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Abstract. The singularity of specific heat CV of the three-dimensional Ising model is
studied based on Monte Carlo data for lattice sizes L≤1536. Fits of two data sets, one
corresponding to certain value of the Binder cumulant and the other — to the maxi-
mum of CV , provide consistent values of C0 in the ansatz CV(L)=C0+ALα/ν at large
L, if α/ν = 0.196(6). However, a direct estimation from our Cmax

V data suggests that
α/ν, most probably, has a smaller value (e.g., α/ν=0.113(30)). Thus, the conventional
power-law scaling ansatz can be questioned because of this inconsistency. We have
found that the data are well described by certain logarithmic ansatz.
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1 Introduction

The standard three-dimensional (3D) Ising model, as well as several models of the 3D
Ising universality class, have been extensively studied by the Monte Carlo (MC) method
in past (see, e.g., [1, 2] and references therein) with an aim to evaluate the critical expo-
nents. Some cornerstone works are due to J. Chen et al. [3] and H. W. J. Blöte et al. [4].
More recent works are [5–7, 28]. In [5], the singularity of specific heat of the classical 3D
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Ising model is studied, which is also the main subject of our current MC study. In [6, 7],
modified models with the so-called improved Hamiltonian are considered. The basic
idea of this method is to choose such Hamiltonian, for which the leading corrections to
scaling vanish. It is believed that good estimates of the critical exponents can be therefore
extracted from these models by simulating even relatively small lattices. The improved
Hamiltonian has to be a good approximation of the fixed-point-Hamiltonian of an exact
renormalization group (RG) transformation to ensure that this method works well. Since
we do not strictly know whether this condition is really satisfied, here we prefer to use
a simple strategy — to simulate very large lattices. It is reasonable to choose the sim-
plest model of the actual universality class, i.e., the classical 3D Ising model, to obtain
good results (good simulation data for maximally large lattice size L) by this approach.
A model including next-nearest-neighbor interactions has been considered in [4] as a
good alternative to the classical Ising model, using a coupling to next-nearest neighbors
as a parameter to minimize corrections to scaling. However, in some cases corrections
to scaling seem to be negligible also in the classical Ising model with nearest-neighbor
coupling. An example is the scaling consistency test, considered in Section 3. From this
point of view, our choice of the classical 3D Ising model also could be quite good.

Usually, lattices of linear sizes L up to L = 128 are simulated [1]. However, much
larger lattices can be well simulated on modern computers, and MC results for suscepti-
bility and magnetization cumulant at L≤1536 have been recently reported in [8]. Some
simulation results for even larger lattices have been reported in literature (see, e.g., [9]
for a review). A distinguishing feature of our simulations of very large lattices is a high
enough (moderately high) statistics, which is sufficient for a finite-size scaling analysis in
the critical region with an aim to estimate the critical exponents. It has been found in [8]
that the data can be well fit with critical exponents η =ω = 1/8 and ν= 2/3, which are
consistent with the GFD (grouping of Feynman diagrams) theory of [10, 11], confirmed
and appreciated also in [12], and are remarkably different from those of the perturbative
RG theory, i.e., η = 0.0335±0.0025, ω = 0.799±0.011 and ν= 0.6304±0.0013 [13]. These
results, however, are not strictly conclusive, since the fits with both sets of the exponents
are quite acceptable. A minor problem for the perturbative RG scaling is that some fits
of the susceptibility data of [8], assuming ω ≈ 0.8, give slightly larger values of η (e.g.,
0.0397(28) and 0.0405(25)) than η = 0.0335±0.0025. Here we go substantially beyond
the results of [8] by completing a comprehensive study on specific heat data to obtain
more conclusive evidences for a better distinguishing between the two possible scaling
scenario.

2 Simulation results

We have simulated the 3D Ising model on simple cubic lattice with

H/T=−β∑
〈ij〉

σiσj , (2.1)
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where H is the Hamiltonian, T is the temperature measured in energy units, β is the
coupling constant and 〈ij〉 denotes the pairs of neighboring spins σi=±1 in the 3D lattice
with periodic boundary conditions. The MC simulations have been performed with the
Wolff single cluster algorithm [14], using its parallel implementation described in [15].

The quantities of current interest are specific heat CV and its derivatives, i.e.,

CV =N
(
〈ε2〉−〈ε〉2

)
, (2.2)

C′
V =N2

(
3〈ε〉〈ε2〉−〈ε3〉−2〈ε〉3

)
, (2.3)

C′′
V =N3

(
12〈ε〉2〈ε2〉−3〈ε2〉2−4〈ε〉〈ε3〉− 6〈ε〉4+〈ε4〉

)
, (2.4)

calculated from the Boltzmann statistics, where N= L3 is the total number of spins and ε

is the energy per spin.

In [8], our MC simulation results at certain pseudo-critical coupling β̃c(L), corre-
sponding to U = 〈m4〉/〈m2〉2 = 1.6 have been reported for lattice sizes 16 ≤ L ≤ 1536.
Here m is the magnetization per spin, and 1−U/3 is the Binder cumulant. As already ex-

plained in [15], β̃c(L) tends to the true critical coupling βc at L→∞ for any fixed 1<U<3.
Therefore, the precise value of U is not important in our following scaling analysis. At
β=βc, the ratio U tends to certain universal value U∗≈1.6 [1,20] when L→∞. The value
U=1.6 has been chosen to obtain pseudo-critical couplings closer to βc. We have evalu-

ated CV at β= β̃c(L) from these simulations by the same techniques as described in [8].
The results are listed in Table 1.

Table 1: The values of specific heat CV depending on L at β= β̃c(L), where β̃c(L) corresponds to U=1.6.

L β̃c(L) CV L β̃c(L) CV

1536 0.2216546081(114) 118.40(75) 128 0.22165430(20) 66.27(15)
1280 0.2216546524(136) 114.40(82) 108 0.22165376(26) 63.22(14)
1024 0.221654625(22) 107.79(84) 96 0.22165369(32) 61.47(13)
864 0.221654635(25) 104.45(59) 80 0.22165278(32) 58.421(95)
768 0.221654672(27) 101.47(54) 64 0.22165159(52) 55.162(83)
640 0.221654615(31) 97.38(43) 54 0.22164968(56) 52.582(84)
512 0.221654662(45) 92.31(37) 48 0.22164790(69) 50.872(67)
432 0.221654637(58) 89.27(36) 40 0.22164383(80) 48.275(57)
384 0.221654567(65) 86.56(35) 32 0.22163444(98) 45.086(50)
320 0.221654716(75) 83.13(30) 27 0.2216212(11) 42.718(42)
256 0.22165460(11) 78.57(30) 24 0.2216125(12) 41.265(35)
216 0.22165460(13) 75.51(20) 20 0.2215821(17) 38.772(29)
192 0.22165425(16) 73.02(24) 16 0.2215235(18) 35.914(20)
160 0.22165414(18) 69.94(19)

We have performed new MC simulations for 8≤L≤1024 to evaluate maximal values
of specific heat Cmax

V . The maximum of CV is located at certain pseudo-critical coupling
β̂c= β̂c(L). For each L, we have found a good initial approximation β0 for β̂c(L), and then
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have evaluated β̂c(L) and Cmax
V from the simulations at β= β0 by using truncated Taylor

expansion

CV(β)≃CV(β0)+C′
V(β0)(β−β0)+

1

2
C′′

V(β0)(β−β0)
2 . (2.5)

The truncation errors are negligible as compared to the statistical errors, since the Cmax
V −

CV(β0) values are sufficiently small. Namely, only in the worst case of L= 768 this dif-
ference is about 1.46σ, where σ is the standard error, whereas in other cases it is remark-
ably smaller than σ. Comparing the values of CV(β̃c) in Table 1 with those calculated

from (2.5), we have verified that CV(β0)−CV(β̃c) can be estimated with about 5 percent

accuracy from this expansion around β=β0. Since |β0− β̂c |≪|β0− β̃c |, the relative trun-
cation errors for Cmax

V −CV(β0) are even much smaller, i.e., the truncation errors for Cmax
V

are, indeed, much smaller than σ.
The initial approximations of β̂c, i.e., β0 (see Table 2) have been estimated for a subset

of sizes L≤ 128 by using an iteration scheme, which is analogous to the one used in [8]

for finding β̃c. Unfortunately, it is difficult to ensure small enough fluctuations in such an
iteration scheme for β̂c at larger system sizes. Therefore, an appropriate value of β0 for
any L>128 has been obtained by a finite-size extrapolation from β̂c(L′) data with L′

< L.

Table 2: The maximal values of specific heat Cmax
V and the corresponding pseudo-critical couplings β̂c, evaluated

from the simulations at β= β0, depending on the linear system size L.

L β0 β̂c Cmax
V

1024 0.2216585 0.22165903(16) 134.96(72)
768 0.2216607 0.22166213(23) 127.57(69)
640 0.2216635 0.22166359(31) 121.37(66)
512 0.2216673 0.22166679(40) 117.28(62)
384 0.2216747 0.22167526(52) 109.24(51)
320 0.2216819 0.22168192(69) 104.94(48)
256 0.2216929 0.22169312(76) 100.38(37)
192 0.2217151 0.2217149(10) 92.90(28)
160 0.22173663 0.2217347(14) 89.12(25)
128 0.2217708 0.2217742(16) 84.25(22)
96 0.2218383 0.2218366(24) 78.81(20)
80 0.2218992 0.2219002(32) 75.11(19)
64 0.2220053 0.2220057(42) 71.36(17)
48 0.2222013 0.2221987(58) 66.07(15)
40 0.2223714 0.2223761(76) 62.57(14)
32 0.2226726 0.222659(10) 58.66(14)
24 0.2232 0.223195(12) 53.76(10)
20 0.223666 0.223686(13) 50.505(82)
16 0.224436 0.224443(15) 46.596(65)
12 0.225771 0.225813(16) 41.420(47)
10 0.227051 0.226903(18) 38.187(39)
8 0.228561 0.228567(20) 34.108(31)
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Figure 1: Specific heat CV of the 3D Ising model
depending on the lattice size L. Empty circles cor-

respond to the CV data at β= β̃c(L), i.e. U=1.6,
whereas solid circles — to the Cmax

V data. Statis-
tical errors are within the symbol size.
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Figure 2: The pseudocritical coupling β̂c as a func-

tion of L−1/ν at ν = 0.63. Statistical errors are
within the symbol size.

Calculations of the second derivative C′′
V(β0) from (2.4) yield sufficiently accurate val-

ues for L≤384 (e.g., −0.920(23)×108 , −0.926(30)×109, −0.923(38)×1010 and −1.054(76)×
1011 at L=48,96,192 and 384, respectively), but the errors remarkably increase for larger
sizes because of the statistical simulation errors and also numerical rounding errors. In-
deed, the expression (2.4) contains the proportionality coefficient N3, which exceeds C′′

V

by many orders of magnitude at the largest sizes, i.e., about 5×1014 times at L=1024. It
means that separate terms in (2.4) almost cancel each other. This is a typical situation,
where the relative errors can become large because of the numerical rounding. The val-
ues of C′′

V for L>384 have been quite accurately estimated from lnC′′
V vs lnL fit. The small

errors (∼4%) in these values practically do not affect the results for Cmax
V , listed in Table 2.

Indeed, C′′
V enters only the very small correction term in (2.5), which does not exceed in

magnitude the value about 1.46 standard deviations of CV .

As in [8], the simulations at several sizes L have been performed with two different
pseudo-random number generators (the same ones as in [8]), and a good consistency has
been found, further increasing the confidence about our results.

The CV plots in the log-log scale are shown in Fig. 1. In Fig. 2, the pseudocritical
coupling β̂c is plotted as a function of L−1/ν, using the known estimate ν≈ 0.63 for the
correlation length critical exponent ν. Such a plot has to be linear at L−1/ν→0, if the value
of ν is chosen correctly.

3 A scaling consistency test

According to the predictions of the perturbative RG theory (see, e.g., [13, 16–20]) and
finite-size scaling theory, specific heat of the 3D Ising model obeys a power-law asymp-
totic ansatz

CV =C0+ | t |−α f
(
tL1/ν

)
at t→0 (3.1)
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for any given tL1/ν, where t = (βc−β)/βc is the reduced temperature, α and ν are the
critical exponents, f (z) is a scaling function, and constant C0 represents the analytical
background contribution at t→ 0. We consider scaling regimes, where z= tL1/ν is some

constant at t→0. It is true for the CV scaling at β= β̃c(L), as well as at β= β̂c(L). Thus, we
have t=zL−1/ν at t→0 or L→∞. Inserting this relation into (3.1), we obtain the following
asymptotic ansatz

CV =C0+ALα/ν at L→∞ , (3.2)

where A =| z |−α f (z) is a constant, which depends only on the asymptotic value of z,
whereas C0 is the same constant as in (3.1), which is independent of z.

For finite values of t, corrections to scaling are considered. These are corrections
| t |−α+θ f1(tL1/ν), | t |−α+2θ f2(tL1/ν), etc., where θ is the correction-to-scaling exponent,
as well as analytic corrections C1t+C2t2+··· . Since 2θ−α<1 holds according to the esti-
mates of the perturbative RG theory (θ≃0.5, α≃0.11), the two most important correction
terms in (3.1) are ∼| t |−α+θ and ∼| t |−α+2θ. The corresponding corrections in (3.2) are
∝ L(α/ν)−ω and ∝ L(α/ν)−2ω, where ω = θ/ν. One has to note that there can exist also
correction terms, which are described by correction-to-scaling exponents of higher or-
ders, i.e., θ1 > θ, θ2 > θ1, etc. In particular, the exponents θ = 0.54±0.05, θ1 = 1.5±0.3
and θ2 = 1.67±0.11 (denoted as ∆400, ∆500 and ∆422) have been found for the 3D Ising
model in [21]. However, since θ1 > 2θ holds, the additional correction terms ∼| t |−α+θ1

and ∼| t |−α+θ2 , as well as higher-order terms with θ1 and θ2, are negligible as compared
to ∼| t |−α+θ and ∼| t |−α+2θ at t→0.

We have fitted our CV data at β= β̃c(L) (U= 1.6) and at β= β̂c(L) (the Cmax
V data) to

the ansatz (3.2) with fixed α/ν = 0.173, in accordance with the known perturbative RG
estimates α=0.109±0.004 and ν=0.6304±0.0013 [13], i.e., α/ν=0.173±0.007. According
to the derivation of (3.2) from (3.1), C0 has the same value in these two cases, if the power-
law scaling (3.2) with the RG exponent α/ν≃0.173 is correct at L→∞. Our aim is to test
it by fitting the two data sets and looking whether the estimates of C0 become consistent
at large enough sizes.

We have evaluated C0 from fits within [L/a,aL] and have plotted the results as func-
tions of L(α/ν)−ω with ω=0.8, using the perturbative RG estimate ω=0.799±0.011 [13].
Here aL∈N, and a=

√
2,2,

√
8,4, etc., can be chosen. A smaller a value allows to make es-

timations closer to the thermodynamic limit, but the statistical errors decrease for larger
a values. We have set a =

√
8 as an optimal choice for our data. In fact, C0 = C0(L) is

an effective coefficient, and its convergence to the asymptotic value is expected to be lin-
ear in L(α/ν)−ω at L → ∞. Indeed, if the data are consistent with CV(L̀) = C0+AL̀α/ν+
O
(

L̀(α/ν)−ω
)
, and we fit these data to the ansatz CV(L̀)=C0+AL̀α/ν within L̀∈ [L/a,aL],

then the correction term O
(

L̀(α/ν)−ω
)

is approximately compensated by certain shifts in
C0 and A values such that C0(L) = C0+δC0(L) and A(L) = A+δA(L). Obviously, the
best approximation (minimizing the χ2 of the fit) is such that the compensating terms
δC0(L) and δA(L)L̀α/ν are comparable with O

(
L̀(α/ν)−ω

)
within L̀∈ [L/a,aL]. It means

that C0(L)=C0+O
(

L(α/ν)−ω
)

holds.
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Figure 3: The constant background term C0 in (3.2) depending on L(α/ν)−ω at ω = 0.8, evaluated from fits

within [L/
√

8,
√

8L] with fixed exponent ratio α/ν = 0.113 (triangles), α/ν = 0.149 (squares), α/ν = 0.173

(circles) and α/ν = 0.196 (diamonds). Empty symbols refer to the CV data at β= β̃c(L), corresponding to
U=1.6, whereas solid symbols — to the Cmax

V data. Dashed lines indicate the systematic shift between the two
plots at α/ν=0.173.

The C0(L) plots for CV data at β= β̃c(L) and for Cmax
V data at α/ν=0.173 are shown in

Fig. 3 by empty circles and solid circles, respectively. The plots tend to saturate at certain
values, shown by dashed lines. However, these values differ from each other: −31.63(30)
in the first case and −34.27(58) in the second case. The discrepancy is ∆C0=2.64(65). This
inconsistency is removed, assuming that the correct α/ν value is different from 0.173.
Indeed, we observe that the two plots tend to merge very accurately and lie practically
on top of each other for

√
8L≥320 at α/ν=0.196(6) — see the upper plots (diamonds) in

Fig. 3. The precise merging point has been determined as the value of α/ν at which linear
fits are consistent within 320≤

√
8L≤1024. For a more complete picture, we have shown

in Fig. 3 also the plots for α/ν=0.149 and α/ν=0.113. These values come from a direct
estimation of α/ν in Section 4, where α/ν = 0.149(38) appears as a maximal value and
α/ν=0.113(30) — as a minimal value obtained there. As we can see, the systematic shift
between two plots at α/ν = 0.149 and, particularly, at α/ν = 0.113 is remarkably larger
than the shift at α/ν=0.173.

The effect of corrections to scaling can be evaluated from the magnitude of varia-
tions in C0(L). Apparently, corrections to scaling are very small or negligible for the
discrepancy ∆C0(L) between the two plots at a given α/ν. Indeed, ∆C0(L) is almost con-
stant within a sufficiently wide range of small L(α/ν)−0.8 values. Therefore, our method
is well justified for finding the α/ν value at which limL→∞ ∆C0(L) = 0 holds if ω is, in-
deed, as large as ω ≈ 0.8. The obtained result α/ν = 0.196(6) remarkably deviates from
the perturbative RG value 0.173±0.007. It suggests that the perturbative RG value is un-
derestimated, whereas the direct estimation in Section 4 suggests that it, more likely, is
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either overestimated or correct within the error bars. Consequently, if we are looking for
an average estimate of α/ν (assuming that the power-law ansatz holds), then it could
be still consistent with the RG value 0.173±0.007. However, a question arises about the
inconsistency between different estimations.

Our scaling consistency test in Fig. 3 refers only to U= 〈m4〉/〈m2〉2=1.6. It would be
interesting to see how the value of α/ν, at which the C0(L) curves collapse, is changed
when the pseudocritical coupling is determined at a different value of U. Following the
method of [15], our simulations have been performed for a set of β values in vicinity of

β̃c(L), corresponding to U=1.6. This method allows us to recalculate the results for any

coupling, which is close enough to β̃c(L). In particular, using the Taylor series expansion
of ln〈m2〉 and ln〈m4〉 up to the third order, we have evaluated β= β̄c(L) for which U=1.7
holds. Furthermore, using the Taylor series expansion of ln〈−ε〉 and ln〈ε2〉 up to the
second order, we have recalculated the specific heat values at β=β̄c(L) within 32≤L≤864.
We have considered a series of approximations, where the n-th approximation includes
terms up to the n-th order in the expansion of ln〈−ε〉 and ln〈ε2〉 and terms up to the
(n+1)-th order in the expansion of ln〈m2〉 and ln〈m4〉. The chosen here orders are not
equal, since the evaluated derivatives are statistically more reliable in the second case.
The validity of this recalculation is confirmed by a fast enough convergence of the Taylor
series, as well as by an observation that the recalculated data are well consistent with the
results of direct simulations for β= β̄c(L) within 32≤ L≤64. For example, at L=64, the
series of approximations for CV is 55.162(83), 50.490(87) and 50.406(88), corresponding
to n= 0, n= 1 and n= 2. The direct simulation yields CV = 50.298(83) in this case. The
recalculated value of β̄c(64) is 0.22158995(59), whereas that of the direct simulation is
0.22159001(51). No extra simulations have been performed for 64< L≤ 864. However,
the observed convergence of the Taylor series is fast in this case, the difference between
approximations with n=1 and n=2 being smaller than one standard deviation. We have
restricted our calculation to 32≤L≤864, since a remarkable increase of this difference has
been observed outside of this interval.

Note that U is about 1.2 for the Cmax
V data (i.e., at β = β̂c(L)), and it corresponds to

β > βc ≃ 0.2216546, whereas U = 1.6 corresponds to β near βc (because U∗ ≈ 1.6 is the
critical value of U). Hence, our recalculated data for U=1.7 refer to the region β<βc. The
results of our scaling test for U=1.7 are shown in Fig. 4. The discrepancy at α/ν=0.173 is
∆C0=2.95(67), which slightly exceeds the value 2.64(65) found for U=1.6. The collapse
of these C0(L) plots takes place at α/ν=0.193(5), as shown by diamonds in Fig. 4. This
value is slightly smaller than 0.196(6) found for U = 1.6. Since the data of U = 1.7 have
been recalculated from those of U=1.6, the small changes in our estimates are mainly of
systematical character, showing how the results are varied with U. The reason why the
estimated merging point (α/ν value) has a smaller error at U=1.7 than at U=1.6 is the
fact that the discrepancy ∆C0 is varied more rapidly with α/ν at U=1.7.

We have performed the consistency test also for relatively small lattices sizes by fitting

the CV data at β = β̃c(L) (U = 1.6) and the Cmax
V data to the ansatz to (3.2) within L ∈

[Lmin,Lmax] with relatively small lattice sizes Lmin=32 and Lmax=64. We have determined
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Figure 4: The constant background term C0 in (3.2) depending on L(α/ν)−ω at ω = 0.8, evaluated from fits

within [L/
√

8,
√

8L] with fixed exponent ratio α/ν = 0.113 (triangles), α/ν = 0.149 (squares), α/ν = 0.173
(circles) and α/ν = 0.193 (diamonds). Empty symbols refer to the CV data at β= β̄c(L), corresponding to
U=1.7, whereas solid symbols — to the Cmax

V data. Dashed lines indicate the systematic shift between the two
plots at α/ν=0.173.

the α/ν value, at which both data sets give consistent background term C0, and have
determined this value of C0. Then we have examined how the results are varied if the
maximal lattice size Lmax increases. The results of this test are collected in Table 3. For
relatively small Lmin and Lmax, these estimates of α/ν are systematically larger than the
value 0.196(6) obtained before. However, these estimates are well consistent with α/ν=
0.196(6) for large Lmax. Note, however, that the quality of the actual fits with fixed Lmin=

32 are quite low. For example, we have χ2/d.o.f. = 3.31 for the data at β = β̃c(L) and
χ2/d.o.f.=4.15 for the Cmax

V data at Lmax=1024. The fit quality at Lmax=1024 is improved
for larger Lmin values. For example, at Lmin = 48 we obtain α/ν = 0.1887(51) and C0 =

Table 3: The values of α/ν at which the two data sets (the CV data at β= β̃c(L) and the Cmax
V data) give the

same value of C0 if fitted to the ansatz (3.2) within L∈ [Lmin,Lmax]. The results for α/ν and C0 are shown
depending on Lmax at a fixed Lmin=32.

Lmax α/ν C0 Lmax α/ν C0

64 0.258(21) -6.5(4.8) 320 0.2038(57) -18.7(2.2)
80 0.230(15) -12.2(4.4) 384 0.2022(52) -19.2(2.1)
96 0.220(12) -14.9(3.8) 512 0.2043(50) -18.0(2.0)

128 0.2077(93) -18.3(3.4) 640 0.2005(47) -19.3(2.0)
160 0.2039(77) -19.4(2.9) 768 0.1991(43) -19.8(1.8)
192 0.2006(66) -20.3(2.6) 1024 0.1966(39) -20.7(1.7)
256 0.2053(61) -18.3(2.3)
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Figure 5: The constant background term C0 in (3.3) depending on L(α/ν)−2ω at ω=0.832, evaluated from fits

within [L/4,4L] with fixed α/ν=0.174 and ω=0.832. Empty circles correspond to the CV data at β= β̃c(L),
whereas solid circles — to the Cmax

V data. Linear fits are shown by solid straight lines. The horizontal dashed
line indicates the value −27.85±0.80 of [5], and the dotted lines indicate the range of error bars ±0.80.

−23.3(2.6) with χ2/d.o.f.=0.80 and χ2/d.o.f.=1.44 for these two data sets. At Lmin=96,
the corresponding estimates are α/ν=0.1915(84) and C0=−20.8(4.6) with χ2/d.o.f.=0.54
and χ2/d.o.f.=1.63.

As an extra test, we have performed an estimation of the constant C0, using the ansatz

CV =C0+ALα/ν
(
1+bL−ω

)
(3.3)

instead of (3.2). In order to compare the results with the estimate C0=−27.85±0.80 of [5],
we have performed fits with α/ν = 0.174 and ω = 0.832, in agreement with the values
of the critical exponents considered in [5]. It is not clear a priori whether the refined
ansatz (3.3) will give better results than (3.2), because statistical errors become rather large
when the correction term bL−0.832 is included, and one needs to include smaller sizes L
to reach an acceptable statistical accuracy. Moreover, the fit results depend remarkably
on the chosen interval of sizes. For example, by fitting the data of Table 2 within L ∈
[Lmin,1024], we obtain C0 =−26.35(86) at Lmin = 16, C0 =−29.3(1.6) at Lmin = 32 and
C0=−33.1(2.9) at Lmin=64. Such effects can be studied in a systematic way by fitting the
data within [L/a,aL] and considering how the results are varied. Indeed, the obtained
in this way estimate C0(L) has certain expected scaling. By similar arguments as in the
case of the ansatz (3.2), we find that this scaling is linear in L(α/ν)−2ω at L→∞ because
of the influence of the remainder term O

(
L(α/ν)−2ω

)
. We have evaluated C0(L) by fitting

the data within [L/4,4L]. The C0(L) vs L(α/ν)−2ω plots for both data sets (in Tables 1
and 2) show certain systematic variations — see Fig. 5. These plots are perfectly fit by

straight lines, yielding the asymptotic estimates C0=−30.7(1.6) from the data at β= β̃c(L)
(Table 1) and C0 =−35.1(3.0) — from the Cmax

V data (Table 2). Thus, the discrepancy is
∆C0 = 4.4(3.4). Because of the large statistical errors, it is impossible to draw a strict
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conclusion that ∆C0 6=0. However, it is clear that the estimate C0=−35.1(3.0), extracted
from the Cmax

V data, is not well consistent with the value −27.85±0.80 of [5].

At α/ν = 0.173 and ω = 0.8, this method yields C0 =−31.6(1.7), using the data at

β= β̃c(L), and C0 =−36.4(3.2), using the Cmax
V data. These estimates agree with the cor-

responding values, C0=−31.63(30) and C0=−34.27(58), obtained from the ansatz (3.2).

4 Direct estimation of α/ν

We have evaluated the exponent ratio α/ν also as a fit parameter in (3.2). The fits within
[L/

√
8,
√

8L] give effective exponents (α/ν)eff plotted in Fig. 6. Because of the influence
of the neglected in (3.2) correction term, which is by a factor O(L−ω) smaller than the
leading term, the effective exponent depends on L and is expected to be linear in L−ω at
L→∞. The shown here linear and quadratic fits of (α/ν)eff vs L−0.8 correspond to the

CV data at β= β̃c(L). They give α/ν=0.149(38) and α/ν=0.139(50), respectively. Such
fits are not good and plausible enough for the effective exponents, extracted from the
Cmax

V data (asterisks in Fig. 6). However, these effective exponents decrease for large L,
suggesting that α/ν is smaller than the value 0.196(6) obtained from the consistency test
in Section 3. The largest-L estimate is 0.113(30), as provided by the fit over L∈ [128,1024]
with χ2/d.o.f.=1.08. Because of the decreasing, α/ν could be even smaller than 0.113(30).

0 0.01 0.02 0.03 L
-0.8

0.1

0.15

0.2

0.25

(α
/ν

) ef
f

Figure 6: The effective exponent (α/ν)eff depending on L−0.8, evaluated from fits to (3.2) within [L/
√

8,
√

8L].

Circles correspond to the CV data at β= β̃c(L), asterisks — to the Cmax
V data. Linear and quadratic fits of circles

are shown by dashed line and solid line, respectively. The dot-dashed line is a guide to eye for asterisks. The
horizontal lines indicate the RG value 0.173 (dotted line) and the value 0.196 (dot-dot-dashed line), obtained
from the scaling test in Section 3.

We have considered also the CV fits within L≥ Lmin, including corrections to scaling
with ω=0.8. At large enough Lmin, the fit results agree well with those provided by the

effective exponents. For example, the fits of the CV data at β= β̃c(L) to

CV =C0+ALα/ν
(
1+a1L−ω+a2L−2ω

)
(4.1)
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give α/ν=0.147(40) at Lmin=27 and α/ν=0.136(49) at Lmin=32. Such fits of Cmax
V data

give α/ν=0.139(53) at Lmin=20 and α/ν=0.124(67) at Lmin=24.

5 Test of the logarithmic scaling

We have tested also the GFD theory [10]. According to [10, 22], CV has a logarithmic
singularity

CV =C0+ln(| t |/t0) f
(

tL1/ν
)

at t→0 (5.1)

for any given tL1/ν, where the scale parameter t0 is included to ensure that CV can be
represented in this form at an arbitrary rescaling t→ st. It corresponds to

CV =AlnL+B at L→∞ (5.2)

at a fixed z = tL1/ν 6= 0, which holds asymptotically for β = β̃c(L) and β = β̂c(L). Here
B=B(z) 6≡C0. The expected form, including corrections to scaling, is

CV =AlnL
(
1+O

(
L−ω

))
+B

(
1+O

(
L−ω

))
. (5.3)

It is consistent with the Cmax
V behavior in the 2D case [23], where ω=1. In our case ω=1/8

is expected [8, 10, 29].
To test the logarithmic scaling scenario, we have evaluated the χ2/d.o.f. of the three-

parameter fits

CV =AlnL
(

1+aL−1/8
)
+B (5.4)

within L ≥ Lmin and have compared them with the χ2/d.o.f. values for the power-law
ansatz

CV =C0+ALα/ν
(
1+aL−0.8

)
(5.5)

with fixed α/ν = 0.173 or α/ν = 0.196 — see Table 4. The logarithmic ansatz is good
enough for Lmin ≥ 48, since χ2/d.o.f. is about unity for moderately good fits [24]. Thus,
(5.4) can be the correct asymptotic ansatz. The power-law ansatz (5.5) provides better fits

for the CV data at β= β̃c(L) and worse (relatively poor) fits for the Cmax
V data at Lmin≥48.

Table 4: The values of χ2/d.o.f. depending on Lmin for three different fits within L≥Lmin. Fits 1 and 2 are the
fits to ansatz (5.5) with fixed exponents α/ν=0.173 (fit 1) or α/ν=0.196 (fit 2). Fit 3 is the fit to ansatz (5.4).

The results of two data sets are presented: set 1 — the CV data at β= β̃c(L) and set 2 — the Cmax
V data.

χ2/d.o.f. of set 1 χ2/d.o.f. of set 2

Lmin
fit 1 fit 2 fit 3 fit 1 fit 2 fit 3

32 0.48 0.43 2.43 1.47 1.43 2.46
48 0.39 0.44 0.92 1.28 1.41 1.14
64 0.43 0.49 0.63 1.40 1.55 1.03
96 0.38 0.39 0.49 1.40 1.47 1.17
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6 Summary and conclusions

We have systematically analyzed the MC data for specific heat of the 3D Ising model on

large lattices: L≤1536 at β= β̃c(L) and L≤1024 at β= β̂c(L). Fits of these two data sets (as
illustrated in Fig. 3) provide consistent values of C0 in (3.2) at α/ν=0.196(6), whereas the
perturbative RG estimate is 0.173±0.007. An extra scaling test, where the pseudocritical

coupling β̃c(L) is replaced by β̄c(L), evaluated at U=〈m4〉/〈m2〉2=1.7 instead of U=1.6,
gives α/ν= 0.193(5). Several estimations of this kind have been discussed in Section 3,
giving results consistent with α/ν = 0.196(6) within the error bars. However, a direct
estimation of α/ν from Cmax

V data suggests that α/ν is 0.113(30) or even smaller. These
MC estimations are well justified if the correction-to-scaling exponent ω is as large as
usually assumed, i.e., ω≈0.8. Because of the inconsistencies in α/ν values, it is difficult
to give a good interpretation of the data by a power-law ansatz if ω ≈ 0.8. Thus, the
power-law scaling of the perturbative RG theory can be challenged in view of this fact.
It can be also questioned whether the large in magnitude negative values (−31.63(30)
and −34.27(58)) of the analytic background contribution C0, obtained at α/ν=0.173, are
physically reasonable.

We have found that the data are well consistent with the logarithmic ansatz (5.4) of
the GFD theory (see [10, 22]) for large enough system sizes L≥48.

There are many numerical evidences (see, e.g. [20]) supporting the critical exponents
of the perturbative RG theory. These include the results of the high temperature series
expansion (see, e.g., [25–27]), as well as the MC analysis (see, e.g., [1–7, 28]). As argued
in [8], we should mainly rely on non-perturbative methods, i.e., the MC method in the
case of the 3D Ising model. Monte Carlo evidences for the singularity of specific are
mainly based on an estimation of the exponent ν, calculating α from the hyperscaling
relation α+dν=2. We have estimated α/ν directly from specific heat data. Moreover, ac-
cording to our knowledge, the scaling test in Section 3 has never been performed before.
The linear lattice sizes in our simulations exceed by an order of magnitude those simu-
lated and analyzed earlier by other authors. Thus, our current results provide a rather
serious numerical evidence, according to which the logarithmic scaling (5.4) of specific
heat provides a remarkably better interpretation of the data than the usual RG scaling.
Our results do not imply that something is wrong with the previous MC simulations,
but only indicate that the usually considered sizes L ≤ 128 are too small for a reliable
estimation of the critical exponents.

Corrections to scaling with small exponents ω=1/8 or θ=1/12, predicted for the 3D
Ising model by the GFD theory, well explain the fact that numerically estimated critical
exponents can remarkably depend on the considered range of sizes L or range of reduced
temperatures t even for very large L or very small t. Such possible corrections to scaling
have never been considered in earlier numerical studies by other authors. Inclusion of
such corrections can potentially resolve all the apparent inconsistencies between various
numerical estimations of the critical exponents, including our MC analysis and other
possible MC analyses of large enough lattices.
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At small ω (such as ω = 1/8), a very slow crossover from certain effective scaling
behavior to the true critical scaling behavior is possible. Here by “effective scaling be-
havior” we mean such a behavior, which is well described by certain effective exponents,
which are different from the true critical exponents. If the crossover effect is ignored,
then the numerically estimated critical exponents can be consistent with these effective
exponents. In principle, it can explain the discrepancies between the known numerical
estimates ν≈0.63 and η≈0.037 (e.g., ν=0.63020(12) and η=0.0368(2) [5]), obtained for
the 3D Ising universality class by ignoring such a possible crossover effect, and the values
ν=2/3, η=ω=1/8 of the GFD theory. However, it would imply that the numerically ob-
tained effective exponents are almost universal, since the known numerical estimates of
the critical exponents for various models of the 3D universality class are consistent. It can
rise serious questions about the validity of this tentative explanation. On the other hand,
one can argue that the numerical estimation of the critical exponents is not a very strict
and rigorous method. In particular, some problems have been revealed and discussed
in [30, 31], where it has been stated that an analysis of the critical behavior points to dis-
tinct high- and low-temperature exponents, especially for the specific heat, although the
agreement is good between different lattices.

Our tentative explanation seems to be very reasonable from the point of view of cer-
tain rigorously proven statement in [29], showing that the leading correction to scaling in
the two-point correlation function of the ϕ4 model is given by the exponent θ=ων≤γ−1,
if γ> 1 and certain general (conventional) scaling arguments hold (see Section 3 in this
paper). According to the known numerical estimates, θ for the 3D Ising universality class
(including also the scalar ϕ4 model) is about 0.52 (see, e.g., [5]), whereas γ−1 ≈ 0.24.
It seems that this contradiction can be reasonably explained only if we assume that the
above outlined crossover scenario really holds. This controversy requires a further inves-
tigation and discussion.
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