cosine
basis functions by the Fourier basis functions in the spectral discretization and use the
quadrature rule associated to the Fourier functions [34]. We omit the details here for
brevity.

3.3 Discretization when Ω is a disk

Let Ω={x | |x|<R} be a disk with R>0 a fixed constant. In this case, it is natural to adopt
the polar coordinate (r,θ) in our numerical discretization. In order to discretize (3.2) with
either (1.3) or (1.4), we apply the standard Fourier pseudospectral method in θ-direction
[34], finite element method in r-direction, and Crank-Nicolson method in time [4, 5, 37].
Plugging the following truncated Fourier expansion for ψε

ψε(r,θ,t)=
l=L/2−1

∑
l=−L/2

ψ̂l(r,t)eilθ , 0≤ r≤R, 0≤ θ≤2π, (3.12)

with L an even positive number and ψ̂l the Fourier coefficients for the l-th mode into (3.2)
and using the orthogonality of the Fourier functions, we obtain for l=− L

2 ,··· , L
2 −1:

λε∂tψ̂l(r,t)=
1

r
∂r

(

r∂rψ̂l(r,t)
)

− l2

r2
ψ̂l(r,t), 0< r<R, t≥ tn, (3.13)

with the following BC at r=0

∂rψ̂0(0,t)=0, ψ̂l(0,t)=0, l 6=0, t≥ tn. (3.14)

When the Dirichlet BC (1.3) is used for (3.2), we then impose the following BC at r=R:

ψ̂l(R,t)= ĝl :=
1

2π

∫ 2π

0
g(θ)e−ilθdθ, − L

2
≤ l≤ L

2
−1, t≥ tn. (3.15)

Let Pk denote all polynomials with degree at most k, denote 0 = r0 < r1 < ··· < rN =
R be a partition for the interval [0,R] with N a positive integer and a mesh size h =
max0≤j≤N−1(rj+1−rj), and define a finite element space by

Uh=
{

uh∈C[0,R] | uh|[r j,r j+1]∈Pk, 0≤ j≤N−1
}

.

Introducing the following finite element approximate sets associated to the Dirichlet BCs
for − L

2 ≤ l≤ L
2 −1 as

U
g
l =

{

{

uh ∈Uh | uh(R)= ĝ0

}

l=0,
{

uh ∈Uh | uh(0)=0, uh(R)= ĝl

}

l 6=0;
(3.16)
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then we obtain the FEM approximation for (3.13) with (3.14) and (3.15): Find ψ̂h
l (·,t)∈U

g
l

with − L
2 ≤ l≤ L

2 −1 such that

d

dt
A(ψ̂h

l ,φh)=B(ψ̂h
l ,φh)+l2C(ψ̂h

l ,φh), ∀φh∈U0
l , tn ≤ t≤ tn+1; (3.17)

where the bilinear forms A, B and C are defined as

A(uh,vh)=λε

∫ R

0
ruhvhdr, B(uh,vh)=−

∫ R

0
r∂ruh∂rvhdr,

C(uh,vh)=−
∫ R

0

1

r
uhvhdr, ∀uh, vh ∈Uh.

The above ODE system (3.17) is then discretized by the standard Crank-Nicolson scheme
in time. Here although an implicit time discretization is applied for (3.17), the one-
dimensional nature of the problem makes the coefficient matrix for the linear system
band limited. For example, if the piecewise linear polynomial is used, i.e. k=1 in Uh, the
matrix is tridiagonal. Thus for each fixed − L

2 ≤ l≤ L
2 −1, fast algorithms can be applied to

solve the resulting linear systems at the cost of O(N).
Similarly, when the homogeneous Neumann BC (1.4) is used for (3.2), the above dis-

cretization is still valid provided that we replace the BC at r=R in (3.15) by

∂rψ̂l(R,t)=0, − L

2
≤ l≤ L

2
−1, t≥ tn; (3.18)

the finite element subsets U
g
l in (3.16) and U0

l in (3.17) by the following finite element
spaces

Un
l =

{

Uh l=0,
{

uh∈Uh | uh(0)=0
}

l 6=0.
(3.19)

The detailed discretization is omitted here for brevity.

Remark 3.2. Eq. (3.13) with (3.14) can also be discretized in space by either finite differ-
ence or Legendre or Chebyshev pseudospectral method [34] and in time by the Crank-
Nicolson method.

4 Numerical results under Dirichlet BC

In this section, we report numerical results for vortex interactions of GLE (1.1) under the
Dirichlet BC (1.3) and compare them with those obtained from the reduced dynamical
laws (2.7) with (2.3). For a given bounded domain Ω, the GLE (1.1) is unchanged by
the re-scaling x → dx, t → d2t and ε → dε with d the diameter of Ω. Thus without lose
of generality, in this section and the next, without specification, we always assume that
the diameter of Ω is O(1) and study how the dimensionless parameter ε, initial setup,
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boundary value and geometry of the domain Ω affect the dynamics and interaction of
vortices. The function g in the Dirichlet BC (1.3) is given as

g(x)= e
i(h(x)+∑

M
j=1njθ(x−x0

j )), x∈∂Ω,

and the initial condition ψε
0 in (1.2) is chosen as

ψε
0(x)=ψε

0(x,y)= eih(x)
M

∏
j=1

φε
nj
(x−x0

j ), x=(x,y)∈ Ω̄, (4.1)

where M>0 is the total number of vortices in the initial data, h(x) is a harmonic function,
θ(x) is defined in (2.10) and for j= 1,2,··· ,M, nj = 1 or −1, and x0

j =(x0
j ,y0

j )∈Ω are the

winding number and initial location of the j-th vortex, respectively,

φε
nj
(x)= f ε(|x|) einjθ(x), x=(x,y)∈Ω.

Here, f ε(r) is chosen as

f ε(r)=

{

1, r≥R0=0.25,
f ε
v(r), 0≤ r≤R0;

(4.2)

where f ε
v is the solution of the following problem:

[

1

r

d

dr

(

r
d

dr

)

− 1

r2
+

1

ε2

(

1−( f ε
v(r))

2
)

]

f ε
v(r)=0, 0< r<R0,

with the Dirichlet BC
f ε
v(r=0)=0, f ε

v(r=R0)=1.

The solution f ε
v of the above problem is computed numerically and we depict the function

f ε(r) in Fig. 1 with different ε.

0 0.25 0.5
0

0.5

1

r

f ε  (r
)

 

 

ε=1/25

ε=1/50

ε=1/100

Figure 1: Plot of the function f ε(r) in (4.2) with different ε.

To simplify our presentation, for j=1,2,··· ,M, hereafter we let xε
j (t) and xr

j(t) be the

j-th vortex center in the GLE dynamics and corresponding reduced dynamics, respec-
tively, and denote dε

j (t)= |xε
j (t)−xr

j (t)| as their difference. Moreover, in the presentation
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of figures, the initial location of a vortex with winding number +1, −1 and the location
that two vortices merge are marked as ‘+’, ‘◦’ and ‘⋄’, respectively. Finally, in our com-
putations, if not specified, we take Ω=[−1,1]2 in (1.1), mesh sizes hx = hy =

ε
10 and time

step τ=10−6. The GLE (1.1) with (1.3), (1.2) and (4.1) is solved by the method TSCNFD
presented in Section 3.

4.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex in the GLE
(1.1) dynamics and its corresponding reduced dynamics, i.e. we take M= 1, n1 = 1 and
consider following cases: case I. x0

1 = (0,0), h(x) = x+y; case II. x0
1 = (0,0), h(x) = x−y;

case III. x0
1 =(0,0), h(x)= x2−y2; case IV. x0

1=(0.1,0.2), h(x)= x+y; case V. x0
1 =(0.1,0.2),

h(x)=x−y; and case VI. x0
1=(0.1,0.2), h(x)=x2−y2. Fig. 2 depicts trajectory of the vortex

center when ε= 1
32 in (1.1) for above 6 cases and dε

1 with different ε for case II, IV and VI.

(a)
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Figure 2: (a)-(b): Trajectory of the vortex center in GLE under Dirichlet BC when ε= 1
32 for cases I-VI (from

left to right and then from top to bottom), and (c): dε
1 for different ε for cases II, IV and VI (from left to right)

in Section 4.1.

From Fig. 2 and additional numerical experiments not shown here for brevity, we can
draw following conclusions: (i). When h(x)≡0, the vortex center doesn’t move and this
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is similar to the case in the whole space. (ii). When h(x)= (x−by)(x− y
b ) with b 6=0, the

vortex does not move if x0=(0,0), while it does move if x0 6=(0,0) (cf. case III and VI for
b= 1). (iii). When h(x) 6= 0 and h(x) 6= (x−by)(x− y

b ) with b 6= 0, in general, the vortex
center does move to a different point from its initial location and stays there forever. This
is quite different from the situation in the whole space, where a single vortex may move
to infinity under the initial data (4.1) with h(x) 6=0 and Ω=R

2. (iv). In general, the initial
location, the geometry of the domain and the boundary value will all affect the motion of
the vortex center. (v). When ε→0, the dynamics of the vortex center in the GLE dynamics
converges uniformly in time to that in the reduced dynamics (cf. Fig. 2) which verifies
numerically the validation of the reduced dynamical laws. In fact, based on our extensive
numerical experiments, the motion of the vortex center from the reduced dynamical laws
agree with those from the GLE dynamics qualitatively when 0< ε<1 and quantitatively
when 0< ε≪1.

4.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the GLE (1.1)
dynamics and its corresponding reduced dynamical laws, i.e. we take M=2, n1=n2=1,
x0

1=(−0.5,0) and x0
2 =(0.5,0) in (4.1). Fig. 3 depicts time evolution of the amplitude |ψε|,

while Fig. 4 shows that of the GL functionals as well as the trajectory of the vortex centers
when ε= 1

32 in (1.1) with different h(x) in (4.1). Fig. 5 shows time evolution of xr
1(t), xε

1(t)
and dε

1(t) with different h(x) in (4.1).

(a)

(b)

Figure 3: Contour plots of |ψε(x,t)| at different times for the interaction of vortex pair in GLE under Dirichlet

BC with ε= 1
32 and different h(x) in (4.1): (a) h(x)=0, (b) h(x)= x+y.

From Figs. 3, 4 & 5 and additional numerical results not shown here for brevity, we
can draw the following conclusions for the interaction of vortex pair under the GLE dy-
namics (1.1) with Dirichlet BC: (i). The two vortices undergo a repulsive interaction, they
never collide, both of them move towards the boundary of Ω for a while and finally



834 W. Bao and Q. Tang / Commun. Comput. Phys., 14 (2013), pp. 819-850

−0.8 0 0.8
−0.8

0

0.8

x

y

0 0.2 0.4
20

23

26

 

 

t

0 0.2 0.4
3.123

3.139

3.155

t
 

 

E ε

E ε

kin

E ε

int

−0.6 0.15 0.9
−0.9

−0.15

0.6

x

y

0 1.5 3
18

24

30

t
 

 

0 1.5 3
3.11

3.16

3.21

t
 

 

E ε

E ε

kin

E ε

int

Figure 4: Trajectory of vortex centers (1st and 3rd) and time evolution of the GL functionals (2nd and 4th) for

the interaction of vortex pair in GLE under Dirichlet BC with ε= 1
32 for different h(x) in (4.1): h(x)= 0 (left

two), h(x)= x+y (right two).
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Figure 5: Time evolution of xε
1(t) and xr

1(t) (left and middle) and their difference dε
1 (right) for different ε for

the interaction of vortex pair in GLE under Dirichlet BC for different h(x) in (4.1): (a) h(x)=0, (b) h(x)=x+y.

stop somewhere near the boundary which indicate that the boundary imposes a repul-
sive force on the vortices when t is large enough (cf. Figs. 3 & 4). (ii). When h(x)≡ 0,
the two vortex centers move outward along the line connecting them initially, and their
trajectories are symmetric i.e. xε

1(t)=−xε
2(t), while when h(x) 6=0, it affects the motion of

the two vortex centers significantly (cf. Fig. 4). (iii). When ε→0, the dynamics of the two
vortex centers in the GLE dynamics converges uniformly in time to that in the reduced
dynamics (cf. Fig. 5) which verifies numerically the validation of the reduced dynamical
laws in this case. In fact, based on our extensive numerical experiments, the motion of
the two vortex centers from the reduced dynamical laws agree with those from the GLE
dynamics qualitatively when 0< ε<1 and quantitatively when 0< ε≪1. (iv). During the
dynamics of GLE, the GL functional and its kinetic part decrease when time increases,
its interaction part changes dramatically when t is small, and when t→∞, all the three
quantities converge to constants (cf. Fig. 4), which immediately imply that a steady state
solution will be reached when t→∞.
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4.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole in the GLE (1.1)
dynamics and its corresponding reduced dynamics, i.e. we take M= 2, n1 =−1, n2 = 1,
x0

1 =(−d0,0) and x0
2 =(d0,0) in (4.1). Fig. 6 depicts time evolution of the amplitude |ψε|,

while Fig. 7 shows that of the GL functionals as well as the trajectory of the vortex centers
when ε= 1

32 in (1.1) with different d0 and h(x) in (4.1). Fig. 8 shows time evolution of xr
1(t),

xε
1(t) and dε

1(t) with d0=0.5 for different ε and h(x) in (4.1).

(a)

(b)

(c)

Figure 6: Contour plots of |ψε(x,t)| at different times for the interaction of vortex dipole in GLE under Dirichlet

BC with ε= 1
32 for different d0 and h(x) in (4.1): (a) h(x)=0, d0=0.5, (b) h(x)=x+y, d0=0.5, (c) h(x)=x+y,

d0 =0.3.

From Figs. 6, 7 & 8 and additional numerical results not shown here for brevity, we
can draw the following conclusions for the interaction of vortex dipole under the GLE
dynamics (1.1) with Dirichlet BC: (i). Both boundary value, i.e. h(x), and distance be-
tween the two vortex centers initially, i.e. 2d0, affect the motion of the vortices signifi-
cantly. (ii). When h(x)≡ 0, for any initial location of the vortex dipole, the two vortices
always undergo an attractive interaction and their centers move toward each other along
the line connecting them initially, their trajectory are symmetric with respect to the line
perpendicular to the segment connecting them initially, and finally, they merge at the
middle point of this segment, i.e. the point xmerge =

1
2(x

0
1+x0

2) (cf. Figs. 6 & 7). At the
collision, both vortices in the vortex dipole merge/annihilate with each other; and after
the collision, they will disappear and no vortex is left afterwards during the dynamics.
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Figure 7: Trajectory of vortex centers (left) and time evolution of the GL functionals (right) for the interaction

of vortex dipole in GLE under Dirichlet BC with ε= 1
32 for different d0 and h(x) in (4.1): (a) h(x)=0, d0=0.5,

(b) h(x)= x+y, d0 =0.5, (c) h(x)= x+y, d0 =0.3.
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Figure 8: Time evolution of xε
1(t) and xr

1(t) (left and middle) and difference dε
1 (right) for different ε for the

interaction of vortex dipole in GLE under Dirichlet BC with d0 = 0.5 for different h(x) in (4.1): (a) h(x)= 0,
(b) h(x)= x+y.
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Figure 9: Critical value dε
c for the interaction of vortex dipole of the GLE (1.1) under Dirichlet BC with

h(x)≡ x+y in (4.1) for different ε.

For any fixed 0< ε<1, there is a collision time Tε which increases when ε decreases. (iii).
When h(x)=x+y, the two vortices move along a symmetric trajectory, i.e. xε

1(t)=−xε
2(t).

Moreover, for the reduced dynamical laws, there exists a critical value dr
c, which is found

numerically as dr
c ≈ 0.4142, such that when the distance between the two vortex centers

initially d0 =
1
2 |x0

1−x0
2|< dr

c, then the vortex dipole will merge at finite time, and respec-
tively, when d0 > dr

c, the vortex dipole will never collide. Similarly, for the vortex dipole
under the GLE dynamics, for each fixed 0< ε<1, there exists a critical value dε

c such that
when d0 < dε

c, then the vortex dipole will merge at finite time, and respectively, when
d0 > dε

c, the vortex dipole will never collide (cf. Figs. 6 & 7). We find numerically the
critical distance dε

c for 0< ε< 1 and depict them in Fig. 9. From these values, we can fit
the following relationship between dε

c and dr
c:

dε
c ≈dr

c+41.26ε3.8, 0≤ ε<1.

(iv). When ε→ 0, the dynamics of the two vortex centers under the GLE dynamics con-
verges uniformly in time to that of the reduced dynamical laws before the collision hap-
pens (cf. Fig. 8) which verifies numerically the validation of the reduced dynamical laws
in this case. In fact, based on our extensive numerical experiments, the motion of the two
vortex centers from the reduced dynamical laws agree with those from the GLE dynam-
ics qualitatively when 0< ε< 1 and quantitatively when 0< ε≪ 1 if the initial distance
between the two vortex centers satisfies either 0 < d0 < dr

c or d0 > dε
c. On the contrary,

if dr
c < d0 < dε

c, then the motion of the vortex dipole from the reduced dynamical laws
is different qualitatively from that of the GLE dynamics. (v). During the dynamics of
GLE, the GL functional decreases when time increases, its kinetic and interaction parts
change dramatically when t is small, and when t→∞, all the three quantities converge
to constants (cf. Fig. 7). Moreover, if finite time merging/annihilation happens, the GL
functional and its kinetic and interaction parts change significantly during the collision.
In addition, when t → ∞, the interaction energy goes to 0 which immediately implies
that a steady state will be reached in the form of φε(x)= eic(x), where c(x) is a harmonic
function satisfying c(x)|∂Ω =h(x)+∑

M
j=1 njθ(x−x0

j ).
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4.4 Vortex lattices

Here we present numerical results of the interaction of vortex lattices under the GLE (1.1)
dynamics. We will consider the following cases:

case I. M=3, n1=n2=n3=1, x0
1=(−0.25,

√
3

4 ), x0
2=(−0.25,−

√
3

4 ), x0
3=(0.5,0);

case II. M=3, n1=n2=n3=1, x0
1=(−0.4,0), x0

2=(0,0), x0
3=(0.4,0);

case III. M=3, n1=n2=n3=1, x0
1=(0,0.3), x0

2=(0.15,0.15), x0
3=(0.3,0);

case IV. M=3, n1=−1, n2=n3=1, x0
1=(−0.25,

√
3

4 ), x0
2=(−0.25,−

√
3

4 ), x0
3=(0.5,0);

case V. M=3, n2=−1, n1=n3=1, x0
1=(−0.4,0), x0

2 =(0,0), x0
3=(0.4,0);

case VI. M=3, n1=−1, n2=n3=1, x0
1 =(0.2,0.3), x0

2=(−0.3,0.4), x0
3=(−0.4,−0.2);

case VII. M=4, n1=n2=n3=n4=1, x0
1=(0,0.5), x0

2=(−0.5,0), x0
3=(0,−0.5), x0

4=(0.5,0);

case VIII. M = 4, n1 = n3 =−1, n2 = n4 = 1, x0
1 = (0,0.5), x0

2 = (−0.5,0), x0
3 = (0,−0.5),

x0
4=(0.5,0);

case IX. M=4, n1=n2=−1, n3=n4=1, x0
1=(0,0.5), x0

2=(−0.5,0), x0
3=(0,−0.5), x0

4=(0.5,0).

Fig. 10 shows trajectory of the vortex centers when ε= 1
32 in (1.1) and h(x)=0 in (4.1)

for the above 9 cases. From Fig. 10 and additional numerical experiments not shown here
for brevity, we can draw the following conclusions: (i) The interaction of vortex lattices
under the GLE dynamics with Dirichlet BC is very interesting and complicated. The
detailed dynamics and interaction pattern of a lattice depends on its initial alignment of
the lattice, geometry of the domain Ω and the boundary value g(x). (ii) For a lattice of M
vortices, if they have the same index, no collision will happen for any time t≥0. On the
other hand, if they have opposite index, e.g. M+

>0 vortices with index ‘+1’ and M−
>0

vortices with index ‘−1’ satisfying M++M−= M, collision will always happen at finite
time. In addition, when t is sufficiently large, there exist exactly |M+−M−| vortices of
winding number ‘+1’ if M+

>M−, and resp. ‘−1’ if M+
<M−, left in the domain.

4.5 Steady state patterns of vortex lattices with the same index

Here we present the steady state patterns of vortex lattices in the GLE dynamics (1.1) un-
der Dirichlet BC. We study how the geometry of the domain Ω and boundary condition,
i.e. h(x), affect the alignment of vortices in the steady states. To this end, we take ε= 1

16
in (1.1),

nj =1, x0
j =0.5

(

cos

(

2jπ

M

)

, sin

(

2jπ

M

))

, j=1,2,··· ,M,

i.e., initially we have M like vortices which are located uniformly in a circle centered at
origin with radius R1=0.5.

Denote φε(x) as the steady state, i.e. φε(x)= limt→∞ ψε(x,t) for x∈Ω. Fig. 11 depicts
the contour plots of the amplitude |φε| of the steady state in the GLE dynamics with
h(x) = x2−y2+2xy in (4.1) for different M and domains, while Fig. 12 depicts similar
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Figure 10: Trajectory of vortex centers for the interaction of different vortex lattices in GLE under Dirichlet BC
with ε= 1

32 and h(x)=0 for cases I-IX (from left to right and then from top to bottom) in Section 4.4.

results on a rectangular domain Ω=[−1.6,1.6]×[−1,1] for different M and h(x) in (4.1).
In addition, Fig. 12 shows similar results with M=8 for different h(x) and domain Ω.

From Figs. 11, 12 & 13 and additional numerical results not shown here for brevity, we
can draw the following conclusions for the steady state patterns of vortex lattices under
the GLE dynamics (1.1) with Dirichlet BC: (i). The vortex undergo repulsive interaction
between each other and they move to locations near the boundary of Ω, there is no colli-
sion and a steady state pattern is formed when t→∞. In fact, the steady state is also the
solution of the following minimization problem

φε =argminφ(x)|x∈∂Ω=ψε
0(x)|x∈∂Ω

E ε(φ).

(ii). During the dynamics, the GL functional decreases when time increases. (iii). Both
the geometry of the domain and the boundary condition, i.e. h(x), affect the final steady
states significantly. The configuration of a vortex lattice at the steady state follows the
symmetry of Ω and h(x). For example, in the disk domain, when h(x)=x2−y2+2xy, the
vortex lattice is symmetric with respect to the two lines y=(1−

√
2)x and y=(1+

√
2)x

which satisfy h(x) = 0 (cf. Fig. 11). (iv). At the steady state, the distance between the
vortex centers and ∂Ω depends on ε and M. For fixed M, when ε decreases, the distance
decreases; and respectively, for fixed ε, when M increases, the distance decreases. In
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(a)

(b)

(c)

Figure 11: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE under Dirichlet BC with ε= 1
16

for M = 8, 12, 16, 20 (from left column to right column) and different domains: (a) unit disk Ω= B1(0), (b)
square domain Ω=[−1,1]2, (c) rectangular domain Ω=[−1.6,1.6]× [−1,1].

(a)

(b)

(c)

(d)

(e)

Figure 12: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE under Dirichlet BC with ε= 1
16

on a rectangular domain Ω= [−1.6,1.6]× [−1,1] for M= 8, 12, 16, 20 (from left column to right column) and

different h(x): (a) h(x)=0, (b) h(x)= x+y, (c) h(x)= x2−y2, (d) h(x)= x−y, (e) h(x)= x2−y2−2xy.

Figure 13: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE under Dirichlet BC with

ε= 1
16 and M= 8 on a unit disk Ω= B1(0) (top row) or a square Ω= [−1,1]2 (bottom row) under different

h(x)=0, x+y, x2−y2, x−y, x2−y2−2xy (from left column to right column).
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Figure 14: Width of the boundary layer LW vs M (the number of vortices) under Dirichlet BC on a square

Ω=[−1,1]2 when ε= 1
16 for different h(x): h(x)=0 (left two), h(x)= x+y (right two).

order to characterize this distance, we denote

LW := LW(M,ε)= lim
t→∞

min
1≤j≤M

dist(xε
j (t),∂Ω), M≥2.

For a square domain Ω=[−1,1]2, we find these distances numerically and depict LW(M,ε)
with ε= 1

16 for different M in Fig. 14. From these results, we can fit the following relations
between LW(M,ε=1/16) as a function of M as

LW≈0.4M−0.7713, M≫1,

for h(x)≡0, and respectively,

LW≈0.3714M−0.7164, M≫1,

for h(x)=x+y. For other cases, we can also fit out similar results, we omit here for brevity.

5 Numerical results under homogeneous Neumann BC

In this section, we report numerical results for vortex interactions of GLE (1.1) under
the homogeneous Neumann BC (1.4) and compare them with those obtained from the
reduced dynamical laws (2.20) with (2.3). The initial condition ψε

0 in (1.2) is chosen as

ψε
0(x)=ψε

0(x,y)= eihn(x)
M

∏
j=1

φε
nj
(x−x0

j ), x=(x,y)∈ Ω̄; (5.1)

which is similar as the one defined in equation (4.1) by only replacing the harmonic func-
tion h(x) there with hn(x) defined as

∆hn(x)=0, x∈Ω,
∫

Ω
hn(x)dx=0,

with Neumann BC
∂

∂n
hn(x)=− ∂

∂n

M

∑
l=1

nlθ(x−xl), x∈∂Ω.

The GLE (1.1) with (1.4), (1.2) and (5.1) is solved by the method TSCP presented in Section
3.
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5.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex in the GLE
(1.1) dynamics and its corresponding reduced dynamics, i.e. we take M= 1 and n1 = 1
in (5.1). Fig. 15 depicts trajectory of the vortex center for different x0

1 in (5.1) when ε= 1
32

in (1.1) and dε
1 for different ε. From Fig. 15 and additional numerical results not shown

here for brevity, we can see that: (i). The initial location of the vortex, i.e. value of x0

affects the motion of the vortex a lot and this shows the effect on the vortex from the
Neumann BC. (ii). If x0

1=(x0,y0) 6=(0,0) satisfied x0=0 or y0=0 or x0=±y0, the trajectory
is a straight line. (iii). If x0

1 = (0,0), the vortex will not move all the time, otherwise,
the vortex will move and finally exit the domain and never come back. This is quite
different from the situations in bounded domain with Dirichlet BC where a single vortex
can never move outside the domain or in the whole space where a single vortex doesn’t
move at all under the initial condition (5.1) when Ω=R

2. (iv). As ε→ 0, the dynamics
of the vortex center under the GLE dynamics converges uniformly in time to that of the
reduced dynamical laws well before it exits the domain, which verifies numerically the
validation of the reduced dynamical laws in this case. Certainly, when the vortex center
is being exited the domain or after it moves out of the domain, the reduced dynamics
laws are no longer valid. However, the dynamics of GLE is still physically interesting. In
fact, based on our extensive numerical experiments, the motion of the vortex center from
the reduced dynamical laws agree with that from the GLE dynamics qualitatively when
0< ε<1 and quantitatively when 0< ε≪1 well before it moves out of the domain.
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Figure 15: Trajectory of the vortex center when ε= 1
32 (1st and 3rd figures) and dε

1 for different ε (2nd and 4th

figures) for the motion of a single vortex in GLE under homogeneous Neumann BC with different x0
1 in (5.1):

x0
1=(0,0.1) (left two), x0

1=(0.1,0.1) (right two).

5.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the GLE (1.1)
dynamics and its corresponding reduced dynamical laws, i.e. we take M=2, n1=n2=1,
x0

1=(−0.5,0) and x0
2=(0.5,0) in (5.1). Fig. 16 depicts time evolution of the amplitude |ψε|,

time evolution of the GL functionals, xr
1(t), xε

1(t) and dε
1(t), and trajectory of the vortex

centers for GLE under homogeneous Neumann BC.

From Fig. 16 and additional numerical results not shown here for brevity, we can draw



W. Bao and Q. Tang / Commun. Comput. Phys., 14 (2013), pp. 819-850 843

the following conclusions for the interaction of vortex pair under the GLE dynamics (1.1)
with homogeneous Neumann BC: (i). The two vortices undergo a repulsive interaction,
their centers move outwards along the line connected them initially with symmetric tra-
jectories, i.e. xε

1(t)=−xε
2(t) (cf. Fig. 16 (a) & (b)). Moreover, if the two vortices are not

located symmetrically initially, the one closer to the boundary will first move outside the
domain and the other one will exit the domain later. All the vortices will exit the domain
Ω at finite time Tε which increases when ε decreases. (ii). When ε → 0, the dynamics
of the two vortex centers under the GLE dynamics converge uniformly in time to that
of the reduced dynamical laws before any one of them exit the domain (cf. Fig. 16(c)),
which verifies numerically the validation of the reduced dynamical laws in this case. In
fact, based on our extensive numerical experiments, the motion of the two vortex centers
from the reduced dynamical laws agree with those from the GLE dynamics qualitatively
when 0 < ε < 1 and quantitatively when 0 < ε ≪ 1. (iii). During the dynamics of GLE,
the GL functional and its kinetic parts decrease when time increases, its interaction part
doesn’t change much when t is small and changes dramatically when any one of the two
vortices move outside the domain Ω. When t→∞, all the three quantities converge to
0 (cf. Fig. 16(c)), which imply that a constant steady state will be reached in the form of
φε(x)= eic

0 for x∈Ω with c0 a constant.

5.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the GLE (1.1)
dynamics and its corresponding reduced dynamical laws, i.e. we take M = 2, n1 =−1,
n2=1, x0

1=(−d0,0) and x0
2=(d0,0) with d0 a constant.

Fig. 17 depicts contour plots of the amplitude |ψε|, while Fig. 18 shows time evolution
of GL functionals and trajectory of the vortex centers when ε= 1

32 in (1.1) for different d0

in (5.1). Fig. 19 shows time evolution of xr
1(t), xε

1(t) and dε
1(t) for different ε and d0.

From Figs. 17, 18 & 19 and additional numerical results not shown here for brevity,
we can draw the following conclusions for the interaction of vortex dipole under the GLE
dynamics (1.1) with homogeneous Neumann BC: (i). The initial location of the vortices,
i.e. d0, affects the motion of vortices significantly. In fact, there exists a critical value dr

c=dε
c

for 0< ε<1, which is found numerically as dr
c=0.5, such that when the distance between

the two vortex centers initially d0=
1
2 |x0

1−x0
2|<dr

c, then the two vortices will move towards
each other along the line connecting their initial locations and finally merge at the origin
at finite time Tε which increases when ε decreases, and respectively, when d0 > dr

c, the
two vortices will move outwards along the line connecting their initial locations and
finally move out of the domain at finite time Tε which increases when ε decreases (cf.
Figs. 17 & 18). Moreover, the trajectories of the two vortices are symmetric i.e. x1(t) =
−x2(t), and finally the GLE dynamics will lead to a constant steady state with amplitude
1, i.e. φε(x) = eic0 for x ∈ Ω with c0 a real constant. (ii). When ε → 0, the dynamics of
the two vortex centers under the GLE dynamics converges uniformly in time to that of
the reduced dynamical laws before they collide or move out of the domain (cf. Fig. 19)
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Figure 16: Dynamics and interaction of a vortex pair in GLE under Neumann BC: (a) contour plots of |ψε| with
ε= 1

32 at different times, (b) trajectory of the vortex centers (left) and time evolution of the GL functionals

(right) for ε= 1
32 , (c) time evolution of xε

1(t) and xr
1(t) (left and middle) and their difference dε

1(t) (right) for
different ε.

(a)

(b)

Figure 17: Contour plots of |ψε(x,t)| at different times for the interaction of vortex dipole in GLE under

Neumann BC with ε= 1
32 for different d0: (a) d0 =0.2, (b) d0=0.7.

which verifies numerically the validation of the reduced dynamical laws in this case. In
fact, based on our extensive numerical experiments, the motion of the two vortex centers
from the reduced dynamical laws agree with those from the GLE dynamics qualitatively
when 0<ε<1 and quantitatively when 0<ε≪1. (iii) During the dynamics of GLE, the GL
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Figure 19: Time evolution of xε
1(t) and xr

1(t) (left and middle) and their difference dε
1(t) (right) for different ε

and d0: (a) d0 =0.2, (b) d0=0.7.

functional and its kinetic part decrease when time increases, its interaction part doesn’t
change much when t is small. All the three quantities changes dramatically when the two
vortices collide or move across ∂Ω and eventually converge to 0 when t→∞ (cf. Fig. 18).

5.4 Vortex lattices

Here we present numerical results of the interaction of vortex lattices under the GLE (1.1)
dynamics. We will consider the following cases:

case I. M=3, n1=n2=n3=1, x0
1=(−0.2,

√
3

5 ), x0
2=(−0.2,−

√
3

5 ), x0
3=(0.4,0);

case II. M=3, n1=n2=n3=1, x0
1=(−0.4,0), x0

2=(0,0), x0
3=(0.4,0);

case III. M=3, n1=n2=n3=1, x0
1 =(−0.4,0.2), x0

2=(0,0.2), x0
3=(0.4,0.2);

case IV. M=3, n2=−1, n1=n3=1, x0
1=(−0.4,0), x0

2=(0,0), x0
3=(0.4,0);

case V. M=3, n3=−1, n1=n2=1, x0
1=(−0.2,

√
3

5 ), x0
2=(−0.2,−

√
3

5 ), x0
3=(0.4,0);
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case VI. M = 4, n1 = n2 = n3 = n4 = 1, x0
1 = (0.4,−0.4sin(1)), x0

2 = (−0.2,0.4cos(1)), x0
3 =

(−0.2,0.4sin(1)), x0
4=(0,0);

case VII. M=4, n1=n3=−1, n2=n4=1, x0
1=(−0.4,0), x0

2=(− 2
15 ,0), x0

3=( 2
15 ,0), x0

4=(0.4,0);

case VIII. M=4, n1 =n2 =−1, n3 =n4 =1, x0
1 =(0.4,0), x0

2 =(−0.2,
√

3
5 ), x0

3 =(−0.2,−
√

3
5 ),

x0
4=(0,0);

case IX. M= 4, n2 = n3 = 1, n1 = n4 =−1, x0
1 = (0.4,0), x0

2 = (−0.2,
√

3
5 ), x0

3 = (−0.2,−
√

3
5 ),

x0
4=(0,0).

Fig. 20 shows trajectory of the vortex centers when ε = 1
32 in (1.1) for the above 9

cases. From Fig. 20 and additional numerical results not shown here for brevity, we can
draw the following conclusions: (i). The interaction of vortex lattices under the GLE
dynamics with homogeneous Neumann BC is very interesting and complicated. The
detailed dynamics and interaction pattern of a lattice depends on its initial alignment of
the lattice and geometry of the domain Ω. (ii). For a lattice of M vortices, if they have the
same index, then at least M−1 vortices will move out of the domain at finite time and no
collision will happen for any time t≥0. On the other hand, if they have opposite index,
collision will happen at finite time. After collisions, the leftover vortices will then move
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Figure 20: Trajectory of vortex centers for the interaction of different vortex lattices in GLE under homogeneous
Neumann BC with ε= 1

32 for cases I-IX (from left to right and then from top to bottom) in Section 5.4.
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out of the domain at finite time and at most one vortex may left in the domain. When
t is sufficiently large, in most cases, no vortex is left in the domain; of course, when the
geometry and initial setup are properly symmetric and M is odd, there maybe one vortex
left in the domain.

5.5 Steady state patterns of vortex lattices

Here we present the steady state patterns of vortex lattices under the GLE dynamics (1.1)
with homogeneous Neumann BC. To this end, we take ε= 1

16 in (1.1) and assume the M
vortices are initially located uniformly on a line, i.e.

x0
j =

(

−0.5+
j−1

M−1
,0

)

, j=1,2,··· ,M,

or on a circle with radius R1=0.5, i.e.

x0
j =0.5

(

cos

(

2jπ

M

)

,sin

(

2jπ

M

))

, j=1,2,··· ,M.

Fig. 21 depicts the amplitude |ψε| of the initial data and final steady states under the GLE
dynamics with different initial setups.

From Fig. 21 and additional numerical results not shown here for brevity, we can draw
the following conclusions for the interaction of vortex lattices under the GLE dynamics
(1.1) with homogeneous Neumann BC: (i). If the three like vortices initially located uni-
formly on a circle, they will repel each other and finally exit outside the domain and
never come back. (ii). If the three like vortices initially located uniformly on a line, the
left and right vortices will finally exit outside the domain and never come back, while

Figure 21: Contour plots of the amplitude |ψε| for the initial data (top) and corresponding steady states

(bottom) of vortex lattice in the GLE (1.1) under homogeneous Neumann BC with ε= 1
16 for different number

of vortices M and winding number nj: M=3,n1=n2=n3=1 (first and second columns); M=3,n1=−n2=n3=1

(third column); and M=4,n1=−n2=n3=−n4=1 (fourth column).
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the middle one does not move all the time. (iii). If the three vortices initially located uni-
formly on a line with the middle vortex whose winding number is opposite to the other
two, the middle one will not move all the time, while the left and right vortices will move
toward the origin and one of them will merge with the middle vortex, finally only one
vortex will stay at the origin forever. (iv). If the four vortices initially located uniformly
on a circle with the sign of winding number alternatively changed, the four vortices will
move toward the original point and merge with each other, and finally there will be no
vortex in the domain. (v). Actually, from our extensive numerical experiments, we can
conclude that for any initial setup, if the number of vortices M is even, the vortices will
either merge or move outside the domain, and finally there will be no vortex leftover in
the domain; while if M is odd, there will be at most one vortex leftover in the domain
when t→∞.

6 Conclusion

By presenting efficient and accurate numerical methods for discretizing the Ginzburg-
Landau equation (GLE) with a dimensionless parameter 0< ε<1 on boundary domains
with either Dirichlet or homogenous Neumann BC and its corresponding reduced dy-
namical laws, we studied numerically quantized vortex interaction in GLE for super-
conductivity and compared numerically vortex interaction patterns between the GLE
dynamics and its corresponding reduced dynamical laws under different initial setups.
Based on extensive numerical results, we verified that the dynamics of vortex centers
under the GLE dynamics converges to that of the reduced dynamical laws when ε→0 be-
fore they collide and/or move out of the domain. Certainly, after either vortices collide
with each other or move out of the domain, the reduced dynamical laws are no longer
valid; however, the dynamics and interaction of quantized vortices are still physically
interesting and they can be obtained from the direct numerical simulations for the GLE
with fixed ε> 0 even after they collide and/or move out of the domain. We also identi-
fied the parameter regimes where the reduced dynamical laws agree with qualitatively
and/or qualitatively as well as fail to agree with those from the GLE dynamics. Some
very interesting nonlinear phenomena related to the quantized vortex interactions in the
GLE for superconductivity were also observed from our direct numerical simulation re-
sults of GLE. Different steady state patterns of vortex lattices under the GLE dynam-
ics were obtained numerically. From our numerical results, we observed that boundary
conditions and domain geometry affect significantly on vortex dynamics and interac-
tion, which showed different interaction patterns compared to those in the whole space
case [37, 38].
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