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Abstract. The “analogue gravity formalism”, an interdisciplinary theoretical scheme
developed in the past for studying several non relativistic classical and quantum sys-
tems through effective relativistic curved space-times, is here applied to largely de-
formable elastic bodies described by the nonlinear theory of solid mechanics. As-
suming the simplest nonlinear constitutive relation for the elastic material given by
a Kirchhoff-St Venant strain-energy density function, it is possible to write for the per-
turbations an effective space-time metric if the deformation is purely longitudinal and
depends on one spatial coordinate only. Theoretical and numerical studies of the cor-
responding dynamics are performed in selected cases and physical implications of the
results obtained are finally discussed.
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1 Introduction

The mathematical structure behind Einstein’s General Relativity (GR) is differential ge-
ometry. GR is a physical theory whose foundations lay in elegant variational principles
for geometry and matter fields. Recently it has been found an analog of relativistic grav-
ity manifested by several systems of non-relativistic condensed matter physics, mainly
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in the fields of classical and quantum fluids and in electromagnetism [1–3]. The origin of
such an analogy has to be searched in the classical d’Alembert wave equation

∂2

∂t2
ξ−v2∇2ξ=0 (1.1)

(∇2≡∆ is the ordinary Laplacian operator in Euclidean space) which describes the propa-
gation at constant speed v of a certain quantity ξ in an homogeneous and isotropic back-
ground medium or even in vacuum if v is the speed of light (so that such an equation
results Lorentz invariant). As an example, in fluid dynamics, the quantity ξ describes the
perturbations of pressure or of the velocity potential, in infinitesimal elasticity it appears
as a transverse or longitudinal relative displacement vector and in electromagnetism it
stands for the electric or magnetic field vectors. If the medium is not homogeneous,
the corresponding wave equations become more complicated. The mathematical rela-
tions involved in fact contain now second order terms with mixed derivatives together
with first order ones, all of these multiplied by time and/or space dependent coefficients.
The equations for small elastic waves in anisotropic and inhomogeneous media are a
typical example of such a situation [4, 5]. Because all the aforementioned mathemat-
ical expressions resemble very much the structure of second order wave equations in
curved GR spacetimes, the question in the past naturally arose whether a possible con-
nection between all of these Newtonian and Relativistic problems could be found. The
first confirmation of such an hypothesis historically dates back to Unruh’s work [6, 7]
on perfect fluid perturbations, later extended by Visser and collaborators [8, 9]. In short,
for a non relativistic, classical, perfect, irrotational, compressible and barotropic fluid, its
linear perturbations can be rewritten as a real massless scalar field equation on a curved
space-time characterized by an acoustic four dimensional metric tensor. Recently the
authors have shown [10] the connection of the theory described above with the quasi-
linear decoupled second order wave equation governing the velocity potential as de-
rived by Von Mises [11]. Several complementary studies have been performed in the last
decade then, focusing in particular on analogs of black/white holes and cosmological
systems [12–28, 30]. The aim of this article is to clarify if the Analogue Gravity formula-
tion just discussed could be applied also to the theory of nonlinear elasticity. Infinitesimal
elasticity is a limiting case of the much more complicated theory of nonlinear solid me-
chanics, whose natural language is differential geometry. An appropriate introduction to
linear (infinitesimal) elasticity can be found in Feynman’s Lectures on Physics books [31]
or in volume 7 of Landau-Lifshitz’ Theoretical Physics course [5]. For the purposes of our
study, in Section 2 we shall here introduce a short resume of nonlinear solid mechanics
accounting however for appropriate references for this topic. The unknown quantities
in continuum mechanics are the components of the relative displacement vector ~u, a La-
grangian entity intrinsically three dimensional which maps the position of a material
point initially located in ~x into a new point ~x′ ≡~x+~u. A Lagrangian point of view is
here adopted because in solid mechanics one deals with the complicated free boundary
problem of locating the body’s surface during the deformation [32], although an Eulerian



C. Cherubini and S. Filippi / Commun. Comput. Phys., 14 (2013), pp. 801-818 803

formulation of the problem is also possible [42]. In contrast, for fluids, an Eulerian point
of view is often more immediate in comparison with the mathematical complications of a
Lagrangian formulation [33]. One may try to write the relative displacement vector ~u as
a gradient of a scalar potential in analogy with fluid mechanics, where in the irrotational
case, the Eulerian velocity of the fluid is written as the gradient of a velocity potential. If
the perfect fluid is not irrotational, one can anyway adopt the so called Chlebsh poten-
tials formalisms [9]. In fluid dynamics, this simplifying procedure leads to a quasi-linear
second order wave equation for the latter scalar quantity (the aforementioned Von Mises’
wave equation), which linearized leads to the Analogue Gravity formalism for a relativis-
tic scalar field. In nonlinear solid mechanics however this procedure does not appear to
work, except in a very peculiar case discussed in the Appendix. More explicitly, while
the curved wave operator on a scalar field (a covariant equation) works fine both in New-
tonian hydrodynamics and in GR, in non relativistic continuum mechanics, the curved
wave operator would be applied to a three dimensional vector which is not a covariant
quantity. In order to present a way-out, in section I I I we shall introduce the perturba-
tion theory for a purely longitudinal elastic field and discuss its connections with the
Analogue Gravity formalism. In section IV then we shall analyze the acoustic metric as-
sociated with two explicit background solutions, while in section V we discuss the results
obtained.

2 Nonlinear theory of elasticity

Following Landau and Lifshitz [5], the starting point of nonlinear solid mechanics the-
ory is the relation which links every point of (material) coordinate xi (here i = 1,··· ,3
and similar for Latin indices, while Greek ones shall refer to four-dimensional quan-
tities) of a material body prior to deformations caused by forces to the corresponding
new position x′i and related to the initial undeformed position by x′i = xi+ui. The vector
ui≡ui(t,~x) represents the deformation or relative displacement vector. We assume now,
for the sake of simplicity, that the xi are ordinary orthogonal Cartesian coordinates. We
can introduce then the symmetric deformation tensor, known in the literature also as the
Green-Lagrange strain tensor [34] (Einstein’s summation convention is here adopted):

uik =
1

2

(

∂ui

∂xk
+

∂uk

∂xi
+

∂ul

∂xi

∂ul

∂xk

)

, (2.1)

which is necessary to connect the distance between two points of the undeformed body
with the correspective one in the deformed case through the relation

dl′2=dl2+2uikdxidxk≡Cikdxidxk (2.2)

with dl′2≡
√

dx′21 +dx′22 +dx′23 and dl2≡
√

dx2
1+dx2

2+dx2
3 . Here quantity Cik≡ δik+2uik,

having the role of a three dimensional metric tensor, is the right Cauchy-Green defor-
mation tensor [35]. An action principle treatment of nonlinear elasticity (and even of
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nonlinear electro-elasticity [37]) is possible [36], although field equations can be derived
also by standard balance laws arguments [5, 35, 36, 38]. The fundamental set of relations
for generic large deformations is given then by Newton’s law:

ρR
∂2ui

∂t2
=

∂Pki

∂xk
+ρR f

(e)
i , (2.3)

where ρR≡ρR(~x) represents the time independent initial reference mass density, Pki is the

first Piola-Kirchhoff stress tensor and f
(e)
i is an external body force in the material coordi-

nates. Newton’s equations are a system of coupled partial differential equations which,
in order to be solved, must be supplemented by appropriate initial data and boundary
conditions, which in general shall represent the possible tractions externally exerted, ev-
erywhere or in selected parts of the body’s surface. For the aims of our analysis, we
shall concentrate on a material of infinite extent, disregarding in this way such a compli-
cated part of the nonlinear elasticity mathematical problem [42]. Let’s assume now the
simplest continuum mechanics stress choice (isotropic medium) i.e. the Kirchhoff -Saint
Venant (KSV) [38, 39] associated with the elastic strain-energy density

ψ=
1

2
λu2

ii+µuikuki , (2.4)

where µ and λ are the Lamé constants. The symmetric second Piola-Kirchhoff tensor can
be obtained then by differentiation, i.e.

Sij =
∂ψ

∂uij
(2.5)

so that

Sil =2µuil+λummδil≡
E

1+κ

(

uil+
κ

1−2κ
ummδil

)

, (2.6)

where δkl is the Kroneker delta, κ is the Poisson coefficient and E is Young’s modulus. We
can finally write the non symmetric first Piola-Kirchhoff tensor as

Pki =SklFil , Fkl =

(

δkl+
∂uk

∂xl

)

. (2.7)

In the language of finite elasticity the tensor Fkl represents the deformation gradient, con-
nected to the right Cauchy-Green tensor by relation Crs = FlrFls. Finally the density at a
given time is connected to the reference material density by the relation

ρ(t,~x)=
ρR(~x)

detFik
. (2.8)

The KSV model can be adopted for large displacement calculations assuming a mate-
rial undergoing only small strains however. It describes a compressible material which
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becomes almost incompressible for very large Lamé constants [40]. This is the simplest
nonlinear version of the continuum mechanics problem, although we must stress that
many other different and more physically appropriate choices for the strain energy func-
tion are possible [41, 42]. Standard infinitesimal elasticity [5, 31] can be obtained by writ-
ing the relative displacement vector, reference density and body forces in Taylor series of
a parameter ε around a constant or even vanishing background solution, inserting into
Newton’s Eq. (2.3), expanding in Taylor series for ε and keeping the first order terms in
this parameter, obtaining for constant λ and µ, the standard formula for small perturba-
tions [31]

ρR
∂2~u

∂t2
=(λ+µ)∇(∇·~u)+µ∇2

~u+ρR
~f (e) . (2.9)

What we shall do in this article instead will be to study more general perturbations of
such a complicated nonlinear theory. Precisely, we shall analyse the infinitesimal pertur-
bations of a nontrivial space and/or time dependent finite elasticity background solution

(defined as a zero-th order quantity), i.e. ui=u
(0)
i +εu

(1)
i +··· (together with a perturbative

expansion of reference density ρR and body force ~f (e)). One would be tempted to try to
introduce here a potentials formalism, in analogy with hydrodynamics. The assumption
of an Helmholtz decomposition for the deformation vector ~u given by:

~u=gradΨ+curl ~A, div~A=0, (2.10)

leads in general to equations of order higher than second which clearly would be prob-
lematic for the implementation of an acoustic metric formalism. The gradient part in
Eq. (2.10) is the so called longitudinal component field, while the curl term is the transverse

one. Decoupled d’Alembert wave equations for Ψ and ~A can be obtained in infinitesimal
theory for homogeneous bodies only [4,43,44]. In Appendix we show that it is still possi-
ble to obtain a totally nonlinear second order equation for an x-directed and x-dependent
field only, provided a constant initial density everywhere.

3 Perturbation theory and analog geometry

As anticipated, we assume to deal with an infinite medium. In order to work with a

scalar equation we require moreover ui=[u1(t,x),0,0]≡ [U(t,x),0,0] and f
(e)
i ≡ [ f

(e)
1 ,0,0]=

[F(t,x),0,0] together with ρR=ρR(x) i.e. a purely longitudinal nonlinear field in the x di-
rection with the same value on each sectional plane orthogonal to the line of propagation.
Regarding the density of the medium this assumption implies

ρ(t,~x)=
ρR(~x)

detFik
⇐⇒ ρ(t,x)=

ρR(x)
(

1+ ∂U
∂x

) . (3.1)
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Newton’s Eq. (2.3) simplifies then to the unique relation

ρR
∂2U

∂t2
−(2µ+λ)

[

1+3
∂U

∂x
+

3

2

(

∂U

∂x

)2
]

∂2U

∂x2
−ρRF=0. (3.2)

Neglecting any nonlinear coupling (linearized theory) with zero external force, as ex-
pected we obtain from the relation just written the classical wave equation for longitu-
dinal waves in an isotropic medium [5], i.e. ∂2U/∂t2−c2

l ∂2U/∂x2 = 0 with longitudinal

sound speed cl =
√

(2µ+λ)/ρR .

3.1 The hyperbolicity issue

Eq. (3.2) can be rewritten as

ρR
∂2U

∂t2
− ∂

∂x
G−ρRF=0, (3.3a)

G=

{

(2µ+λ)

[

∂U

∂x
+

3

2

(

∂U

∂x

)2

+
1

2

(

∂U

∂x

)3
]}

, (3.3b)

a relation which is useful to prove the strict hyperbolicity of the problem by taking into
account also the relation

∂G

∂x
=

(

∂G

∂Ux

)

· ∂Ux

∂x
. (3.4)

Let’s introduce in fact
∂U

∂t
=

v(t,x)

ρR(x)
,

∂U

∂x
=w(t,x) (3.5)

so that Eq. (3.3) can be rewritten as:

∂w

∂t
− ∂

∂x

(

1

ρR
v

)

=0, (3.6a)

∂v

∂t
− ∂

∂x

[

(2µ+λ)

(

w+
3

2
w2+

1

2
w3

)]

=ρRF (3.6b)

which is a nonlinear conservation law for an initially heterogeneous medium represent-
ing a nontrivial mathematical problem [45]. By taking into account Eq. (3.4), we can
rewrite the previous relation in an equivalent vector form

∂~Λ

∂t
+Â· ∂

~Λ

∂x
+B̂ ·~Λ= ~T , (3.7)

where

~Λ=

(

w
v

)

, Â=

(

0 − 1
ρR

− ∂G
∂w 0

)

, (3.8a)

B̂=
(

0 1
ρ2

R

∂ρR

∂x

0 0

)

, ~T =

(

0
ρRF

)

. (3.8b)
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If we assume a constant initial density ρR in order to simplify further the treatment, the
system Eq. (3.7) is a conservation law (autonomous by neglecting the source term) in
quasi-linear form [46] which can be analyzed through the method of the characteristics.

In particular the eigenvalues of the matrix Â result in λ1,2=±
√

1
ρR

∂G
∂w . If the eigenvalues

of this problem at a certain point are real, we have an hyperbolic system there. Moreover,
if λ1 and λ2 remain real and distinct, the problem is strictly (or equivalently strongly)
hyperbolic. Clearly assuming a positive density on physical grounds, this condition re-
quires that ∂G

∂w<0 never. A strictly hyperbolic conservation law equations set is well posed
in the sense of the Cauchy problem, although the solutions of our nonlinear problem
can exist locally in time, but after a certain finite period it can happen that singularities
would occur [47] (in hydrodynamics these would be shock waves or blowups, as an ex-
ample). Consequently it appears physically important to have under control the breakup
of hyperbolicity of our problem. We point out moreover that it is possible to perform a
perturbative study in a series of a parameter ε of the conservation law in Eq. (3.7) around
a certain nontrivial background solution

w=w(0)+εw(1) , v=v(0)+εv(1) , (3.9a)

ρR =ρ
(0)
R +ερ

(1)
R , F=F (0)+εF (1) . (3.9b)

By inserting all of these expansions in our equations, denoting in a compact way the

expanded quantities as ~Λ= ~Λ(0)+ε~Λ(1)+··· and similar for the other ones, we get at ε
order schematically

∂~Λ(1)

∂t
+Â(0) · ∂

~Λ(1)

∂x
+(non differential ~Λ(1) term)=(source term) (3.10)

which again is strictly hyperbolic if the eigenvalues of the matrix Â computed on the
background solution (here denoted by Â(0)), result real and distinct [48]. Again for a

positive background reference density ρ
(0)
R , this occurs if ∂G

∂w |w=w(0) does not become neg-
ative. We perform now an equivalent perturbative study of Eq. (3.3) which will be helpful
for an Analogue Gravity formulation of the problem.

3.2 Perturbation theory

The quasi-linear wave Eq. (3.2) can be perturbatively expanded by imposing

U(t,x)=U(0)(t,x)+εU(1)(t,x)+··· , (3.11a)

ρR(x)=ρ
(0)
R (x)+ερ

(1)
R (x)+··· , (3.11b)

F(t,x)=F (0)(t,x)+εF (1)(t,x)+··· , (3.11c)

inserting into Eq. (3.2) and equating to zero separately the various terms in powers of ε.
At order zero we get the background nonlinear equation Eq. (3.2) for quantity U(0) with
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ρ
(0)
R and F (0). At order one we get

ρ
(0)
R

∂2U(1)

∂t2
−
[(

2µ+λ

2

)

Ξ
(0)

]

∂2U(1)

∂x2

−
{

3(2µ+λ)

[

∂U(0)

∂x
+1

]

∂2U(0)

∂x2

}

∂U(1)

∂x
=S (1)(t,x) (3.12)

with the dimensionless quantity

Ξ
(0)=



2+6
∂U(0)

∂x
+3

(

∂U(0)

∂x

)2


≡
(

2

2µ+λ

)

∂G

∂w

∣

∣

∣

∣

w=w(0)

, (3.13)

and a source term given by

S (1)(t,x)=
[

ρ
(0)
R F (1)+

(

F (0)− ∂2U(0)

∂t2

)

ρ
(1)
R

]

. (3.14)

Eq. (3.12) can be geometrically rewritten as scalar field equation

1√−g
∂µ

[√

−ggµν∂νχ
]

=σ(1) (3.15)

with the requirement of dealing with a subclass of perturbations characterized by χ(t,~x)≡
U(1)(t,x) and σ(1)(t,~x)≡S (1)(t,x) . In the previous relations we denoted ∂µ =∂/∂xµ with
xµ =(t,~x) and we have introduced a four dimensional acoustic metric tensor and associ-
ated inverse given by

gµν=



















1

ρ
(0)
R

0 0 0

0 − 2
(2µ+λ)

1
Ξ(0) 0 0

0 0 − 1
K

√

ρ
(0)
R (2µ+λ)Ξ(0)

2K 0

0 0 0 − 1
K

√

ρ
(0)
R (2µ+λ)Ξ(0)

2K



















, (3.16a)

gµν=



















ρ
(0)
R 0 0 0

0 − (2µ+λ)
2 Ξ

(0) 0 0

0 0 −K
√

2K

ρ
(0)
R (2µ+λ)Ξ(0)

0

0 0 0 −K
√

2K

ρ
(0)
R (2µ+λ)Ξ(0)



















, (3.16b)

where the constant K is here introduced in order to obtain consistent physical dimensions
in the formulas but does not play any role in the subsequent analysis. We point out that
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the occurrence of a four dimensional space-time metric is here natural, even if we are
dealing with purely plane symmetric configurations, because the elastic problem was
initially posed in the Euclidean three dimensional space. At a first glance, as it happens
in hydrodynamical analog geometry models, the acoustic metric results problematic if
the reference density ρR goes to zero. This is not an unexpected result, because in this
limit there is no matter to propagate waves anymore. Analytical solutions of quasi-linear
Eq. (3.2) are non trivial to be found. As discussed in the next section, we shall analyze
then some simplified configurations.

4 Explicit examples of elastic analog geometries

In this section we shall discuss two simple cases of analytical solutions for nonlinear
Eq. (3.2), implementing the Analogue Gravity formalism in order to grasp the under-
lying physics codified in the weak perturbative fields on these background toy model
solutions.

4.1 Inhomogeneous undeformed body

We adopt a background configuration characterized by F (0)≡0 and U(0)=0 with ρ
(0)
R =

ρ
(0)
R (x) so that Ξ

(0)≡2 and Eq. (3.12) results in

ρ
(0)
R

∂2U(1)

∂t2
−(2µ+λ)

∂2U(1)

∂x2
=ρ

(0)
R F (1) , (4.1)

where the explicit form of the perturbative force F (1) is not important for the following
analysis. In order to understand the light cone structure of the associated metric tensor
(3.16), we study null geodesics, which in GR represent the massless test particles’ trajec-
tories. The four dimensional wave-vector kα=dxα/dτ (τ is the affine parameter) satisfies
the geodesic equations

dkα

dλ
+Γ

α
σδkσkδ =0 (4.2)

but this vector must be null i.e. kαkα =0, so replacing kα = ∂αS in the latter, we obtain the
eikonal equation

gαβ∂αS∂βS=0. (4.3)

The very simple Killing vectors’ nature of the acoustic metric in exam, whose fields de-
pend on the x coordinate only, allows us to adopt standard Hamilton-Jacobi treatment of
geodesics [49–51]. We choose, for null (i.e. massless) geodesics,

S(t,x,y,z)=E t− f (x), (4.4)
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where E is a real constant. Inserting in the eikonal equation (4.3), we get finally the null
geodesic four-vector

k
µ
±=

[

ρ
(0)
R (x)E ,±

√

(2µ+λ)ρ
(0)
R E ,0,0

]

.

We can study now the relations
(

dx
dτ

)

(

dt
dτ

) ≡ dx

dt
=

kx
±

kt
±
←→ dx

dt
=±

√

2µ+λ

ρ
(0)
R (x)

≡±cl(x) , (4.5)

where the affine parameter τ has disappeared and the local longitudinal sound speed

cl(x)=

√

(2µ+λ)/ρ
(0)
R (x) (4.6)

has been introduced. This equation gives the coordinate velocity for null geodesic rays
emanating at a certain initial (effective) space-time location. Integration of this differen-
tial equation on the other hand gives the space-time trajectory of a geodesic null ray in
our metric, i.e.

∫ x

x0

1

cl(x′)
dx′=±

∫ t

t0

dt′ . (4.7)

The associated Kretschmann curvature invariant [52] K= RαβγδRαβγδ (Rαβγδ is the Rie-
mann tensor) results in

K=
3(2µ+λ)2

64ρ
(0)
R (x)4







57

[

∂ρ
(0)
R (x)

∂x

]4

+32
[

ρ
(0)
R (x)

]2
·
[

∂2ρ
(0)
R (x)

∂x2

]2

−80ρ
(0)
R (x)

[

∂ρ
(0)
R (x)

∂x

]2

·
[

∂2ρ
(0)
R (x)

∂x2

]







. (4.8)

Assuming for the sake of simplicity the relation for the positive density, i.e. ρ
(0)
R (x) ∝

x2, the invariant results in K ∝ 1/x4, i.e. where the density goes to zero, there acoustic
curvature becomes infinite. As in the hydrodynamical cases studied in the past [26–28],
curvature singularities develop where there is no medium to support waves anymore.

4.2 Initially homogeneous body periodically deformed

In this case we require for simplicity a classical separated uniform dilatation [38], i.e.
U(0)(t,x)≡ h1(t)h2(x) = Axsinωt where A,ω ∈R. We obtain consequently, in order to
have the background nonlinear problem to be satisfied, that F (0)(t,x) =−Aω2xsinωt.

Reference density’s choice is arbitrary; here we take a constant one, i.e. ρ
(0)
R (x)=r0 where

r0>0. From Eq. (3.1) we can write that

ρ(0)(t,x)=
r0

1+Asinωt
(4.9)
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so that a positive density requires mandatorily to have |A|< 1. In conclusion x′= (1+

Asinωt)x so that for t=0 we have x′≡x and F (0)=0 with ρ(0)≡ρ
(0)
R =r0, which confirms

that the problem is physically well posed. Regarding the acoustic metric (3.16), in this
case we have Ξ

(0)=2+6Asinωt+3A2sin2ωt. A first look to the metric tensor in Eq. (3.16)
shows that signature (and metric) breaks down when Ξ

(0)≤0. From the previous discus-
sion on loss of hyperbolicity and from Eq. (3.13) we can see that this is exactly the case.
Consequently simple inequalities show that, introducing Ac=1−1/

√
3, for−Ac<A<Ac

we have an always regular metric tensor while outside this range, pathologies are ex-
pected to occur because at certain finite time hyperbolicity gets lost. Regarding the null
geodesic wave-vector, assuming a principal function dependence S(t,~x)=F(t)−γx with
γ∈R, we obtain from Hamilton-Jacobi theory again that

k
µ
±=



±

√

(2µ+λ)r0Ξ(0)

2
γ,

(2µ+λ)Ξ(0)

2
γ, 0, 0



 . (4.10)

We can study now the relations

(

dx
dτ

)

(

dt
dτ

) ≡ dx

dt
=

kx
±

kt
±
←→ dx

dt
=±

√

(

2µ+λ

2r0

)

Ξ(0)(t) , (4.11)

where the affine parameter τ has disappeared. Direct integration of the latter gives the
space-time trajectory of null geodesic rays, i.e.

x−x0=±cl

∫ t

0

1√
2

√

Ξ(0)(t′)dt′ (4.12)

expressible in terms of Elliptic functions. Here we have introduced the constant longitu-

dinal wave speed at t=0 given by c2
l =
( 2µ+λ

r0

)

. In Fig. 1 we plot the associated spacetime
diagram for these null geodesics for the simplifying parameters’ choice µ=λ=r0=ω=1,
numerically integrated by using XPPAUT software [29] via a fourth order Runge-Kutta
scheme with δt= 5·10−3, starting at x = 10 at time t= 0 for A= 0.25 while in Fig. 2 the
same plot is shown in the case A = 0.8. While the latter case becomes problematic at
a finite time because a geodesically incomplete behavior occurs (at a finite value of the
affine parameter τ the integration breaks down), the former is regular and shows ex-
plicitly the effect of the periodic distortion of the light ray world-lines, which in absence
of elasticity would look as straight lines. What it is happening here is that the acoustic
perturbation is dragged by the oscillating behavior of the background matter. Clearly in
order to compare the model’s predictions with an experimental physical situation, other
parameters’ sets should be chosen; anyway in the corresponding dynamics, similar qual-
itative behaviors shall occur. We have confirmed these result for the full perturbative
elastic problem by integrating the PDE in Eq. (3.12), assuming S (1) ≡ 0 for the sake of
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Figure 1: Space-time diagram in case µ=λ=r0=ω=1 for null geodesics numerically integrated starting at x=10
at time t=0 for A=0.25. The dynamics is regular and shows explicitly the effect of the periodic deformation
of the effective light ray world-line.

Figure 2: Space-time diagram in case µ=λ= r0 =ω= 1 for null geodesics numerically integrated starting at
x = 10 at time t = 0 for A= 0.8. The trajectory becomes problematic at a finite time, in contrast with the
A=0.25 case.

simplicity again. We have taken in particular a spatial domain x∈ [−23,43]. The model
parameters are µ=λ= r0 =ω=1 as before, but we have integrated the problem both for
A0 = 0.25 (simulation’s results are shown in Fig. 3) and A0 = 0.8 (numerical results are

presented in Fig. 4) We have chosen a sharp Gaussian initial data U(t,0)=P0e−b(x−x0)
2

to-
gether with ∂tU(t,0)=0, selecting moreover b=5, x0=10, P0=1. The boundary conditions
adopted on the domain borders are Neumann zero flux i.e. ∂xU(t,x)= 0 and numerical
integration has been stopped before any boundary effect could interfere with the inner
space evolution, in analogy with past Analogue Gravity studies in the context of hydro-
dynamics [16, 17, 20]. The partial differential equation has been numerically integrated
by using finite elements methods via Comsol Multiphysics software. More in detail we
have adopted a direct UMFPACK solver, with equally spaced Lagrange quadratic mesh
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Figure 3: Space-time diagram generated by the numerical integration of the perturbative PDE in case µ=λ=
r0 =ω=1 for A=0.25. The oscillations look the same as those of the null geodesic rays.

Figure 4: Space-time diagram generated by the numerical integration of the perturbative PDE in case µ=λ=
r0=ω=1 for A=0.8. The code manifests a problem at finite time, where hyperbolicity is lost and singularities
are expected to occur.

elements of size ∆x=0.1, while the time step has been chosen automatically by the soft-
ware. Finally absolute and relative tolerances have been set to 10−6. We have varied
mesh sizes and tolerances is order to confirm the validity of our numerical simulations.
The A=0.25 case, shown in Fig. 3, manifests an oscillating space-time behavior perfectly
in agreement with the previously performed null geodesics study of Fig. 1. The case
A=0.8 in Fig. 4 gives a diverging (blow up) behavior at a finite value of time, associated
with the loss of hyperbolicity as expected from the study in Fig. 2. In conclusion, the
integrated equation manifests the same light cone structure of the null rays previously
discussed, confirming the appropriateness of the analog gravity formulation in studying
also these types of continuum mechanics problems.
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5 Discussion

Analogue Gravity formalisms appear to be applicable to a wide range of physical New-
tonian systems where second order wave equations naturally occur in describing pertur-
bative behaviors. While historically effective metrics were derived in the case of classical
and quantum fluids and electromagnetic systems, we have here shown that such a type
of analysis can be performed also in the case of the nonlinear theory of elasticity. Un-
fortunately the mathematical structure of this theory in Lagrangian form does not allow
a useful reformulation of the nonlinear equations in terms of certain scalar potentials,
as in the case of hydrodynamics. Moreover the decoupling of the field equations, well
known in the infinitesimal theory of elasticity, in the exact regime is not immediate so
that certain strong simplifying assumptions must be assumed, i.e. the request of one
component only for the relative displacement vector ~u = (ux,uy,uz)≡ (ux(t,x),0,0) and
the dependence of the latter on one spatial coordinate only. In this way we have ob-
tained an acoustic metric which describes purely longitudinal perturbations. We have
analysed then two extremely simple background solutions, one initially inhomogeneous
and static, the other not static but initially homogeneous and periodically forced, both to
be perturbed. It has been shown in these cases that, as it happens for fluids, vanishing
values of the reference density lead to infinite curvature singularities, an expected behav-
ior because there is no medium on which acoustic perturbations can travel anymore. The
null geodesics rays structure of the acoustic metric is immediately super-imposable to the
behavior of the numerically integrated partial differential equation describing the New-
tonian perturbative problem. In particular, where or when hyperbolicity breaks down,
there geodesics manifest pathological behaviors. All of these phenomenologies constitute
the main essence of the Analogue Gravity theory as studied in the past for other physical
systems. Clearly our treatment can be physically applicable to planar configurations with
purely longitudinal perturbations far from the boundaries, where the initial purely lon-
gitudinal assumption would break down. In this sense one could imagine to apply these
results to study multilayered systems (composite materials [4]) in a wall-type configura-
tion. The theory formulated may be interesting also for Quantum Mechanical behaviors.
It is well known from standard Solid State Physics [53] in fact that in ionic crystals, the
position of a certain (oscillating) ion is given by ~x′=~x+~u. It is possible to write for this
system an Hamiltonian for small oscillations with an harmonic total potential energy
and then introduce quantization. When non small relative displacements are present,
the potential has higher order terms in the relative displacement vectors and anharmonic
behaviors occur [5]. One may look then at our previously analyzed systems in this limit,
in search of possible experimental counterparts in the range where classical, or possibly
semiclassical formulations could be applied. These future infinitesimal elasticity studies
of “regular”materials may have some relevance if compared to a pre-existing literature
of effective metric tensors mainly based on dislocation theory with a strain tensor in the
linear approximation only (see Refs. [54–61] as an example). There, an effective emergent
curvature (but also torsion, typical of alternative theories of gravitation and not present
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in General Relativity) in a crystal resulted to be linked to topological defects in the elastic
media (i.e. dislocations and disclinations). We must stress however that because of our
present assumptions of i) regular elastic materials (i.e. no defects) as standard in large
part of Solid Mechanics literature ii) large deformations (contrasted to infinitesimal elas-
ticity) iii) classical (i.e. non quantum) regimes and iv) the requirement of a a Riemannian
four dimensional emergent effective geometry for perturbations as required by General
Relativity and standard Analogue Gravity studies [1], our work addresses a different
type of problem in comparison to the above cited important solid state physics studies.
Finally, it would be interesting to check if a sort of black/white hole behavior could be
observed in solid mechanics. In search of an analog of event horizon, it will be useful
in the future to analyze the nonlinear elasticity problem in spherical coordinates by as-
suming purely radial longitudinal perturbations, i.e. ~u=(ur,uθ,uφ)≡ (ur(t,r),0,0). Such
a type of analysis could have implications for studying linear radial waves in spherical
deformable physical systems as those encountered in geophysics [43]. This procedure
has not been performed here because one should have started with the nonlinear solid
mechanics equations in curvilinear coordinates, a problem which would have lead to
more complicated mathematical relations than those here obtained working in Cartesian
coordinates. For this reason, this important analysis is postponed to a future study.

Appendix

In this section we show how to obtain a second order fully nonlinear equation for purely

longitudinal solutions. Let’s introduce a body force potential first, i.e. ~f (e)= gradΦ(~x).
We require now a dependence of every function on t and x only with a purely x-directed
relative displacement ~u≡ux · x̂. In this situation we can write then in Eq. (2.10) ux = ∂xΨ

(curl~A≡0 identically) so that Newton’s Eq. (2.3) becomes

ρ0(x)
∂3

Ψ

∂x∂t2
−(2µ+λ)

∂3
Ψ

∂x3
− 3

2
(λ+2µ)

∂3
Ψ

∂x3

(

∂2
Ψ

∂x2

)2

−3(λ+2µ)
∂3

Ψ

∂x3
·
(

∂2
Ψ

∂x2

)

−ρ0(x)
∂Φ

∂x
=0. (A.1)

If and only if ρ0(x) = constant≡ ρ0 (together with the already assumed constant elastic
parameters λ and µ) we can reconstruct the divergence structure:

∂

∂x

{

ρ0
∂2

Ψ

∂t2
−(λ+2µ)

[

1+
3

2

∂2
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+

1

2

(

∂2
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)2
]

∂2
Ψ

∂x2
−ρ0Φ

}

=0 (A.2)

or equivalently

ρ0
∂2

Ψ

∂t2
−(λ+2µ)

[

1+
3

2

∂2
Ψ

∂x2
+

1

2

(

∂2
Ψ
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)2
]

∂2
Ψ

∂x2
−ρ0Φ=C(t). (A.3)
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The constant C(t) can be removed (or equivalently set equal to zero) then by rescaling one
of the two potentials in this equation. We are left now with a second order equation for
the potential Ψ which is fully nonlinear in contrast to quasi-linear equations normally met
in continuum field theories. This equation too could be perturbed obtaining an effective
metric formulation. Incidentally, if in Eq. (A.3) one neglects the nonlinear couplings, the
wave equation for longitudinal 1D waves in an homogeneous medium is recovered. The
constraint of constant initial density however makes this formulation too restrictive so
that we have not continued further such an analysis in this paper. We point out that
if the fields depend on more than one spatial coordinate, all the manipulations become
extremely complicated and a decoupling of equations at nonlinear level does not appear
to be feasible anymore.
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