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Abstract. The ordered patterns formed by microphase-separated block copolymer sys-
tems demonstrate periodic symmetry, and all periodic structures belong to one of
230 space groups. Based on this fact, a strategy of estimating the initial values of
self-consistent field theory to discover ordered patterns of block copolymers is devel-
oped. In particular, the initial period of the computational box is estimated by the
Landau-Brazovskii model as well. By planting the strategy into the whole-space dis-
crete method, several new metastable patterns are discovered in diblock copolymers.
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1 Introduction

In the last decade, ordered patterns formed by block copolymers have attracted great
attention. Block copolymers are composed of different chemical block chains. The self-
assembly behavior of block copolymers is driven by various interactions among the dif-
ferent blocks, the volume fraction of blocks, and the topological constraint of the chain
architecture. Ordered equilibrium patterns are a result of the delicate balance among
these complex competing factors. Potential applications of these ordered patterns include
lithographic templates for nanoparticle synthesis, photonic crystals and high density
magnetic storage media [1]. Therefore, how to search for the ordered patterns becomes
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especially important for the development of nanotechnology using block copolymers. It
also presents a complex and challenging problem for studying the phase behavior of the
block copolymers [2].

In AB diblock copolymers, a number of ordered patterns have been discovered, such
as lamellae (LAM), hexagonally packed cylinders (HPC), hexagonally perforated lamel-
lae (HPL), spheres in body-centered-cubic (BCC) lattice, spheres in face-centered-cubic
(FCC) lattice, bicontinuous double gyroid (DG), bicontinuous double diamond (DD) and
Fddd patterns [3, 4]. Among these rich ordered patterns, the metastable patterns play
an important role. They often become the dominant state for the entire system and are
observed over a range of time and size scales in phase transitions [5–7]. For example,
metastable phase HPL is observed as an intermediate phase in LAM→DG transition [8].
Another important fact is that the metastable patterns in diblock copolymers may be sta-
ble in other polymeric systems. For example, the pattern A-15 in AB diblock copolymers
is metastable, however, it is a stable pattern in ABn graft diblock copolymers [9]. DD,
HPL are the stable patterns in the blends of AB diblock copolymer and A homopolymer,
and also metastable ones in AB diblock copolymer melt [10]. Therefore, it is important to
develop an efficient strategy to capture as many ordered patterns as possible, including
stable and metastable ones.

Theoretically, the SCFT provides a successful framework for studying the equilibrium
phase behavior of block copolymers. By searching for the solutions of the self-consistent
field equations, one can find the equilibrium ordered patterns of block copolymers. How-
ever, SCFT is a set of highly nonlinear equations with multi-solutions. The equations
have a strong nonlocality that emerges from the connection of propagators and density,
mean external fields. The solutions are also dependent on the interacting parameters and
compositions. Finding all solutions of SCFT analytically is beyond today’s technology. A
successful alternative is to solve the self-consistent field equations numerically.

Generally, there are three main parts required to study nonlinear equations with
multi-solutions: the initial values, the discrete schemes and the nonlinear iterative meth-
ods. Two kinds of numerical versions are developed to discretize the self-consistent field
equations. The first type is the projective-space discrete method which discretizes equa-
tions in a special subspace based on specific problems. According to the specific pattern
and its symmetric group in microphase-separated block copolymers, the self-consistent
field equations can be expanded in terms of a set of symmetric basis functions [11]. This
method is a powerful tool to analyze the phase behavior of the known phases. However,
it is generally granted that this method is unable to discover new patterns. The second
type is the whole-space discrete method whose approximated space is the whole space.
This method can be carried out both in real space [12] and in Fourier-space [13]. It has also
been demonstrated that the whole-space discrete methods are able to capture new pat-
terns [12, 13]. In recent years, an efficient pseudospectral method has been introduced to
solve the modified diffusion equations in SCFT [14,15] for the whole-space discrete meth-
ods. It fully takes advantage of the best performance of real space and Fourier-space and
reduces the computational complexity to O(N logN), with the number of spectral modes
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N, based on the Fast Fourier Transformation (FFT). Many iterative methods have been
developed in order to find the saddle-points of the SCFT, such as mixing-type iterative
methods [12, 16] and gradient-type iterative methods [17]. Among these methods, the
Anderson mixing method [16, 18] and semi-implicit method [17] can accelerate conver-
gence greatly.

The initial values not only influence the convergent properties of iterative procedures,
but also the final morphology of solutions because of the presence of multiple solutions
of the nonlinear self-consistent field equations. However, the initial value estimation has
received less attention in previous research. Usually, random distributions are chosen to
estimate initial distributions [12, 16], which is an inefficient strategy. To address this is-
sue, we continue to develop more efficient strategies to estimate appropriate initial values
based on our previous work [19]. It is noted that the patterns in microphase-separated
block copolymers exhibit periodic symmetry and all periodic symmetric structures be-
long to one of 230 space groups. This research tries to apply the space group theory to
the whole-space discrete methods to develop a strategy which has the potential to cap-
ture new patterns.

The rest of this paper is organized as follows: in Section 2 the SCFT of an incompress-
ible diblock copolymer melt is introduced briefly. In Section 3, the numerical methods
employed are discussed in detail, especially the strategy for estimating the initial values.
The numerical results which demonstrate the efficiency of our proposed method will be
shown in Section 4. Finally, the discussion and summary of the current study are given
in Section 5.

2 Self-consistent field theory

In this section, we will give a brief introduction to the self-consistent field model for an
incompressible diblock copolymer melt. Consider a system with volume V of n con-
formationally symmetric diblock copolymers each having A and B arms joined together
with a covalent bond. The total degree of polymerization of a diblock copolymer is N,
and the A-monomer fraction is f , correspondingly, the B-monomer fraction is 1− f . The
field-theoretic Hamiltonian for the incompressible diblock copolymer melt is [15, 20]

H=
1

V

∫

dr
{

−w+(r)+
w2
−(r)

χN

}

−logQ[w+,w−]. (2.1)

where χ is the Flory-Huggins parameter to describe the interaction between segments A
and B. The terms w+(r) and w−(r) can be viewed as fluctuating pressure and exchange
chemical potential fields, respectively. The pressure field enforces the local incompress-
ibility, while the exchange chemical potential is conjugate to the density operators. The
function Q is the single chain partition function, which is computed according to

Q=
1

V

∫

drq(r,s)q†(r,s), ∀s∈ [0,1]. (2.2)
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The forward propagator q(r,s) represents the probability weight that the chain of contour
length s has its end at position r. The variable s is used to parameterize each copolymer
chain such that s=0 represents the tail of the A block and s= f is the junction between the
A and B blocks. From the flexible Gaussian chain model [20], q(r,s) satisfies the modified
diffusion equation (MDE)

∂

∂s
q(r,s)=R2

g∇
2
r q(r,s)−wK(r)q(r,s), (2.3a)

wK =

{

wA =w+−w−, 0≤ s≤ f ,
wB=w++w−, f ≤ s≤1,

(2.3b)

with the initial condition q(r,0) = 1 and Rg being the radius of gyration. The reverse
propagator q†(r,s), which represents the probability weight from s= 1 to s= 0, satisfies
Eq. (2.3) only with the right-hand side multiplied by −1. The initial condition is q†(r,1)=
1. The normalized segment density operators φA(r) and φB(r) follow from functional
derivatives of Q with respect to wA and wB and the familiar factorization property of
propagators

φA(r)=−
V

Q

δQ

δwA
=

1

Q

∫ f

0
dsq(r,s)q†(r,s), (2.4)

φB(r)=−
V

Q

δQ

δwB
=

1

Q

∫ 1

f
dsq(r,s)q†(r,s). (2.5)

By computing the first variations of the Hamiltonian with respect to fields w+ and
w−, one can obtained the mean-field equations

φA(r)+φB(r)=1, (2.6)

φA(r)−φB(r)=
2w−(r)

χN
. (2.7)

Our objective is to compute as many equilibrium states as possible by solving the self-
consistent field equations efficiently.

3 Numerical method

The SCFT models are a set of highly nonlinear and strongly nonlocal equations with
multi-solutions and multi-parameters. Solutions for the equilibrium density distribution
of different blocks, in turn, uniquely specify mean fields and other interesting physical
quantities. For a fixed computational box, the common iteration procedure to solve SCFT
includes the following steps:

Step 1 At the first step i= 1, give proper parameters χN, f , reasonable initial distributions of wi
+,

wi
−, and the computational box.
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Step 2 Solve MDEs (2.3) to determine q and q† for 0 ≤ s ≤ 1. Use Eqs. (2.4)-(2.5) to obtain new
density fields φi

A and φi
B.

Step 3 Update fields wi+1
+ and wi+1

− by Eqs. (2.6)-(2.7) through iterative methods.

Step 4 The procedure is repeated from Step 2 until the given convergent condition is reached.

From the iterative procedure, there are three main parts required for solving the set
of nonlinear equations numerically. The first part is to determine the appropriate initial
values, including reasonable initial distributions of mean-fields or densities, proper pa-
rameters (Flory-Huggins interaction parameters and volume fractions), and initial com-
putational boxes. The second part is the special discrete schemes for the equation system
and efficient numerical schemes for MDE (2.3). The third part is the iterative method to
find the equilibrium states.

3.1 Discrete SCFT in Fourier-space

Since equilibrium ordered patterns formed by block copolymers are periodic, we con-
sider periodic boundary conditions and discretize the self-consistent field equations in
the whole-space. All spatial varying functions with periodic conditions, ψ(r), are ex-
panded as Fourier series

ψ(r)= ∑
{G}

ψ(G)eiG·r, (3.1)

where {G}= {Gmnk|mb1+nb2+kb3}, m,n,k∈Z, and wave vectors b1, b2 and b3 are the
primitive vectors of the reciprocal lattice. The corresponding primitive vectors in phys-
ical space are a1, a2, a3. These two sets of primitive vectors satisfy ai ·bj = 2πδij, where
i, j= 1,2,3. One can always choose a proper coordinate system such that b12 = 0, b13 = 0,
b23=0, and b11 6=0, b22 6=0, b33 6=0. For brevity, the element of {G} is written as G instead
of Gmnk, and B=(b1,b2,b3). More details on discrete schemes can be found in [19].

Here, we define

Error=max

{

max
{G}

∣

∣

∣

∣

(

δH

δw+

)

G

∣

∣

∣

∣

, max
{G}

∣

∣

∣

∣

(

δH

δw−

)

G

∣

∣

∣

∣

}

(3.2)

to measure the error toleration. Moreover,
(

δH
δw+

)

G
, and

(

δH
δw−

)

G
are the Fourier coeffi-

cients of corresponding first order variations of the effective Hamiltonian (2.1).

3.2 Initial values

In essence, the SCFT is a nonlinear and nonlocal variational problem with multi-solutions
and multi-parameters. For nonlinear problems with multi-solutions, the initial values
play a crucial role. They not only influence the algorithm’s efficiency, but also decide
the final morphology of solutions. The initial values in solving SCFT include three parts:
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the initial estimation of field or density distribution, proper parameters (Flory-Huggins
interaction χ and volume fractions f ), and the initial computational box.

Recently, there has been much research about the parameters of stable patterns in
diblock copolymers. A powerful tool to study the stability of a pattern is the phase dia-
gram [11, 15]. Therefore, we will not discuss this problem, and focus on how to estimate
the initial distribution and computational box in this paper.

3.2.1 Generate the initial distribution

In general, there is no universal method to generate initial values for a complex non-
linear variational problem with multi-solutions. Fortunately, the patterns in microphase-
separated copolymer systems can exhibit periodic symmetry described by the space group
theory. We plant this theory into the whole-space discrete methods to search for patterns
based on self-consistent field calculations. The basic idea of the strategies of generat-
ing initial distributions using space groups comes from our previous research [19]. In
this paper, we will further develop and summarize the strategy to discover new patterns
feasibly.

In the beginning, we give some discussion about the relationship between the space
group theory and periodic patterns. Firstly, different patterns may belong to the same
space group. For example, BCC and BCC3 both belong to Im3̄m and single gyroid (SG)
and alternating gyroid in ABC triblock copolymers both belong to I4132. The different
patterns with the same space group are distinguished by the strongest modulation of dif-
ferent reciprocal vectors, corresponding to the primary peaks in scattering experiments.
For example, the primary wave vectors of BCC are the [110] family of reciprocal lattice
vectors, whereas the primary ones of BCC3 are [210]. Secondly, the space group theory
can reveal the symmetry in Fourier-space, such as the relationship of the moduli and
signs of Fourier coefficients. It greatly reduces the possibilities of nonzero Fourier coeffi-
cients. However, it can not point out the special values and signs of Fourier coefficients.
The solution to identify the signs of Fourier coefficients in practical implementations is
to go through the remaining possibilities. Three steps are summarized to estimate the
initial distributions for a possible pattern:

Step 1 Identify the space group of the possible pattern;

Step 2 Identify the primary reciprocal vectors which yield the final morphologies;

Step 3 Identify the signs of the Fourier coefficients of previously decided primary reciprocal vectors.

From our experience, the specific value of initial Fourier coefficients has little impact
on the final morphologies.

One can directly obtain the initial distributions for the known patterns, especially for
the patterns analyzed by experiments or theories. The space groups and correspond-
ing primary reciprocal vectors have been identified for some common patterns, such as
the LAM, HPC, HPL, BCC, FCC, DD, DG and Fddd [21–24]. For example, the strongest
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Table 1: The initial primary reciprocal vectors of ordered phases for AB linear diblock copolymers.

Patterns (Space group) The initial reciprocal vectors Gmnk

Primitive cubic Spheres (±1,0,0), (0,±1,0), (0,0,±1),
(Pm3̄m) (±1,±1,0), (±1,0,±1), (0,±1,±1)

BCC (Im3̄m) (0,±1,±1), (±1,0,±1), (±1,±1,0)
FCC (Fm3̄m) (111), (11̄1), (1̄11), (1̄1̄1)

A-15 (2̄1̄0), (210), (21̄0), (2̄10), (1̄20)a, (12̄0)a,

(Pm3̄n) (120)a, (1̄2̄0)a, (02̄1), (2̄01)a, (021), (201)a,

(1̄02), (01̄2)a, (012)a, (102)
(±1,0,±2)a, (±1,±2,0)a, (±2,0,±1)a,

PS5 (Pm3̄m(5)) (±2,±1,0)a (0,0,±3), (0,±3,0),
(±3,0,0), (0,±1,±2)a, (0,±2,±1)a,

BCC3 (Im3̄m(3)) (±2,±1,±1), (±1,±2,±1), (±1,±1,±2)
Double Gyroid (2̄11)a, (2̄1̄1̄)a, (211̄)a, (21̄1), (12̄1), (121̄),

(Ia3̄d) (1̄2̄1̄)a, (1̄21)a, (112̄), (11̄2)a, (1̄12), (1̄1̄2̄)

Single Gyroid (011)I, (011̄), (01̄1), (01̄1̄)I,a, (101), (101̄)I ,

(I4132) (110)I,a, (11̄0), (1̄01)I,a, (1̄01̄), (1̄10)I, (1̄1̄0)I

Double Diamond (1̄01), (011), (01̄1)a, (101)a, (1̄10)a, (11̄0)a,
(Pn3̄m) (110), (1̄1̄0), (1̄1̄1)a, (111)a, (1̄11)a, (11̄1)a

Single Diamond (211), (2̄11)a, (21̄1)a, (2̄1̄1), (121), (1̄21),
(Fd3̄m) (12̄1)a, (1̄2̄1)a, (112), (1̄12)a, (11̄2), (1̄1̄2)a,

Hexagonally Packed (011̄), (01̄1), (101̄),
Cylinders (P6mmm) (11̄0), (1̄01), (1̄10)
Tetragonally Packed (1̄10), (11̄0),
Cylinders (I4mmm) (11̄0), (1̄1̄0)

Hexagonally Perforated (101̄), (101), (011̄),
Lamellae (P63mmc) (011), (110)

Tetragonally Perforated (200) (2̄00)
Lamellae (R3̄m) (111) (1̄11) (11̄1) (1̄1̄1)

Fddd (O70) (111)a, (111̄), (11̄1), (11̄1̄),
(022)a, (022̄), (004)

a denotes the sign of Fourier coefficients is opposite.
I denotes the Fourier coefficients only have an imaginary part.

modulation of Fddd pattern occurs at [111], [022] and [004] reciprocal vectors in exper-
iments [4]. Ranjan et al. [24] have developed a Landau theory to study the stability of
the Fddd phase through analyzing these primary reciprocal vectors. The initial distribu-
tions of the known patterns analyzed by theories can also be obtained. Erukhimovich’s
weak segregation theory [23] predicts BCC3 pattern (space group Im3̄m) and single gy-
roid (SG) pattern (space group I4132), and gives the primary family reciprocal lattice
vectors. We utilize the information as initial distributions in self-consistent field simula-
tions and generate those corresponding patterns in numerical results. These reciprocal
vectors are summarized in Table 1.
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The space groups of some patterns have been identified, while there is no experiments
and theories to analyze the patterns. We can also use the crystal structure factor tables
to estimate corresponding initial distributions. For example, the spherical pattern, A-15,
with space group Pm3n̄, is a stable phase in ABn (n>2) miktoarm star copolymers sys-
tems [9]. So far there is no theory to analyze the pattern and give the primary reciprocal
vectors in the relevant literature. However we can find the initial reciprocal vectors by the
structure factor table of space group Pm3n̄ to determine the primary vectors and signs of
Fourier coefficients [25], as shown in Table 1. In the same way, the primary initial recip-
rocal vectors of the single diamond (SD) pattern with space group Fd3̄m are summarized
in Table 1.

The method is able to discover new patterns. Since different patterns may belong to
the same space group, their morphologies can be determined by the primary wave vec-
tors. From this principle, we can use different dominant reciprocal vectors, but belonging
to the same space group, to obtain different patterns. We take the space group Pm3̄m as
an example. The dominant wave vectors of primitive cubic spheres (PS) are [100] with
Pm3̄m symmetry. The higher order reciprocal vectors can be also used as initial vectors
to search for new patterns. We find that the 5th order diffraction, [210], can determine a
new pattern PS5, whose morphology can be found in Section 4.1. The initial vectors are
listed in Table 1.

The approximated space of our employed discretization scheme is the whole space.
Therefore, one can use the obtained pattern as an initial distribution to discover new
patterns through adjusting parameters. We will give numerical examples to verify this
viewpoint in Section 4.1.

3.2.2 Estimate the initial computational box

We use the Landau-Brazovskii model to analyze the period of the computational box
because of the complexity of SCFT. In fact, the Landau-Brazovskii model is an approxi-
mated theory of SCFT in weak segregation [21, 26]. The free energy density functional of
the Landau-Brazovskii model is

f0[φ(r0)]=
1

V0

∫

dr0

{

ξ2
0

8q2
0

[(∇2
r0
+q2

0)φ(r0)]
2+

τ0

2
[φ(r0)]

2−
γ0

3!
[φ(r0)]

3+
λ0

4!
[φ(r0)]

4

}

, (3.3)

where φ(r0) is the order parameter, which is the density deviation of a kind of monomer
from the disordered phase; V0 is the system volume; ξ0 is the bare correlation length; q0

is the critical wave length; τ0 is the reduced temperature; γ0 and λ0 >0 are phenomeno-
logical constants. Rescaling the free energy functional by

r=q0r0, V=q3
0V0, f =

f0

λ0
, ξ2=

q2
0ξ2

0

4λ0
, τ=

τ0

λ0
, γ=

γ0

λ0
, (3.4)

the free energy density functional becomes

f [φ(r)]=
1

V

∫

dr

{

ξ2

2
[(∇2

r +1)φ(r)]2+
τ

2
[φ(r)]2−

γ

3!
[φ(r)]3+

1

4!
[φ(r)]4

}

. (3.5)
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The order parameter φ(r) is expanded in Fourier-space as Eq. (3.1), and the free energy
density functional can be written as

f [φ(r),B]= g(φ(G))+
1

2 ∑
G

[ξ2(1−|G|2)2+τ]φ(G)φ(−G), (3.6)

where

g(φ(G))=−
γ

3! ∑
G1+G2+G3

φ(G1)φ(G2)φ(G3)

+
1

4! ∑
G1+G2+G3+G4

φ(G1)φ(G2)φ(G3)φ(G4). (3.7)

It should be noted that only the Laplace term in Landau-Brazovskii free energy density
functional is related to the period of the computational box. Minimizing the free energy
functional with respect to the period of the computational box,

∂ f

∂bij
=0, i=1,2,3, j6 i, (3.8)

we can obtain the dimensionless optimum period of the computational box bj, j=1,2,3.
Note the rescale formula (3.4), the optimum period of the computational box in real space
satisfies

ai ·bj =2πδij, ai =ai/q0, i, j=1,2,3. (3.9)

In order to obtain the optimal period of the computational box, we consider the quadratic
coefficient, S(G), in Leibler’s mean field theory which is also an approximated theory of
SCFT [21, 26],

S(G)=ψ(G, f )−2χN, (3.10)

and

ψ(G, f )=g(|G|2,1) / {g(|G|2, f )g(|G|2,1− f )

−(1/4)[g(|G|2 ,1)−g(|G|2, f )−g(|G|2,1− f )]2}, (3.11)

where g(x,s) is the Debye function

g(x,s)=
2

x2
(e−xs+xs−1). (3.12)

The spinodal, or stability limit, of the homogeneous phase of diblock copolymers towards
microphase separation is obtained from the relation [20]

S(Gm( f ))=ψ(Gm( f ), f )−2χN, (3.13)
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where Gm( f ) is the minimum point of ψ(Gm( f ), f ) at fixed composition f , and
(χN)spinodal =(1/2)ψ(Gm( f ), f ). Then

q2
0=

|Gm( f )|2

R2
g

. (3.14)

Therefore, we can use Eq. (3.9) to obtain the initial period of the computational box.

3.3 Numerical schemes to solve MDE

Here, we use a pseudospectral method and fourth-order accurate Adams-Bashford
scheme [15] to solve MDE (2.3)

25

12
qj+1−4qj+3qj−1−

4

3
qj−2+

1

4
qj−3

=∆s
[

∇2qj+1−wA(4qj−6qj−1+4qj−2−qj−3)
]

. (3.15)

In Fourier-space, the Adams-Bashford method is written as

25

12
q

j+1
G −4q

j
G+3q

j−1
G −

4

3
q

j−2
G +

1

4
q

j−3
G

=−∆s|G|2q
j+1
G −∆s∑

G1

[

wA,G−G1
(4q

j
G1

−6q
j−1
G1

+4q
j−2
G1

−q
j−3
G1

)
]

. (3.16)

The required initial values are computed by the second-order operator splitting scheme
[14, 27]. The Laplacian term can be calculated in Fourier-space easily, and the convolu-
tion sum is the scale multiplication in real space. The Fourier-space and real space are
connected by FFT.

3.4 Iterative method

The iterative methods to update the fields are dependent on the information provided by
SCFT. An important fact is that the effective Hamiltonian (2.1) can reach its local minima
along the exchange chemical field w−, and reach the maxima along the pressure field
w+ [20]. Therefore, the gradient-type algorithms can be applied in the iteration procedure
to search for equilibrium points in numerical simulations. An efficient iterative method, a
semi-implicit method [17], is chosen in our simulation, which can be expressed in Fourier-
space as

µ
j+1
+,G−µ

j
+,G

∆t
=−ĝ(G)µ

j+1
+,G+

δh[µ
j
+,G,µ

j
−,G]

δµ+,G
+ ĝ(G)µ

j
+,G, (3.17)

µ
j+1
−,G−µ

j
−,G

∆t
=−

2

χN
µ

j+1
−,G−

δh[µ
j+1
+,G,µ

j
−,G]

δµ
j
−,G

+
2

χN
µ

j
−,G, (3.18)
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where

ĝ(G)=
2

G4

(

e−G2
+G2−1

)

. (3.19)

3.5 Adjust computational box

The accurate value of the effective Hamiltonian of SCFT depends not only on the fields,
but also on the period of the computational box. Therefore, the computational box should
be adjusted adaptively in terms of different ordered patterns. We use the steepest descent
method to optimize the computational box B [19]. If B is one of the solutions, the first
derivatives of the effective Hamiltonian with respect to bj, j=1,2,3, should be zero. The
computational box can be updated by

bi+1
j =bi

j−α
∂H

∂bj
, (3.20)

where ∂H/∂bj is calculated numerically, and the iterative step α is calculated by linear
search algorithms.

Therefore, the integrated iteration procedure, including updating the field functions
and computational box, contains the following steps:

Step 1 Give proper parameters χ, f , reasonable initial distributions of wA, wB, and the computational
box, and set m=1, calculate the effective Hamiltonian Hm.

Step 2 Fix the computational box B, calculate field functions by the iteration procedure as described
in the beginning of the section.

Step 3 Adjust B by the method described in Section 3.5, calculate effective Hamiltonian Hm+1.

Step 4 If |Hm+1−Hm|> ε, set Hm=Hm+1, m=m+1, goto Step 2, else end the iteration procedure.

In the following simulations, we will choose the entire iteration procedure to cal-
culate self-consistent field equations. The period of the computational box is optimized
concurrently with the fields by minimizing the effective Hamiltonian during the iteration
procedure.

4 Numerical results

4.1 Discovery of patterns

Applying these initial distributions analyzed in Section 3.2.1 in SCFT calculations,
the corresponding ordered patterns have been captured in simulations. The selected
metastable patterns can be found in Fig. 1. We also find a novel spherical pattern S-13,
as shown in Fig. 1(q), if the higher order reciprocal vectors with space group Pm3̄m are
input as initial vectors. It is a more close packed spherical structure than the A-15 pattern,
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Figure 1: Captured ordered metastable patterns of AB diblock copolymers based upon self-consistent field
theory. There are 20 patterns: (a) A-15, (b) A15Cyl, (c) A15CylNet, (d) A15Netwok, (e) A15NetwokBox, (f)
AnisoCyl, (g) BCC3, (h) C+S, (i) Helix+S, (j) Nwt+C, (k) Nwt+S, (m) PL+C, (n) DD, (o) PS, (p) PS5, (q)
S-13, (r) SD, (s) SG, (t) TPC, (u) TPL.

and includes 13 spheres in a period of the computational box. However, the metastable
pattern is only found in a few regions of the phase space, such as the neighborhood of
[χN, f ]= [15.0,0.29].

Since the approximated space of our method is the whole space, we can use the dis-
covered pattern as initial values to discover new patterns through adjusting parameters.
Next, we give an example to check our approach. By setting the convergence data of the
A-15 pattern as initial values and fixing χN = 15.0, we can obtain different patterns at
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different volume fraction f . As the volume fraction f increases, the final morphologies
are successively A-15, A15Cyl, A15Cylnet, A15Netwok and A15NetwokBox, as shown
in Fig. 1(a-e). The morphology transition is dominated by the volume fraction f . When
f increases, the spheres on the face of the A-15 patten will blend into cylinders which
forms the A15Cyl pattern. As the volume fraction f further increases, the body-centered
sphere grows into a cylinder and connects with the cylinders on the face of the cubic
lattice. Fig. 2 gives the effective Hamiltonian of the set of patterns as a function of vol-
ume fraction f . The relative energy curves of stable phases are also shown in order to
describe the difference of the effective Hamiltonian between metastable and stable pat-
terns. The exiting areas of A-15, A15Cyl, A15Cylnet, A15Netwok and A15NetwokBox
are 0.28 6 f 6 0.35, 0.336 f 6 0.36, 0.355 6 f 6 0.39, 0.366 f 6 0.41, and 0.41 6 f 6 0.50,
respectively.

Except for the above patterns, a large number of ordered patterns have been discov-
ered in our simulations with the captured patterns as initial values, including network
and spheres (Nwt+S) (Fig. 1(k)), network and cylinders (Nwt+C) (Fig. 1(j)), perforated
lamellar and cylinders (PL+C) (Fig. 1(m)), helix and spheres (Helix+S) (Fig. 1(i)), cylin-
ders and spheres (C+S) (Fig. 1(h)), BCC3 (Fig. 1(g)), and PS5 (Fig. 1(p)). Among these
patterns, a novel cylindrical pattern in anisotropic arrangement lattice (AnisoCyl) has
been discovered, as shown in Fig. 1(f).

In order to present the relative stability between these metastable patterns and the
known stable phases, the energy images from the value of the homogeneous phase as a
function of the volume fraction f as well as the exiting area at χN = 15.0, are shown in
Fig. 3. Some metastable patterns with large energy values compared to other patterns
are not shown in these energy plots, such as that of BCC3 in the region of 0.326 f 60.50,
PS in the region of 0.296 f 6 0.33, and PS5 in the region of 0.366 f 6 0.49. From these
energy plots, one can find that the energy difference decreases as the diblock copolymer
becomes more asymmetric.

Nevertheless, the approach using the primary reciprocal vectors as initial values ap-
plies to the weakly segregated system. Certainly, more reciprocal vectors can be used
as initial estimate for strongly-segregated systems. However, it greatly increases the
difficulty of determining the initial distributions because the complexity of the signs of
Fourier coefficients will grow very rapidly. An alternative is to set the convergence re-
sults in weak segregation as initial distributions for the strongly-segregated systems.

Up to now, the strategy to estimate initial values based on the space group theory is
carried out in Fourier-space. It should be pointed out that the approach can be applied
in real space methods, which can be demonstrated by the following example. For the SG
pattern, the initial value in real space is

φ(r)=φ011sin(y+z)+φ011̄ cos(y−z)+φ01̄1cos(−y+z)−φ01̄1̄sin(−y−z)

+φ101cos(x+z)+φ101̄sin(x−z)−φ110sin(x+y)+φ11̄0cos(x−y)

−φ1̄01sin(−x+z)+φ1̄01̄cos(−x−z)+φ1̄10sin(−x+y)+φ1̄1̄0sin(−x−y). (4.1)

The coefficients in Eq. (4.1) are all positive.
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Figure 2: The effective Hamiltonian H as a function of f for fixed χN=15.0 through setting the convergence
result of A-15 patterns as initial values.

(a) (b)

(c) (d)

Figure 3: Energy curve of the metastable patterns and stable patterns from the value of homogeneous phase
as a function of the volume fraction f as well as the exiting area for fixed χN=15.0. (a) 0.286 f 60.305. (b)
0.306 f 60.37. (c) 0.3656 f 60.41. (d) 0.406 f 60.50.
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4.2 Period of computational box

Theoretically, the initial computational box can be estimated by Eq. (3.9) from the
Landau-Brazovskii model. However, we do not know all nonzero Fourier coefficients
φ(G) when calculating bopt in Eq. (3.8). One solution is using the initial primary recip-
rocal vectors G listed in Table 1 to estimate the initial computational box, especially for
those patterns described by one family of reciprocal lattice vectors, such as DG, BCC,
BCC3. We take DG pattern as an example to demonstrate how to calculate the initial
period structure. The initial vectors of DG are [211], we can then use the index to calcu-
late the computational box by Eqs. (3.8)-(3.9). The period of the computational boxes by
theoretical prediction has been summarized in Table 2. Meanwhile, the computational
boxes can be adjusted during the iteration procedure. The final numerical results about
the period of the computational boxes are also given in Table 2. From the results, one can
find that the period of the computational box of theoretical prediction is a good approxi-
mation to the precise computational box in SCFT simulations.

Table 2: Theoretical prediction and simulation results of the period of the computational box.

Patterns [χN, f ] Theory(Rg) Simulation(Rg)

LAM∗ [12.0, 0.45] 4.5586 4.8138

PS [15.0, 0.30] 3.1262 3.4552

BCC [11.4, 0.40] 4.5326 4.5856

FCC [15.0, 0.28] 4.1014 5.7519

A-15 [30.0, 0.18] 6.5452 7.2642

HPC [12.0, 0.40] 4.5326 4.8868

DG [12.0, 0.43] 7.8814 8.3460

SG [12.0, 0.43] 4.5503 4.6661

BCC3 [14.0, 0.40] 7.8506 8.6997

TPC [20.0, 0.30] 3.1262 3.7759

DD [14.0, 0.40] 4.5326 5.3149

SD [14.0, 0.40] 7.8506 8.9345

HPL [14.0, 0.40] 4.5326 5.0126

TPL [15.0, 0.37] 6.3752 6.8413

PC [20.0, 0.30] 7.6576 9.8259

The primary reciprocal vector for LAM∗ is (110).

Since the Landau-Brazovskii model is a weakly-segregated theory, the above results
are valid near the disordered-ordered region. As shown in Fig. 4(a), when the interac-
tion is weak, the results of simulation are consistent with the theoretical prediction for
different compositions. As the interaction enhances, the gap between the theoretical pre-
dictions and simulation results becomes increasingly wider. However, the period of the
computational box has a continuous change as interactions parameter χN becomes large,
as shown in Fig. 4(b). Therefore, it still presents a fine initial computational box in strong
segregation by the results of weakly-segregated systems.
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(a) (b)

Figure 4: The theoretical prediction and numerical results on the period of the computational box in units of
the radius of gyration Rg. The (110) reciprocal vector is used as initial values for LAM. (a) The period of the
computational box is a function of the composition f at different χN for LAM pattern. (b) The period of the
computational box is a function of χN with fixed composition f for different patterns.

5 Discussion and summary

We have developed and examined a method to discover ordered patterns by solving the
self-consistent field equations for diblock copolymers numerically. Our strategy is to es-
timate the initial distributions of the field in the whole space calculations using the space
group theory. In particular, the initial distributions can be obtained from experimental
data or theoretical results directly, or from crystal structure factor tables. We also note
that the different patterns may belong to the same space group, distinguished by differ-
ent primary reciprocal vectors that can be used to capture different patterns. Since the
approximated space is the whole space, the strategy can be used to discover new pat-
terns by adjusting the parameters. By these strategies, many novel patterns have been
discovered, as shown in Fig. 1, which greatly enriches the set of ordered patterns in
block copolymers. These newly discovered patterns are metastable in diblock copoly-
mers, however, those patterns with relatively low effective Hamiltonians may be stable
in other neat block copolymer melts or blends.

Our strategy is different from Matsen-Schick’s method (MSM) [11]. MSM is a special
projective-space algorithm which adds the symmetric information to basis functions in
calculation procedures. The fast algorithm, such as FFT, cannot be applied to this method
directly. The major disadvantage of MSM is that it cannot be used to discover new pat-
terns straightforwardly. At the same time, MSM is also faced with the challenge of initial
values. The signs of Fourier coefficients in MSM also have been determined in practical
implementation [19]. On the contrary, our strategy only needs to add a little symmet-
ric information into the initial estimation, and it is based on the whole-space discrete
method. It is more adaptive and flexible for discovering new patterns with less compu-
tational effort. We should point out that the work of [19] is one of the starting points in
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our study to choose the initial distribution of field functions. Here, we continue to de-
velop and summarize the strategy to screen initial values, and examine the availability
of discovering new metastable patterns. Especially, the approach of estimating the initial
computational box is given analytically through the Landau-Brazovskii model. Mean-
while, we believe that the initial values and these discovered metastable patterns will be
of benefit to the studies of other polymeric systems.
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