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Abstract. We study the simulation of specular reflection in a level set method imple-
mentation for wavefront propagation in high frequency acoustics using WENO spatial
operators. To implement WENO efficiently and maintain convergence rate, a rectangu-
lar grid is used over the physical space. When the physical domain does not conform to
the rectangular grid, appropriate boundary conditions to represent reflection must be
derived to apply at grid locations that are not coincident with the reflecting boundary.
A related problem is the extraction of the normal vectors to the boundary, which are
required to formulate the reflection condition. A separate level set method is applied
to pre-compute the boundary normals which are then stored for use in the wavefront
method. Two approaches to handling the reflection boundary condition are proposed
and studied: one uses an approximation to the boundary location, and the other uses
a local reflection principle. The second method is shown to produce superior results.
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1 Introduction

1.1 Motivation

High frequency wave propagation models are of vital importance to understanding the
propagation of sound in shallow water environments. Applications such as acoustic to-
mography [1] and underwater communications [2] rely on ray tracing for system design
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and performance prediction. The frequencies useful for such applications in shallow
water are at least on the order of 1kHz and can range into the MHz regime, rendering
full wave models impractical in simulations. On the other hand, ray tracing has many
known limitations. In particular, the Lagrangian nature of the ray trace model leads to
difficulty resolving wave arrivals at a fixed location in space. This is especially true in
range-dependent, shallow water environments. The goal of this work is to devise stable,
accurate, numerical boundary conditions for reflection in a level set method implemen-
tation that solves the high frequency equation for the acoustic phase, thus tracing entire
wavefronts on a fixed grid in space. A practical wavefront model for shallow water
acoustics would allow for improved accuracy in such harsh environments, where multi-
path propagation is evident due to multiple reflections off of the sea surface and bottom.
Such a model would also be more robust to perturbations in material properties. For
example, Godin [3] studied the effect of small perturbations in the sound speed on rays,
showing that the resulting displacement of rays across the wavefront are much smaller
than displacements along the wavefront. This type of relative stability of wavefronts is
critical to practical simulations due to the uncertainty present in sound speed profiles
derived from at-sea data collection.

This study is based on a method laid out in [4], introducing an implementation of the
level set method intended for a two-dimensional shallow water acoustics application.
The algorithm is based on the level set method for geometric optics [5]. The level set
equations are solved using a fifth order Weighted Essentially Non-Oscillatory (WENO)
method for the spatial operator [6] combined with third order Total Variation Diminish-
ing Runge-Kutta (TVDRK) time integration [7] for stability. This choice is motivated by
the presence of a discontinuity in the phase space at a reflecting boundary [4]. While the
discontinuity is a consequence of the rectangular scatterers presented in that work, this is
not the case in general, but even in the benign case of a flat reflecting boundary, a sharp
cusp forms at the boundary in the reduced phase space. The examples presented in [4]
are limited by the types of domain geometry that could be handled under the reflection
boundary condition to either grid-conforming rectangular domains, or a domain with a
linear boundary. For the linear boundary case, the boundary did not conform to the grid
and an approximation was applied in order to provide the required boundary conditions
for the numerical solver. This approach is discussed in greater detail in Section 2.3.1. The
goal of the present work is to extend the method to accommodate more realistic domain
geometry, and improve the accuracy of the reflection boundary condition. To achieve this,
one could modify the rectangular grid to conform to the geometry, as in [8], however in
the general case, this affects the convergence of WENO. Refining the grid to match the
geometry can result in strong restrictions on the CFL condition. Another approach would
be to use finite elements or finite volume methods on an unstructured grid, but this com-
plicates the implementation of WENO, especially in high dimensions (for a dimension d
physical space, the reduced phase space has dimension 2d−1). Alternately, the approach
taken in this work is to embed the reflector in the uniform, rectangular grid and derive
appropriate boundary conditions to apply at grid points adjacent to the reflector.
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An additional consideration is the knowledge of the boundary normals which is es-
sential to computing the reflection condition. For general domain geometry, the normals
need to be computed. We accomplish this via a co-dimension one level set method that
computes the signed distance function to the boundary [8]. Given the signed distance
function, the normal vector can be extracted by taking its gradient, using central differ-
encing, for example. The procedure only needs to be run once before the main time loop,
and the resulting normal angles may be stored for use within the main program.

1.2 Related work

In [4], a method was described for implementing the level set method introduced in
[5] for the purpose of modeling high frequency underwater acoustic propagation. The
present work is focused on further analysis into the implementation of reflection bound-
ary conditions. The implementation of the boundary condition that was applied in [4]
is discussed further, and alternate higher order approach is presented. Cheng et al. [8]
undertook a detailed study of reflection in the level set method to improve the efficiency
of the implementation proposed in [5]. In that work, the grid is augmented with the
boundary condition, and the CFL condition is adjusted accordingly to maintain stability.
In the event that the boundary location lies within ∆x of a grid point, the point clos-
est to the boundary is removed. However, the accuracy analysis of the finite difference
WENO algorithm relies on a uniform underlying grid (or at least a smooth mapping to
a uniform grid) [9]. Given the errors that will inevitably be introduced into the model
by uncertainties in the ocean environment, it is desirable to work with a uniform grid
in order to maintain the convergence properties of WENO to the extent that is possible.
Another related approach to reflection was proposed in [10], where a DG expansion was
applied to the phase space variable and reflection boundary conditions were derived in
the coefficient domain. The test problems presented in this work did not expose the phase
space cusp however, so it is unclear how the method would perform under more general
initial conditions. We find that WENO methods perform very well for such problems.
Forrer and Jeltsch [11] and also Forrer and Berger [12] present a boundary condition for
computing reflections that is very similar to the higher order approach studied in this
work, however they use finite volume methods, whereas the context of the present study
is WENO finite differences. Finally, the work by [13] offers a very thorough description
of the reinitialization problem that is applied here and in [8] to obtain the signed distance
function to the boundary interface and thus the boundary normals.

1.3 Layout

The level set equations and reflection boundary conditions are reviewed in Section 2,
and the proposed methods are introduced with an example in one spatial dimension. A
discussion of stability and accuracy properties follows in Section 3. Results for simple
test cases are presented in Section 4, and Section 5 concludes this paper.
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2 Background

2.1 Level set method for shallow water acoustics

One begins with the Eikonal equation for the acoustic phase function S(t,x) as derived
from the geometric acoustics (high frequency) approximation to the linear wave equa-
tion,

S(t,x)+c(x)|▽S(t,x)|=0, (2.1)

with x∈Ω⊂Rd and t∈R+. The speed of sound in the water column is given by c(x)>
0, and it is assumed to be a known, smooth function. Consider the problem in two-
dimensional physical space, with x=(x,z), and z increases with water depth. The acoustic
source is located at xs =(xs,zs). The physical model is of an infinite line source parallel
to the y axis. The same level set model will result from the more commonly applied
assumption of a point source under azimuthal symmetry under the restriction x ∈R+,
where in this case x is identified with the range in a cylindrical coordinate system. Both
geometry types are illustrated in Fig. 1. In this work, we concentrate on the d = 2 case
as illustrated, but the techniques can be extended to higher dimensional propagation
problems.

x

y

z

Line source parallel to y-axis

x

z

Point source under azimuthal symmetry

γ

y

Figure 1: Source geometry. The infinite line source symmetry is depicted on the left, and on the right the point
source with azimuthal symmetry.

In the level set method with d=2, we embed the source location as the zero level set
of a vector-valued function Φ(t,x,z,θ) : R+×Ω×[−π,π]→R2. Here θ is the angle of the
propagation direction in the reduced phase space; the magnitude of the generalized mo-
mentum vector is determined by the sound speed c. It can be shown that the components
of the level set function, φl, l=1,2, satisfy the following:

∂φl

∂t
=Lφl , L=−V·∇. (2.2)

This is the transport equation that evolves the wavefront in the direction of its normal
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vector which is the local ray direction given by the velocity field

V=





ccos(θ)
csin(θ)

∂c
∂x sin(θ)− ∂c

∂z cos(θ)



. (2.3)

The objective is to solve (2.2) subject to initial conditions, φl(0,x,z,θ)=φ0
l (x,z,θ), l =1,2.

For a point source (equivalently the projection of the line source on to the x−z plane) this
is simply

φ0
1 = x−xs , φ0

2 = z−zs. (2.4)

This equation is to be solved twice for two component level set functions for which the
zero level sets are orthogonal to one another at the wavefront. This is consistent with
Osher’s formulation for geometric optics [5].

To compute numerical solutions, apply the semi-discrete approximation L≈L̃x+L̃z+
L̃θ , where L̃(.) is the product of the relevant component of V evaluated on the grid, and a
WENO differential operator. The WENO operator may thus be computed dimension-by-
dimension. The problem statement in (2.2) and (2.4) is incomplete without the addition
of boundary conditions. Periodic boundary conditions are imposed in the θ dimension,
while in x and z the boundary conditions are determined by the upwind direction, dis-
cerned from the sign of V, which is fixed given a fixed propagation direction θ. With
the upwind methods, only two types of boundary condition need to be specified. An
inflow condition is needed to specify function values flowing into the domain. For this,
it is sufficient to apply Neumann conditions, for instance. Since the wavefronts propa-
gate away from the source (and not into the domain), small perturbations at inflow due
to assumptions made about function values flowing into the domain will not affect the
location of the zero level sets. Of greater interest is the boundary condition applied along
a reflecting surface which occurs for example, at a pressure release boundary (air-water
interface) or from a hard rock surface.

The reflection boundary condition at a point along an interface given by (x,zb) is
derived from Snell’s law and is stated in [8] as

φ(t,x,zb,θre f l)=φ(t,x,zb,θinc), (2.5)

where θre f l and θinc are the reflected and incident angles respectively. The subscripts
indicating the level set function components have been dropped to simplify the notation.
The reflected angle satisfies

θre f l =2θB−θinc−π. (2.6)

Here θB is the angle of the outward normal to the reflecting surface. When the point (x,zb)
is in the grid over the physical domain, applying the boundary condition is a matter
of pre-computing the incident angles and interpolating φ as a function of θ at a fixed
point on the boundary to approximate the value φ(t,x,zb,θinc). Note that one must be
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careful in implementing the interpolation strategy as the level set function generally has
discontinuous derivatives at a reflection boundary. Then at each time step we can directly
apply (2.5) when computing the spatial operator. For this purpose, [4] presents a WENO
procedure adapted to reconstruction at an arbitrary point.

2.2 Computing boundary normals

The method proceeds based on the exposition in [8,13,14]. A level set function represents
the boundary implicitly. Let Ω be the rectangle containing the portion of the water col-
umn being modeled. For convenience, take Ω= {(x,z)∈ [−1,1]×[0,2]}. Overlay a grid
{

(xi,zj,θk)
}N−1

i,j,k=0
, with

xi=−1+
(

i+
1

2

)

h, zj =
(

j+
1

2

)

h,

θk =−π+π
(

k+
1

2

)

h, h=
2

N
.

Consider these grid points to be the centers of the cells Iijk=[xi−1/2,xi+1/2]×[zj−1/2,zj+1/2]×
[θk−1/2,θk+1/2].

Assume the ocean surface is given by z = 0, and the bottom is described by z =
zb(x), where zb(x) is some smooth function. Establish the following notation: Γ =
{(x,z) : z= zb(x)}, Ω+ = {(x,z) : z> zb(x)}, and Ω− = Ω−Γ−Ω+. This is illustrated in
Fig. 2.

We seek to compute θB(xi), the angle of the outward normal to the interface at the
center of each grid cell along the boundary Iijbk, i=0,1,··· ,N−1, jb is the index of the grid
cell containing zB(xi) (Fig. 3). This computation is restricted to the physical domain (x-z),
so for now, ignore the k index.

Figure 2: Domain geometry.
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Boundary Grid Cell

x i−1/2 x i x i+1/2

zj b+1/2

zj b

zj b−1/2

θ
B

Figure 3: A grid cell intersecting the boundary.

A distance function, D(x) is defined by

D(x)=min
xI∈Γ

(|x−xI |). (2.7)

Thus D(x) has the property that D(x,zb(x))=0. A signed distance function, d(x) satisfies
the following additional properties:

1. |d(x)|=D(x)

2. d(x)=0 when x∈Γ

3. d(x)=D(x) when x∈Ω+

4. d(x)=−D(x) when x∈Ω−

5. |▽d(x)|=1

6. N=▽d is the unit normal to the interface Γ.

In order to obtain θB(xi), we seek to construct the signed distance function, d(x,z) for
the interface z = zb(x). Then, using Property 6 above, we can compute N and use the
result to compute its angle.

To construct d(x,z), Sussman, Smereka, and Osher [15] suggested solving the follow-
ing reinitialization equation

dτ+S(d0)(|▽d|−1)=0 (2.8)

to steady state, where S(·) is a sign function and d0 is an initial value of d. The term
reinitialization equation comes from the use of this equation to reset the level set function to
a signed distance function in the traditional level set method. Since the characteristics of
this equation propagate outward in the normal direction from the interface, this method
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converges quickly to a signed distance function near the interface (cf. [13]). Peng et al. [13]
refined the method by replacing S(d0) in (2.8) with the smoothed out function

s(d)=
d

√

d2+d2
x∆x4+d2

z∆z4
(2.9)

to improve convergence. We initialize with the estimate

d0(x,z)= zb(x)−z. (2.10)

To implement the method, we use a fifth order WENO scheme to compute the spa-
tial derivatives; the same TVDRK method as is used to solve the level set equations to
discretize time. The partial differential equation (2.8) is of Hamilton-Jacobi form, with
Hamiltonian

H(▽d,d)= s(d)(|▽d|−1) . (2.11)

For an upwind scheme, we need to define a monotone numerical Hamiltonian. We
choose Godunov’s method for this problem which results in the following discretization

Ĥ(dij)=s+ij

(

√

max((A+)2,(B−)2)+max((C+)2,(D−)2)−1

)

+s−ij

(

√

max((A−)2,(B+)2)+max((C−)2,(D+)2)−1

)

, (2.12)

where

A=
1

∆x
▽̃
−
x dij , B=

1

∆x
▽̃
+
x dij ,

C=
1

∆z
▽̃
−
z dij , D=

1

∆z
▽̃
+
z dij ,

▽̃
− and ▽̃

+ represent the one-sided difference operators that look to the right and to the
left respectively, and

α+=max(α,0), α−=min(α,0).

For an implementation with first order time integration, the scheme then can be written
down as

dn+1
ij =dn

ij−∆τĤ(dn
ij). (2.13)

A tolerance may be defined to determine when steady state has been reached within
some band of grid cells surrounding the boundary, or in practice one could choose a
fixed number of iterations. Central differencing may then be used to compute the value
of the normal vector and extract θB for each of the xi, i=0,··· ,N−1.
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2.3 Reflection

Fix (xi,θk) and consider the operator L̃z introduced in Section 2.1. The WENO procedure
yields reconstructions φ̃+

i,j−1/2,k ≈ φ+(xi,zj−1/2,θk) and φ̃−
i,j+1/2,k ≈ φ−(xi,zj+1/2,θk) for j=

0,··· ,N−1. The superscripts (·)+ and (·)− indicate the limits from the right and left,
respectively. This allows us to write

L̃z = cij sinθk

φ̂i,j+1/2,k−φ̂i,j−1/2,k

h
,

where φ̂ is the numerical upwind flux given by

φ̂i,j+1/2,k=

{

φ̃+
i,j+1/2,k , if sin(θk)<0,

φ̃−
i,j−1/2,k , otherwise.

(2.14)

If zb(xi)≡ 2, then the grid point zN−1/2 coincides with the reflecting boundary so (2.5)
is implemented by setting φ̃+

i,N−1/2,k

.
= φ̃−

i,N−1/2,N−k−1. In the following, we consider the
situation where

zb(xi)= zjb−1/2+γh, (2.15)

with 0<γ<1 for some index jb∈{0,1,··· ,N−1}. The one dimensional restriction is shown
in Fig. 4.

...z-1/2 = 0 z1/2
z0 ... zjb-1/2 zjb+1/2 zN-1/2

zjb

︷︸︸︷
h

zb

︷︸︸︷
γh

Figure 4: 1D representation of the grid with boundary located at zb= zjb−1/2+γh.

Two approaches are suggested. In the first, described in Section 2.3.1, the location
of the boundary is approximated by the nearest grid point. In Section 2.3.2, a different
approach is described which assumes that the sound speed is constant in a neighborhood
of the boundary in an effort to derive a higher order approach. Each is described with
respect to computing L̃z. The details are similar for computing L̃z.

2.3.1 Method 1: Boundary location approximation

This approach is straightforward and easy to implement. Given jb for each xi, apply
(2.5) at the location zjb−1/2. Most of the computation can be performed prior to the main
wavefront solver loop and stored in appropriate data structures. The following steps are
applied in the pre-compute stage:
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1. Solve the Hamilton-Jacobi equation for the signed distance function to the boundary as described
in Section 2.2 and store the values. Also store, for each xi, the angle of the outward normal to
the boundary, θb(xi).

2. Loop over each physical space dimension individually to locate the indices ib for the left and right
boundaries, and jb for surface and bottom boundaries. Store the indices ib associated with each
j=0,··· ,N−1, and also the indices jb associated with each i=0,··· ,N−1.

3. For each θb(xi), loop over all angles θk, k= 0,··· ,N−1, to identify reflected angles (this may
be accomplished by testing the sign of sin(θk)sin(θB)+cos(θk)cos(θB)). Store the reflected
angles.

4. For each reflected angle identified, compute and store the associated incident angle using (2.6).

2.3.2 Method 2: Local ray approximation

In this approach, we combine the law of reflection with the fact that (2.2) transports func-
tion values along rays, which are straight lines when the wave speed c is constant. As-
sume that c(x,z) is a smooth function that may be reasonably approximated as constant
in a neighborhood of zb(xi), and that zb(x) is smooth and reasonably approximated as
piecewise linear. The time domain ray (characteristic) equations for the Eikonal equation
are

ẋ(t)= c(x(t),z(t))cosθ(t), (2.16a)

ż(t)= c(x(t),z(t))sinθ(t), (2.16b)

θ̇(t)=
∂c

∂x
sinθ(t)− ∂c

∂x
cosθ(t). (2.16c)

The dot indicates differentiation with respect to time t. For small t, we can expand θ(t)≈
θ(0)≡ θ0, and likewise, using (2.16),

x(t)≈ x0+tc(x0,z0)cosθ0, (2.17a)

z(t)≈ z0+tc(x0,z0)sinθ0. (2.17b)

The assumption is that the travel time along a ray for which ||(x,z)−(x,zb(x))||< h is
small, so that the rays can be treated as straight lines in this region. Changing notation
for the moment, let R= (xi,zjb−1/2), and let P= (xb,zb) where (xi,zjb−1/2) are as above,
and (xb,zb) is the point of boundary interaction for the ray that reaches point R at time t.
Let τ be the travel time along that same ray from the boundary interaction until it reaches
R. Then by property of the transport equation for the level set functions and (2.5),

φ(t,R,θre f l)=φ(t−τ,P,θre f l)=φ(t−τ,P,θinc). (2.18)

In the absence of the reflecting boundary, the ray would continue to travel in a straight
line to a location R′∈Ω+, and by (2.18), the level set function would satisfy

φ(t,R,θre f l)=φ(t,R′,θinc). (2.19)
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z = zb

R

R’

P

ηRηI

Q

Ω-

Ω+

Figure 5: Law of reflection.

That is, if we continue to propagate the level set function into Ω+, an exact boundary
condition is available when c is (locally) constant and zb(x) is (locally) linear (although
typically R′ will not lie in the grid so interpolation is needed). So to implement the re-
flection condition, extend the domain of computation into Ω+ for directions θk incident
on the boundary, compute the locations R′ for each pair (xi,zjb), and apply (2.19).

To compute R′, consider the geometry illustrated in Fig. 5. According to the law
of (specular) reflection, ηI = ηR, where ηI is the angle between the incident ray and the
boundary normal, and ηR is the angle between the boundary normal and the reflected
ray. Also, under the constant wave speed assumption, the length of the ray from P to
R′ is equal to the length of the ray from P to R, which is cτ. This implies that the line
segment RR′ is normal to the boundary, i.e., R′ is just the normal reflection through the
boundary at the point Q=(xi,zb(xi)). Thus, given R, θB(xi), and assuming the boundary
is linear in the cell (xi−1/2,xi+1/2), (R′)T =TRT, where

T=

(

sin2 θB−cos2θB −2cosθB sinθB

−2cosθB sinθB −sin2 θB+cos2θB

)

. (2.20)

To implement this, the following steps additional to those listed in Section 2.3.1 are
required:

5. Extend the domain into Ω+ to allow for solutions surrounding the image location. The distance
beyond the boundary of the image location is bounded above by γh, so the number of grid points
to insert beyond the boundary can be determined based on the stencil size of the numerical solver
and interpolation used, but a minimum of 2 additional cells is recommended.

6. Extend the wave speed c(x,z) into Ω+. If c is constant, this is trivial. More generally, it is not
clear what the best approach is. We choose to set cij to be an average of the values obtained

from neighboring points in Ω−, fixing the value as constant for (xi,zj) such that the neighboring

points are all in Ω+, and setting ∂c
∂x

∣

∣

ij
= ∂c

∂z

∣

∣

ij
=0. It is less clear how to extend c(x,z) into Ω+

if one wishes to use a higher order approximation of the ray in the image space.

7. For each θb(xi), compute and store the associated image mapping (2.20).

8. For each θb(xi), compute and store the image location.
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2.4 Remark on implementation

The prototype code is written in C using the GNU Scientific Library [16]. In order to store
all of the precomputed information, we define the following C structures in Listings 1 and
2.

Listing 1: Boundary gridcell structure

typedef s t r u c t {

s i z e t indx ; / / Ind ex o f t h i s c e l l
i n t boundary indx ; / / Ind ex o f t h e boundary
double th normal ; / / Outward normal t o t h e boundary
s i z e t num angles ; / / # o f i n c / r e f l a n g l e p a i r s
s i z e t ∗ r e f l i n d x ; / / Array o f i n d i c e s i n t o r e f l . a n g l e s
s i z e t ∗ n o n r e f l i n d x ; / / Complement o f r e f l i n d x
g s l v e c t o r ∗ i n c a n g l e s ; / / A s s o c i a t e d i n c i d e n t a n g l e s
g s l v e c t o r ∗ x im ; / / S t o r e computed image l o c a t i o n s
g s l v e c t o r ∗ z im ;
Box ∗ neighbors ; / / S t o r e a d j a c e n t p o i n t s f o r i n t e r p o l a t i o n
g s l m a t r i x ∗ R ; / / R e f l e c t i o n map

} g r i d c e l l ;

Listing 2: Boundary Slice structure

/ / Th i s i s a h i g h e r l e v e l s t r u c t u r e t o c o n t a i n d a t a when
/ / t h e r e a r e m u l t i p l e s eg m ent s in a v e r t i c a l o r h o r i z o n t a l s l i c e .
typedef s t r u c t {

s i z e t Nseg ; / / Ind ex i n t o g r i d o f t h i s c e l l
g r i d c e l l ∗ B l e f t ; / / An Nseg−l e n g t h a r r a y o f g r i d c e l l s
g r i d c e l l ∗ Br ight ;
double ∗ z s t a r 1 l e f t ; / / Boundary l i m i t s
double ∗ z s t a r 1 r i g h t ;
double ∗ z s t a r 2 ;

} S l i c e ;

A Slice contains the boundary information for a single dimension in the physical
space. Its members include a gridcell array for each boundary in that dimension. If the
domain is convex, the field Slice.Nseg, which specifies the length of the arrays, equals 1.
Otherwise, if there are multiple segments (e.g., for an object of interest inside the domain),
we store a gridcell for each segment, tied to the relevant boundary (left or right).
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3 Analysis

In this section, we study the proposed boundary conditions more closely to help quantify
the error that will be imposed by the approximations. First we consider the accuracy of
the boundary conditions in terms of arrival time errors. Second, we look at the stability
and show that it is worthwhile to implement a higher order method such as the one
described in Section 2.3.2. It is also worth noting that the piecewise linear assumption on
zb(x) (or equivalently, piecewise constant for θB(x)) results in additional O(h2) error.

3.1 Arrival time accuracy

To study the error produced by this boundary condition, it is not sufficient to apply Taylor
expansions since the CFL condition guarantees that φ is not differentiable in the interval
(zb−h,zb). Instead, we investigate specific errors that occur. In this subsection, we focus
on how the wavefront travel time is affected, which is more physically relevant than
global error in φ since it provides the phase information for the Eikonal equation (2.1).

3.1.1 Method 1

Let t∗ be the arrival time of the wavefront at the boundary zb and consider the case where
c is constant, and θB(xi)=

π
2 . Then the incident angles lie in (0,π) and t∗= zs−zb

csinθ . Using

(2.15), the numerical wavefront arrival would occur at time t̃∗=t∗+ γh
csinθ so that the arrival

time error, et∗ is given by

et∗ =
γh

csinθ
. (3.1)

To evaluate further, consider θB =
π
2 . Then the incident angles satisfy θinc =−θre f l . For

angles close to normal incidence, et∗≈ γh
c =O(h) for a first order approximation. The worst

case error will occur for incident angles that are close to parallel with the boundary. For

a fixed h, this occurs when θ = π(1− h
2 ). Then, et∗ ≈ 2γ

πc , which appears to result in an
order one error in the arrival time at these angles. In fact, we cannot guarantee for a
given refinement {hl}∞

l=0, with hl →
l→∞

0 that the corresponding sequence {γl} satisfies

liml→∞γl = 0. This can be seen by expressing γl in terms of the first value γ0 as γl =
γ0

hl
−⌊γ0

hl
⌋. The sequence {γl} need not converge: for example, take γ0 =

1
7 with hl = 2−l.

On the other hand, if the hl are chosen such that there is an index L for which γ0

hl
is an

integer for l>= L, then et∗ →0 as hl →0. This is essentially modifying the grid to include
the point zb, and that modification could be different for each fixed x. But in general, h→0
does not imply et∗ →0. This error in arrival time that is proportional to γ and dependent
on the arrival angle is actually a numerical consequence of the fact that as h → 0, the
reflected angle approaches an angle that is parallel to the boundary and is not actually
a reflected angle. Since this is a consequence of the physics (i.e., the cusp in φ(·,θ)) we
would expect any approximation to exhibit this degradation at reflected angles that are
nearly parallel to zb(xi).
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3.1.2 Method 2

As mentioned in Section 2.3.2, this boundary condition is exact when c is constant and
zb(x) is linear in each cell (xi−1/2,xi+1/2), so comparable analysis to that in Section 2.3.1
yields et∗ = 0. Instead, consider the error made in the approximation θ(t)≈ θ0. The key
assumption is that τ, the travel time along the ray that is reflected at the boundary at
location P and lands at location R inside the domain (c.f. Fig. 5), is small. To investigate
the validity of that assumption, we solve for τ using the ray equations (2.17) combined
with the locally linear boundary assumption

zb(x)≈ zb(xi)+cot(θB(xi))(x−xi). (3.2)

Proceed by taking P=(xb,zb), where the pair (xb,zb) satisfy (3.2), and R=(xR,zR), where
|zR−zb|=γh and 0<γ< 1. First compute the travel time, τ1, under the approximation
with c locally constant, and compare to the true travel time τ2 for linear c. For τ1, (2.17)
becomes

xR = xb+cτ1cosθre f l , (3.3a)

zR = zb+cτ1sinθre f l , (3.3b)

θ(τ1)= θre f l. (3.3c)

Upon substitution of (3.2) into (3.3), we see that

τ1=
γh

c
(

cosθre f l cotθB−sinθre f l

) , (3.4)

which for θB = π
2 is exactly (3.1) in magnitude. Taking θB = π

2 for comparison, the re-
mainder term for the small time Taylor expansion of θ(t) about θre f l will be proportional
to

|R0(τ1)|=
γh

∣

∣sin(θre f l)
∣

∣

∣

∣

∣

∣

∂c

∂x
sinθ(ξ)− ∂c

∂z
cosθ(ξ)

∣

∣

∣

∣

(3.5)

for some ξ∈ (0,τ1). Again, this is order h for reflection angles close to normal, and order
1 for angles near parallel with the boundary, with the constant dependent on the sound
speed profile, as h→0. Typical sound speed profiles vary more rapidly in depth than in
range, so we would expect the ∂c

∂z cosθ term to dominate.
We can now consider how the approximation affects the travel time error by looking

at the effect when c is linear and independent of x, since in that case an analytical so-
lution is available so that we may compute the exact travel time τ2 and compare to τ1

to obtain an error estimate. Letting c(z) = gz+c0 where g and c0 are known constants,
the travel time along the ray that leaves the boundary zb and terminates at zR is given
by τ =

∫ s
0

1
c(z(u))du, where s is the arc length of the ray. For the given c, the travel time

is [17, p. 210]

τ2=

∣

∣

∣

∣

∣

∣

1

g
log

[

1+
√

1−a2c2

ac

]c(R)

c(zb)

∣

∣

∣

∣

∣

∣

. (3.6)
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The constant a is found by applying Snell’s law to the ray at its turning point, yielding

a=
cosθre f l

c(zb)
. Substituting back into (3.6) and using the fact that c(zb)= c(R)+gγh,

τ2=

∣

∣

∣

∣

∣

∣

1

g
log





c(R)+gγh+
√

c(R)2sin2θre f l+gγh(2c(R)+gγh)

c(R)
(

1+|sinθre f l|
)





∣

∣

∣

∣

∣

∣

. (3.7)

For reflections roughly normal to the boundary, θre f l ≈−π
2 , (3.7) simplifies to

τ2=

∣

∣

∣

∣

1

g
log

(

1+
gγh

c(R)

)∣

∣

∣

∣

≈
∣

∣

∣

∣

γh

c(R)
− gγ2h2

c(R)2

∣

∣

∣

∣

=τ1+C(γh)2. (3.8)

Then, et∗ =O(h2) as h→ 0 when the approximation is applied for a linear sound speed
profile with normal incidence. Recall that in Section 3.1.1 et∗ was derived assuming that
the sound speed was constant; the error would be larger had it been assumed that c
was not constant due to an error in the angles. This result suggests this method would
provide improved performance over the location approximation method even for the
variable coefficient case.

Again, we would expect to observe degraded performance when the angle the ray
makes with the boundary is near parallel. Given a fixed mesh spacing h, the worst case

would be θre f l =−π h
2 , for which we have τ1≈ 2γ

πc(R)
−O(h2). Expanding (3.7) about small

γh leads to

τ2≈
∣

∣

∣

∣

∣

2γ

πc(R)

(

π

√

c(R)

2γg

√
h

)

− γh

c(R)

(

1+
πc(R)

2gγ

)

∣

∣

∣

∣

∣

=τ1

√

c(R)π2

2γg

√
h+O(γh). (3.9)

Then et∗ is proportional to

τ2−τ1≈
√

2γ

πc(R)

(
√

πh

g
−
√

2γ

πc(R)

)

.

As h→ 0, et∗ →−τ1, which is representative of the fact that as θre f l approaches parallel
to the boundary, under the linear c assumption, the ray has a turning point at zb so that
it grazes the boundary but does not reflect. So the arrival time error will have the same
magnitude as that in Section 3.1.1 when a linear c is approximated by constant c.

3.2 Stability

To simplify the analysis, we study the 1D problem for x. First we set up the analysis
when the exact boundary condition is applied (i.e., the boundary location is in the grid).
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In Section 3.3, we consider the effect of errors incurred in approximating the boundary
condition. In one dimension, there are only two directions given by θ∈{−π,0}. Equiva-
lently, we solve the system

∂U

∂t
+A(x)

∂U

∂x
,

where

U=

(

u
v

)

(t,x), A(x)=

(

c(x) 0
0 −c(x)

)

.

Initial and boundary conditions are required to pose the problem completely. In this case,
we have

u(0,x)=v(0,x)= x−x∗,

where x∗ is a fixed, pre-determined point in (0,xB). It is assumed that c(x)> ǫ > 0, so
that u(t,x) represents a right-traveling wave and v(t,x) is a left-traveling wave. Thus,
boundary conditions need to be imposed at x= 0 for u and at x= xB for v. Assume for
now that reflection only occurs at x= xB, and apply an inflow condition at x=0:

(

1 0
0 0

)

∂U

∂t
(t,0)=0,

(

0 0
−1 1

)

U(t,xB)=0.

The two equations are now coupled by the reflection boundary condition.
To further simplify the analysis, consider the constant coefficient problem in the half

plane x∈(0,∞). We will use standard notation for k=∆t, λ= k
h , and Ej is the shift operator:

Ej(U(x))=U(x+ jh). Apply the first order scheme with reflection at x=0:

Un+1
j =

[(

cλ 0
0 0

)

E−1+(1−cλ)I+

(

0 0
0 cλ

)

E1

]

Un
j

≡QUn
j ≡
(

A−1E−1+A0E0+A1E1
)

Un
j , j=1,2,··· , (3.10)

Un+1
0 =

[(

0 1−cλ
0 1−cλ

)

+

(

0 cλ
0 cλ

)

E1

]

Un
0 . (3.11)

We first study the effect of only the boundary condition on the left, using the techniques
presented in [18] and [19].

Under a few assumptions on Q (which are satisfied for this scheme; refer to [18]), Q
has two linearly independent right-going and two linearly independent left-going solu-
tions when |ζ| ≥ 1. It is established in [18] that the number of independent right-going
solutions is determined by the size of the system multiplied by the number of stencil
points in Q to the left of center, and likewise for the left-going solutions with respect to
the number of stencil points to the right of center. We now consider solutions in the form

Un
j = Ûκ jζn, κ,ζ∈C−{0} , (3.12)
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with κ= eiξh and ζ = eiωk. The dispersion relation relates ω to ξ for waves. Analogously,
we follow [19] and consider the numerical dispersion relation for ζ in terms of κ. This is
given by substituting (3.12) into Q and solving. We find that the resulting system satisfies

(

ζ− cλ
κ −1+cλ 0

0 ζ−[cλ(κ−1)+1]

)

Û=0.

The matrix on the left hand side is singular when

ζ= cλ
1−κ

κ
+1, cλ(κ−1)+1. (3.13)

The first solution is for the right-going solution component u(t,x) and the second is for
the left-going v(t,x). In the subsequent, we will use µ instead of κ for the left-going
solutions and retain κ only for the right-going solutions, so the second dispersion relation
in (3.13) becomes

ζ= cλ(µ−1)+1.

We now seek solutions to the scheme (3.10) that also satisfy (3.11) and have the form

Un
j = ζn

2

∑
m=1

αmP̂mκ
j
m+ζn

2

∑
m=1

βmR̂mµ
j
m. (3.14)

Continuing to follow Trefethen [19], apply the boundary condition (3.11)-(3.14) and col-
lect terms in α and β to arrive at an expression of the form

E(ζ)

(

α1

α2

)

=D(ζ)

(

β1

β2

)

.

Our concern is solutions for which the coefficients α cannot be fully specified in terms of
β when |ζ|≥1, i.e., |ζ|≥1 for which E(ζ) is singular. We see that

E(ζ)=

(

ζP̂1
1 +[cλ(1−κ1)−1] P̂2

1 ζP̂1
2 +[cλ(1−κ2)−1] P̂2

2

(ζ+cλ(1−κ1)−1) P̂2
1 (ζ+cλ(1−κ2)−1) P̂2

2

)

,

D(ζ)=

(−ζR̂1
1+[cλ(µ1−1)+1] R̂2

1 −ζR̂1
2+[cλ(µ2−1)+1] R̂2

2

(1−ζ+cλ(µ1−1)) R̂2
1 (1−ζ+cλ(µ2−1)) R̂2

2

)

,

so E(ζ) is singular when
ζdet(P̂)(ζ+cλ(1−κ)−1)=0. (3.15)

Here, P̂=
[

P̂1P̂2

]

and we have used the fact that the dispersion relation for the scheme
produces only one solution for right going waves so that κ1 = κ2 ≡ κ. In other words,
instability is present (for ζ ∈C−{0}) when P̂ is singular, implying that there are not two
linearly independent right going waves, or ζ=1−cλ(1−κ). In the case that P̂ is singular,
the problem is one dimensional and the condition is trivially satisfied using the conse-
quence of the dispersion relation that κ= 1

µ , with a reflection coefficient E(ζ)−1D(ζ)=1.
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On the other hand, if P̂ has full rank, then E(ζ) is singular only when ζ=1−cλ(1−κ). Ap-
plying once again the dispersion relation, there are two possibilities, ζ =1 or ζ =1−2cλ.
If ζ = 1, then κ = 1

µ = 1 yielding the solution U(t,x)≡ constant. So the approximation is

stable as long as cλ<1 since then |1−2cλ|<1.
Again as in [19], we can define the reflection coefficient matrix AR(ζ)= E−1(ζ)D(ζ)

when E is nonsingular. It is straightforward to compute

AR(ζ)=
1

detP̂

(

P̂2
2

(

R̂2
1− R̂1

1

)

P̂2
2

(

R̂2
2− R̂1

2

)

−P̂2
1

(

R̂2
1− R̂1

1

)

−P̂2
1

(

R̂2
2− R̂1

2

)

)

,

which is independent of ζ. This matrix is actually singular and yields solutions α2 ∝ α1

which suggests that the analysis for the case P̂ is singular is the correct analysis, with
reduced reflection coefficient of one.

In a similar fashion, it can be shown that the problem for a reflection boundary at x=1
with boundary condition

Un+1
N =

[(

cλ 0
cλ 0

)

E−1+

(

1−cλ 0
1−cλ 0

)]

Un
N

is also stable with one linearly independent solution in each direction, and reflection
coefficient

AR(ζ)=κ2N .

This is stable since for |ζ| ≥ 1, |κ|=
∣

∣

cλ
ζ−1+cλ

∣

∣≤ 1. By Proposition 6 in [19], the model is
stable in the sense defined in [18] because the interfaces at x = 0 and at x = 1 are both
individually stable.

3.3 Effect of perturbations

The proposed boundary conditions rely on an approximation thus an error is imposed at
each reflecting boundary at each time step. In this section, we study how the error made
at the boundary propagates in the one dimensional case above. Consider (3.10) with
initial condition U0

j =0 and perturbed boundary condition un
0=vn

0+ǫ, where ǫ is the O(h)

or O(h2) approximation error for the boundary condition. We also have the reflection
boundary condition at x = 1 for v, vn

N = un
N . We consider the un

j and vn
j components

separately in the scheme (3.10) to construct the discrete error equation.
We seek to solve the following difference equation:

un
j =(1−cλ)un−1

j +cλun−1
j−1 (3.16)

subject to the initial condition u0
j =0 and boundary condition un

0 =ǫ. The transport prop-

erty further implies that

un
j =0 for j≥n. (3.17)
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We use generating functions to solve the difference equation. First, let

un(x)=
∞

∑
j=0

un
j xj =

n−1

∑
j=0

un
j xj, (3.18)

where the second equality is due to (3.17). Now multiply (3.16) by xj and sum over j to
find

un+1(x)=(1−cλ)un(x)+
n−2

∑
k=−1

cλun
k xk+1

=(1−cλ)un(x)+cλxun(x)+cλun
−1

=(1−cλ+cλx)un(x). (3.19)

Now let u(x,y)=∑
∞
n=0un(x) yn

n! , multiply (3.19) by
yn

n! , and sum over n:

∞

∑
n=1

un(x)
yn−1

(n−1)!
=

∞

∑
n=0

(1−cλ+cλx)un(x)
yn

n!
.

Or,
∂u(x,y)

∂y
=(1−cλ+cλx)u(x,y), (3.20)

which has the solution u(x,y)=C(x)e(1−cλ+cλx)y. To find C(x),

u(x,1)=C(x)e1−cλ+cλx=
∞

∑
n=0

un(x)
1

n!

=⇒un(x)=C(x)(1−cλ+cλx)n .

Taking n=1,
C(x)(1−cλ+cλx)=u1

0+u1
1x+u1

2x2+···=ǫ.

Thus,

u(x,y)=
ǫ

1−cλ+cλx
e(1−cλ+cλx)y,

and
un(x)=ǫ(1−cλ+cλx)n−1 . (3.21)

Comparing the above expression to (3.18) and applying the binomial theorem, we see
that

un
j =

{

ǫ(n−1
j )(1−cλ)n−j−1(cλ)j , j=0,1,··· ,n−1,

0, otherwise.
(3.22)

Next, solve the difference equation produced by (3.10) for vn
j subject to a perturbation at

the boundary using the same techniques. The difference equation is

vn
N−j =(1−cλ)vn−1

N−j+cλvn−1
N−j+1, (3.23)
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subject to initial condition v0
N−j = 0, and boundary condition vn

N = ǫ, n = 1,2,··· It is a

consequence of the transport equation that vn
N−j=0 for j≥n, and we can use this property

in addition to the boundary condition to derive the useful identity

vn
N−n+1=ǫ(cλ)n−1 . (3.24)

We use the expansion

vn(x)=
n−1

∑
j=0

vn
N−jx

−j, (3.25)

to find

vn+1(x)=(1−cλ)vn(x)+
cλ

x

n−1

∑
j=0

vn
N−jx

−j+cλvn
N+1−

cλ

x
vn

N−n+1x−(n−1).

Using (3.24) and that vn
N+1=0 yields the difference equation in n:

vn+1(x)=

(

1−cλ+
cλ

x

)

vn(x)−ǫ

(

cλ

x

)

.

Again, let v(x,y)=∑
∞
n=0vn(x) yn

n! . Then the resulting differential equation is

∂v(x,y)

∂y
=

(

1−cλ+
cλ

x

)

v(x,y)−ǫexp

(

cλ

x
y

)

. (3.26)

Eq. (3.26) produces the homogeneous solution

v1(x,y)=C(x)exp

[(

1−cλ+
cλ

x

)

y

]

,

and particular solution v2(x,y) = D(x)exp
[

cλ
x y
]

. Upon substitution into (3.26) we find
that D(x)= ǫ

1−cλ , so that the generating function for the coefficients vn
N−j is

v(x,y)=C(x)exp

[(

1−cλ+
cλ

x

)

y

]

+
ǫ

1−cλ
exp

[

cλ

x
y

]

.

Now

v(x,1)=C(x)exp

[(

1−cλ+
cλ

x

)

y

]

+
ǫ

1−cλ
exp

[

cλ

x
y

]

=
∞

∑
n=0

1

n!

(

C(x)

(

1−cλ+
cλ

x

)n

+
ǫ

1−cλ

(

cλ

x

)n)

=
∞

∑
n=0

vn(x)
1

n!
,
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so

vn(x)=C(x)

(

1−cλ+
cλ

x

)n

+
ǫ

1−cλ

(

cλ

x

)n

.

Considering n=1,

v1(x)=C(x)

(

1−cλ+
cλ

x

)

+
ǫ

1−cλ

cλ

x

=
n−1

∑
j=0

v1
N−jx

−j=v1
N =ǫ,

which leads to the result

C(x)=ǫ
1−cλ− cλ

x

(1−cλ)
(

1−cλ+ cλ
x

) .

Substituting this back into the expression for vn(x), we have

vn(x)=
ǫ

1−cλ

[

(

1−cλ− cλ

x

)(

1−cλ+
cλ

x

)n−1

+

(

cλ

x

)n
]

. (3.27)

Finally, in order to compare (3.27) to the coefficient terms in (3.25), expand using the
binomial theorem:

vn(x)=ǫ

[

(

1−cλ+
cλ

x

)n−1

− cλ

x(1−cλ)

n−1

∑
j=0

(

n−1

j

)

(1−cλ)n−1−j

(

cλ

x

)j

+
1

1−cλ

(

cλ

x

)n
]

=ǫ

[

(

1−cλ+
cλ

x

)n−1

−
n−1

∑
j=1

(

n−1

j−1

)

(1−cλ)n−1−j
(

cλ

x

)j
]

=ǫ

[

(

n−1

0

)

(1−cλ)n−1−0

(

cλ

x

)0

+
n−1

∑
j=1

[(

n−1

j

)

−
(

n−1

j−1

)]

(1−cλ)n−1−j

(

cλ

x

)j
]

=
n−1

∑
j=0

ǫ(1−cλ)n−1

(

n−2j

n

)(

n

j

)(

cλ

1−cλ

)j

x−j.

That is,

vn
N−j =

{

ǫ(1−cλ)n−1
(

n−2j
n

)

(n
j)
(

cλ
1−cλ

)j
, j=0,1,··· ,n−1,

0, otherwise.
(3.28)

We can now apply (3.22) and (3.28) to explore how the error produced at the left boundary
propagates. The perturbation at x=0 reaches the right boundary, x=1, at time t=(N+1)k,

with value uN+1
N =(cλ)N ǫ. The reflection boundary condition at x= 1 is vN+1

N = uN+1
N =

(cλ)Nǫ. Assuming the boundary condition on the right is exact, then the perturbation
returns to x=0 as

v2N+1
0 =ǫ(cλ)2N

(

2N

N

)(

1− N

N+1

)

(1−cλ)N . (3.29)
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Upon the next reflection at x=0, this means there is an additive error, u2N+1
0 =ǫ+v2N+1

0 . It
is evident that the error continues to propagate through the domain. We can use Stirling’s
approximation

N!≈
√

2πN

(

N

e

)N

(3.30)

to get a better sense of the size of the error for large n, with n expressed as multiples of
N, so this is also a mesh refinement study. Substituting (3.30) in (3.29),

v2N+1
0 ≈ǫ

[

4(cλ)2(1−cλ)
]N 2

(N+1)
√

πN
. (3.31)

The limiting behavior of (3.31) is overwhelmed by the exponential term in the numerator.

Write g(cλ)=(cλ)2(1−cλ). The base of the exponential term is then 4g(cλ). Since cλ<1
for stability, we have g(cλ)≤ 4

27 <
1
4 . Thus 4g(cλ)<1, and although the error persists, it

decreases exponentially as h→0 so it does not have a significant effect on either method’s
convergence rate. To be thorough, we computed the error multiplier with cλ = 2

3 (this
value of cλ maximizes g(cλ) over (0,1)) for N=10, N=20, and N=40. The added errors
were, respectively, ǫ8.554×10−5, ǫ1.7026×10−7, and ǫ1.76×10−12, where the result for
N=40 is based on an approximation for large N.

3.4 Remark

In Sections 3.2 and 3.3, the analysis is limited to the one-dimensional case. The fact that
in this case the reduced phase space is discrete, consisting of only two directions, permits
this type of study. Local stability in two dimensions follows for any pair of incident
and reflected angles on the surface by coordinate transform. An extension to fully two-
dimensional propagation is left to future work, although the experimental results for the
two-dimensional propagation problem suggest the method is stable.

4 Results

4.1 Validation of arrival time analysis

Computational results for the arrival time errors are shown in Figs. 6 and 7 below. In both
cases, the scenario is for an upward sloping bottom with θB =

π
3 . Fig. 6 is for a constant

wave speed c= c0=1.5 km/sec, and for Fig. 7, the wave speed is given as c(z)=0.5z+c0.
In each figure, the subplots on the left display the error computed at time T=0.3 seconds
along the wavefront as parameterized by local (reflected) ray direction θ. The subplots
on the right hand side show the error as a function of grid size N at the angle θ =− 2π

3 ,
which is normal to the sloping bottom.

From Fig. 6, it appears that the convergence rate for Method 2 is greater than for
Method 1. Although we claim that Method 2 is exact for this scenario, we would not
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Figure 6: Arrival time errors with c=1.5 km/sec.
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Figure 7: Arrival time errors with c=0.5z+1.5 km/sec.

expect to observe convergence that is any faster than O(h2) due to coupling with the
errors in the PDE solver and wavefront extraction routine. We see that the convergence
rate for Method 1 is roughly O(h) and for Method 2, about O(h2). The error levels off
for Method 2 at about 10−5, this is likely due to time discretization error. In fact, for

∆t = 0.0087 with N = 160, there is an error on the order (∆t)3 due to the third-order

Runge-Kutta time integration. This leads to an error (∆t)3×Nt=2.2×10−5 where Nt=34
is the number of times steps processed to compute the arrival time error.
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Fig. 7 confirms that for the linear sound speed, the convergence rate slows as the
reflected angle becomes closer to parallel with the bottom in both Method 1 and Method
2. The rate close to θ =− 2π

3 is roughly O(h) for Method 1. It is less clear for Method
2, but the results appear to be converging faster than O(h) at the same angle. For both
plots the errors noticeably dip near θ=−π

2 . At this angle, the velocity component in the
x-direction is zero, reducing the dimensionality of the problem.

4.2 Wavefront examples

To provide some visual results, we present a few examples of wavefronts extracted from
the level set functions in the presence of non-conforming grid geometry with reflections.
The visualizations in this section were produced using the Mayavi program [20].

4.2.1 Comparison between Method 1 and Method 2

Fig. 8 shows the results from a 40×40×40 grid over Ω= {(x,z)∈ [−0.5,0.5]×[0,1]} and
a sloping bottom having θB =

π
3 radians. A constant sound speed c=1.5 km/sec is used

here. At this resolution, it is clear that Method 2 is preferred, as the artifacts of the bound-
ary representation used in Method 1 are apparent. Note that although the representa-
tion of the bottom location is piecewise constant, the proper normals are applied. When
the grid size is increased to 160×160×160, the wavefront produced using the Method 1
boundary condition is converging, though very slowly at angles close to parallel with the
boundary.

(a) Method 1 (b) Method 2

Figure 8: Wavefront comparison with N=40 at 0.3 seconds, c=1.5 km/s, θB =
π
3 .

4.2.2 Examples with non-linear geometry

Figs. 10 and 11 are examples of the types of geometry for which Method 2 provides nice
results. Again, a constant sound speed c=1.5 km/sec is used for simplicity. The domain
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(a) Method 1 (b) Method 2

Figure 9: Wavefront comparison with N=160 at 0.3 seconds, c=1.5 km/s, θB =
π
3 .

for each is Ω = {(x,z)∈ [−1,1]×[0,1]}. Each subfigure is a snapshot of the wavefront
at a few times, t= 0.2,0.4,0.6,0.8. In Fig. 10, a modified Gaussian function is applied to
represent an undersea canyon, and in Fig. 11, a seamount is represented by a Gaussian
function. Note that the Gaussian function is not a limitation, just a convenient choice.

(a) (b)

(c) (d)

Figure 10: Wavefront snapshots with zb(x)=1− 1
0.6

√
2π

(

1−exp[− x2

2(0.6)2 ]
)

.
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(a) (b)

(c) (d)

Figure 11: Wavefront snapshots with zb(x)=1−0.3exp
[

−12.5x2
]

.

Due to the multiple reflections produced by the canyon example, we were not able to
produce reasonable results using Method 1.

5 Conclusion

Level set methods provide an alternative framework for numerical solutions to the high
frequency approximation to the wave equation. A fixed-grid point of view is advanta-
geous for medium range (about 1 kilometer), high frequency modeling. In particular, it
is very difficult to compute accurate eigenray solutions for active sonar in shallow water
environments with range-dependent bathymetric features. Reflections are an important
consideration for shallow water acoustics, and a reasonable approximation at high fre-
quencies where the amount of energy transmitted into the sea bottom is negligible.

We have presented a modified level set method directed toward computational un-
derwater acoustics modeling. Two options are proposed for boundary conditions, the
first (Method 1) using approximate boundary locations to maintain a uniform grid, and
the second (Method 2) taking advantage of the transport property of the level set equa-
tion and the law of reflection. Although both yield correct arrival times in the large N
limit at most angles, the method based on the law of reflection is shown to converge about
one order faster than the method using an approximate location. An analysis of the ef-
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fect of the boundary condition on arrival times is supported by the results in Section 4.1.
The computational examples in Figs. 10 and 11 above show that we are able to compute
very nice wavefronts on less restrictive geometry types using Method 2. It is straightfor-
ward using the grid structures presented to extend the approach to any smooth boundary
representation, including bathymetry data that have been smoothed and interpolated to
yield a functional representation. Thus, the tools are available to study more practical
propagation problems using the level set method.
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