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Abstract. A numerical method based on a homogeneous single-phase flow model is
presented to simulate the interaction between pressure wave and flow cavitation. To
account for compressibility effects of liquid water, cavitating flow is assumed to be
compressible and governed by time-dependent Euler equations with proper equation
of state (EOS). The isentropic one-fluid formulation is employed to model the cavi-
tation inception and evolution, while pure liquid phase is modeled by Tait equation
of state. Because of large stiffness of Tait EOS and great variation of sound speed in
flow field, some of conventional compressible gasdynamics solvers are unstable and
even not applicable when extended to calculation of flow cavitation. To overcome
the difficulties, a Godunov-type, cell-centered finite volume method is generalized to
numerically integrate the governing equations on triangular mesh. The boundary is
treated specially to ensure stability of the approach. The method proves to be stable,
robust, accurate, time-efficient and oscillation-free.

Novel numerical experiments are designed to investigate unsteady dynamics of
the cavitating flow impacted by pressure wave, which is of great interest in engineer-
ing applications but has not been studied systematically so far. Numerical simulation
indicates that cavity over cylinder can be induced to collapse if the object is acceler-
ated suddenly and extremely high pressure pulse results almost instantaneously. This,
however, may be avoided by changing the traveling speed smoothly. The accompany-
ing huge pressure increase may damage underwater devices. However, cavity formed
at relatively high upstream speed may be less distorted or affected by shock wave and
can recover fully from the initial deformation. It is observed that the cavitating flow
starting from a higher freestream velocity is more stable and more resilient with re-
spect to perturbation than the flow with lower background speed. These findings may
shed some light on how to control cavitation development to avoid possible damage
to operating devices.
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1 Introduction

Vapour-filled cavities forming in a liquid flow when the pressure drops below the satu-
rated vapour pressure is commonly referred to as cavitation. The cavitation phenomenon
is undesired in most situations. An example is that the high pressure pulse and jetting
following the collapse of cavitation can damage engineering devices such as propeller,
turbomachinery, hydrofoil, etc. On the other hand, attempts also have been made to uti-
lize cavitation effects to improve the performance of engineering machines. For example,
the drag exerted on an underwater projectile can be reduced significantly by a supercavi-
tating vapour enveloping the whole object, since the viscous drag is normally about 1000
times less in vapour than in liquid water. During the past few decades, investigation of
cavitation has received increasing attention.

Numerically simulating cavitating flow is challenging in terms of modeling of com-
plex physics in the interfacial region separating liquid and vapour phases as well as de-
velopment of robust numerical methods. Up to now, quite a few numerical approaches
have been developed to resolve the cavitating problems and can roughly be categorized
into two families. One of them is the so-called sharp interface method where the inter-
face separating the cavitation region and liquid flow is assumed to be a sharp disconti-
nuity and tracked accurately using an iterative procedure, see [5,6] for a brief discussion.
Unfortunately, the sharp interface method appears to be able to handle simple cavitating
problems only. The other is the widely used diffuse interface method. Instead of attempt-
ing to locate the phase interface accurately, the method allows the flow to transmit from
vapour to liquid phase smoothly, leading to a numerically diffused zone along the cavi-
tation boundary. The diffuse interface method is becoming increasingly popular because
it is simpler than the sharp interface method and can still model some physical details
of the cavitating flows accurately. In practical implementation, one has two choices of
governing equations, i.e. single-phase or two-phase formulation, on which the complex-
ity of the diffuse interface method depends. For the strict two-phase model, both phases
coexist at every point in the flow field and thus one has to solve the separate governing
equations for each phase. The complex physics on the interfacial region such as heat and
mass transfer, surface tension and restoration of pressure equilibrium between different
phases can be taken into account in this type of model. But the governing equations usu-
ally involve transfer terms accounting for phase transition and interaction and may not
be conservative, and therefore it is not trivial to efficiently solve them. Another disadvan-
tage of the two-phase formulation is that it is difficult to know the parameters associated
with phase transition a priori. On the contrary, one-phase model treats the cavitating
flow as a single-fluid flow of the mixture of liquid and vapour phases. The flow is gov-
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erned by one set of partial differential equations. The model is based on the assumption
of kinematic and thermodynamic equilibrium. A major issue is to provide an appropriate
equation of state (EOS) to close the model. The physical phenomena of interest includ-
ing phase transition, dynamic evolution of cavitation and shock wave propagation can
be modeled successfully with the one-fluid formulation. However, the non-equilibrium
effects cannot be modeled as vapourization and condensation processes are assumed to
complete instantaneously. The one-fluid model has been widely used for its simplicity.
One can refer to [2, 3, 7, 21–23] for a brief review of the cavitating flow study.

Although much literature is available on the simulation of cavitating flow as well as
on analysis of various cavitating features like the inception, evolution, unsteadiness and
stability of cavitation, few works exist on the study of such cavitation subjected to exter-
nal perturbations such as the variation of freestream flow speed or pressure like impact
of shock wave or other complex waves. In particular, our interest is focused on the super-
cavitating underwater object traveling at high speed and exposed to a nearby underwater
explosion and the study of the associated dynamics of the cavitating flow impacted by
underwater shock wave. In this paper, the cavitating flow interacting with such a wave is
investigated systemically under varying freestream flow speed and shock Mach number.
The influence of shock strength and upstream flow speed on the development and evolu-
tion of cavitation is examined carefully. The unsteady process of supercavity formation,
growth, evolution and even collapse is reproduced through our numerical experiments
and findings on dynamics of cavitation are reported. Hopefully, this study will enhance
our understanding of physics of perturbed cavity and further help us find potential way
to minimize negative effects of cavity collapse.

On the other hand, to resolve the pressure wave-cavitation interaction, a numerical
method is presented based on a one-fluid homogeneous model. The isentropic EOS for
cavitation region [2] together with Tait EOS for water is used to complete the model sys-
tem. However, correctly and efficiently solving the governing equations is proved to
be challenging. It is found that some of the classical schemes for hyperbolic systems
of conservation laws cannot be applied directly to the current physical model due to
large stiffness of Tait EOS and enormous difference in speed of sound between liquid
and vapour phases. Here, MUSCL scheme [10, 25] is extended to integrate the system of
equations on unstructured triangular mesh which is employed to discretize potentially
complex computational domain. A key step in solution procedure is to treat boundary
via the use of ghost cells to ensure code stability. The present method exhibits several
advantages over some of other approaches. First, the one-fluid homogeneous system
employed here is quite simple relative to multi-phase models. But the unsteady cavitat-
ing flow features can be modeled properly. Second, the method is quite stable and robust.
At high Courant-Friedrichs-Lewy (CFL) number, the method converges rapidly. Third,
the phase interface separating liquid water and vapour is resolved sharply and free of
non-physical pressure oscillations, even though the CFL number is set as high as 0.8.
The paper is organized as follows. In Section 2, the governing equations together with
closure conditions are presented. The numerical procedure to solve the model system is
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detailed in Section 3. The method is validated in Section 4. In Section 5, the numerical
results on pressure wave-cavitation interaction are presented and discussed. Finally, a
brief summary is given in Section 6.

2 Governing equations

In this study, a homogeneous model is employed where the liquid and vapour phases are
assumed to be in kinematic and thermodynamic equilibrium, that is, liquid and vapour
contained in a fluid element share the same velocity, pressure and temperature. The
motion of mixture of two phases behaving as one single component is governed by time-
dependent Euler equations,

∂U

∂t
+

∂F

∂x
+

∂G

∂y
=−

i

y
S, (2.1)

where i takes value of 0 and 1 for planar and axisymmetric flows, respectively. Here, U, F,
G and S are the vector of conserved variables, inviscid flux vectors in x and y directions,
geometric source term vector associated with axisymmetric flow, respectively, and are
given by,
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with ρ being the averaged density, u the averaged x velocity component, v the averaged
y velocity component and p the averaged pressure. Energy equation is decoupled from
model system (2.1) as the flow is assumed to be isentropic, i.e. the pressure is the function
of density only.

Obviously, a closure condition in the form of equation of state (EOS) has to be pro-
vided to complete system (2.1). For liquid water, Tait equation of state is widely used
in many applications and hence employed in this study. A key issue in the cavitating
flow simulation is to develop an appropriate EOS to model the thermodynamic behav-
iors of the liquid-vapour mixture in the cavitation region. Up to now, much effort has
been made and various formulations have been proposed. Perhaps, the easiest way is to
fix the pressure at a prescribed value once the density drops below a threshold value and
this results in the so-called cut-off model,

p=











B

(

ρ

ρ0

)N

−B+A, ρ≥ρsw,

psat, ρ<ρsw,

(2.3)

where N, A, B, ρ0 are the material-dependent constants of Tait EOS. For pure liquid water,
they are set to be N=7.15, A=105Pa, B=3.31×109Pa, ρ0=1000kg/m3 , respectively. Here,
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ρsw is the saturated water density corresponding to saturated vapour pressure psat. In
the pure liquid water region, the pressure is related to the density through Tait EOS,
while in the cavitation region, the pressure is fixed at psat. Although this model can be
implemented easily, it has some limitations: the conservation of some flow quantities
may not be maintained and the hyperbolic system of equations (2.1) may degenerate
non-physically due to zero speed of sound.

To overcome the shortcomings of cut-off model, a mathematically more consistent,
isentropic one-fluid formulation was proposed with the assumption that the cavitating
flow is the homogeneous mixture of isentropic vapour and liquid [2]. This isentropic
model is given by,
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(2.4)

where k = α0/(1−α0) and α0 is the known void fraction of the mixture density at psat.
Here, ρcav

g and ρcav
l are the associated vapour and liquid densities at the cavitation pres-

sure psat. The adopted assumption that the cavitating flow is the homogeneous and
barotropic mixture of vapour and liquid leads to a theoretical expression for sound speed
[1, 24],

a=

{

ρ

[

α

ρsva2
v

+
1−α

ρswa2
w

]}− 1
2

, (2.5)

where av and aw are the speeds of sound of vapour and liquid at a given pressure, respec-
tively. The averaged density of the mixture, ρ, is defined as the linear combination of the
saturated vapour and water densities,

ρ=αρsv+(1−α)ρsw. (2.6)

The isentropic model is consistent with the sound speed formulation adopted and there-
fore is mathematically sound and physically reasonable [2]. It can strictly guarantee the
hyperbolicity of model system (2.1) and does not constraint the ratio of liquid to vapour
density. One disadvantage of the model is that one has to solve for the pressure using a
fairly time-consuming iterative procedure. In the present study, all the simulations below
are based on the isentropic cavitation model.

The present study is concentrated on the simulation of unsteady cavitating flow in-
volving dynamic appearance, evolution and collapse of cavitation and on cavitation di-
mension as well as pressure pulse due to its collapse. The homogeneous model (2.1)
together with isentropic cavitation formulation (2.4) is able to model the macroscopic
phenomena stated above and therefore is adopted here. In model system (2.1), effects
of viscosity, turbulence, thermal non-equilibrium, surface tension, etc are considered to
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be less important and are ignored. Phase transition, which is one of the most important
physical processes, can be modeled by one-fluid system (2.1) and is assumed to complete
instantaneously. In other words, during phase change, the vapour and liquid phases in
the mixture reach mechanical and thermodynamic equilibrium at infinite speed. Hence,
detailed physics related to phase change and non-equilibrium effects cannot be resolved
by (2.1). These complex physics and effects can be taken into account in multi-phase
models such as those of Kunz et at. [27] and of Saurel et al. [26]. The multi-phase models
are more physically reasonable. However, one has to determine a number of empirical
parameters associated with phase exchange rate, viscous frication, etc. In addition, nu-
merically discretizing the governing equations for multi-phase flow may not be easy. The
sound speed expression (2.5) is validated against experimental data in [24] and found to
be sound and accurate for mixture in thermodynamic equilibrium with effect of mass
transfer on sound speed ignored [2, 24].

3 Numerical method

The homogeneous model (2.1) appears quite simple. But efficiently solving it can be very
challenging. A difficulty encountered in calculation is that in liquid phase modeled by
Tait EOS, the pressure is highly sensitive to small change in the density. In Fig. 1(a),
the pressure is plotted against the density for Tait EOS and isentropic cavitation model in
logarithmic scale. The part of pressure-density curve corresponding to Tait EOS is almost
vertical, as illustrated in Fig. 1(a). When the pressure drops from 1 amt (105Pa) marked as
square in Fig. 1(a) to saturated vapour pressure of psat =62.5 Pa shown as circle, the cor-
responding density variation is around 0.042kg/m3 which is extremely small relative to
water density of 1000kg/m3 at atmospheric pressure. This means that any small change
in the density can results in huge pressure jump. As a result, the cavitating flow is sen-
sitive to small perturbation and numerical code may be very unstable. Another problem
in simulation is that the local flow Mach number varies dramatically as sound speed
may be several orders of magnitude smaller in cavity than in water as shown in Fig. 1(b)
where the sound speed model (2.5) of Wallis [24] is depicted. The liquid phase is almost
incompressible at a relatively large cavitation number. In addition, spurious pressure os-
cillations may occur on cavity boundary due to difference in equations of state between
cavitation region and liquid phase. As a result of the abovementioned problems, some of
conventional compressible flow solvers do not perform well or fail when applied directly
to simulation of cavitation. For instance, some high-order schemes appear more diffusive
in resolving the cavitating flow, resulting in a more smeared vapour-water interface, and
are stable only at relatively small CFL number. With increasing CFL number, the codes
based on these methods may crash or produce pressure oscillations across the cavity
interface. In this study, the classical MUSCL scheme is employed to discretize the con-
vective terms of system (2.1) as this scheme is known for its stability and robustness. The
time-marching is handled using the second-order Runge-Kutta method while the source
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Figure 1: Equations of state and sound speed model: (a) Tait EOS and isentropic cavitation model; (b) speed
of sound versus void fraction.

terms are treated separately. Special attention is paid to the treatment of boundary to
ensure stability of the code.

3.1 Cell-centered finite volume scheme on triangular mesh

A schematic triangular mesh is shown in Fig. 2. Here, to deal with potentially complex
geometry of underwater objects, the computational domain is partitioned into a set of
triangles, which is better able to conform to the geometrical features. For the cell-centered
approach, the flow variables are defined at the centroid of each triangle, which is the
intersection point of three medians of the triangle as illustrated in Fig. 2. Integrating the
system of equations (2.1) with source terms ignored over control volume p gives,

∂U

∂t
=−

1

A ∑
k∈Ki(p)

∫

(Fnpkx+Gnpky)dl, (3.1)

where A represents the area of triangle p and Ki(p) denotes the set of indices of three
neighboring cells, each of which shares a common edge with triangle p. Here, n =

Figure 2: Schematic of control volume definition.



J. G. Zheng, B. C. Khoo and Z. M. Hu / Commun. Comput. Phys., 14 (2013), pp. 328-354 335

(npkx, npky) with k = r, s and q is the outward unit vector normal to the common edge
of triangles p and k with length lpk. The line integral in Eq. (3.1) can be approximated by
using a one-point quadrature rule and assuming the uniform distribution of flux [15,16].
The resulting semi-discrete scheme reads,

∂U

∂t
=−

1

A ∑
k∈Ki(p)

(F̃npkx+G̃npky)lpk, (3.2)

where F̃ and G̃ are the numerical fluxes calculated using the HLL Riemann solver as
detailed in the next subsection.

3.2 HLL Riemann solver

One way of evaluating the line integral approximation along an edge in Eq. (3.2) is to
utilize the rotational invariance property of governing equations (2.1). Eq. (3.2) can be
rewritten as,

∂U

∂t
=−

1

A ∑
k∈Ki(p)

T−1F̃(TU)lpk, (3.3)

with the rotation matrix T and its inverse T−1 given by,

T=





1 0 0
0 npkx npky

0 −npky npkx



, T−1=





1 0 0
0 npkx −npky

0 npky npkx



. (3.4)

By exploiting the rotational invariance property, one can transform the variables in
the global coordinate into a local system with x coordinate direction aligned with n =
(npkx, npky) and y coordinate direction obtained by rotating n 90 degrees anti-clockwise.
In the local coordinate system, a one-dimensional Riemann problem is solved using any
accurate or approximate Riemann solvers, and finally the flux is mapped to the global
coordinate system. In this study, HLL (Harten, Lax and van Leer) Riemann solver [8] is
employed and the numerical flux is calculated as,

F̃hll =



















FL, if SL≥0,

SRFL−SLFR+SLSR(U
tr
R −Utr

L )

SR−SL
, if SL<0<SR,

FR, if SR≤0.

(3.5)

In the above equation, if the left and right states Utr
L , Utr

R for the Riemann problem at
mid-point, say m in Fig. 2, are transformed directly from values UL, UR at centroids p
and q, respectively, the resulting scheme is first-order accurate only. The left and right
wave speeds are given by,

SL =min(utr
L −cL, utr

R−cR), SR =max(utr
L +cL, utr

R+cR), (3.6)
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with c being the speed of sound. The HLL Riemann solver assumes that the solution is
composed of three constant states separated by two waves of speed SL and SR.

3.3 Second-order extension in space as well as in time and source terms
discretization

The second-order spatial accuracy is achieved through using MUSCL [10, 25]. In this
scheme, the flow variables are reconstructed through a linear function rather than the
constant distribution employed in Godunov’s first-order method. Consider control vol-
ume p, the vector of primitive variables W=(ρ, p,u,v)T on the left hand side of mid-point
m in Fig. 2 is reconstructed as,

WL
m =Wp+∇Wp ·~rpm, (3.7)

where Wp is cell averages of the primitive variables defined at centroid p, ∇Wp is the
corresponding gradient of W at p, and~rpm is the distance vector from centroid p to mid-
point m. Here, the gradient is calculated using least square method which approximates
the gradient by fitting values of cell p and those in its neighbors. Next, we apply (3.7) to
three neighbors of cell p with~rpm replaced by the distance vector between two centroids
[12, 14],

[L1, L2]∇Wp =D, (3.8)

where

L1=(∆xpq, ∆xpr , ∆xps)
T, L2=(∆ypq, ∆ypr, ∆yps)

T, (3.9a)

D=(Wq−Wp, Wr−Wp, Ws−Wp)
T. (3.9b)

By applying the least square fitting procedure, the gradient is determined as,

∇Wp =
1

l11l22−l2
12

[

l22L1 ·D−l12L2 ·D

l11L2 ·D−l12L1 ·D

]

, (3.10)

where lij = Li ·L
T
j . The least square method proves to be more robust and less sensitive to

mesh irregularity than Green-Gauss integral formula that is another choice for approxi-
mating gradient [12].

In practice, to maintain monotonicity and eliminate oscillations in the flow, a limiter
function is usually applied to (3.7) and the limited reconstruction is given by,

WL
m =Wp+Φ∇Wp ·~rpm, (3.11)

where Φ is a chosen limiter. Obviously, if Φ= 0, formulation (3.11) reduces to the first-
order scheme. In the present study, Barth’s minmod limiter is employed and defined
as [11],

Φ=min(Φj), j∈Vi(p), (3.12)
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where Vi(p) is the list of vertexes of cell p and Φj is defined as,

Φj =















(Wmax
p −Wp)/(W

r
j −Wp), if Wr

j −Wp>0,

(Wmin
p −Wp)/(W

r
j −Wp), if Wr

j −Wp<0,

1, if Wr
j −Wp=0.

(3.13)

Here, Wr
j is the unlimited reconstruction value at vertex j, and Wmin

p and Wmax
p are given

by,

Wmin
p =min(Wp, Wk), Wmax

p =max(Wp, Wk), k∈Ki(p). (3.14)

At this point, the second-order reconstruction procedure is completed and one can con-
struct the flow state on the right hand side of mid-point m in the same manner. After the
coordinate transformation as detailed in the previous subsection, the Riemann problem
is solved and the numerical flux is evaluated. The time discretization is implemented
by the second-order TVD Runge-Kutta method developed by Shu and Osher [17]. The
semi-discrete form of governing equations, i.e. Eq. (3.2), is replaced with

U(1)=U(n)+∆tL(U(n)), (3.15a)

U(n+1)=
1

2
(U(n)+U(1))+

1

2∆t
L(U(1)), (3.15b)

where L is the spatial discretization operator on the right hand side of Eq. (3.2), U(n) is
the known conserved variables at time level n and U(n+1) is the solution at new time level
n+1. The source terms are treated using splitting scheme detailed in [8].

3.4 Boundary conditions

In our numerical experiments, it is found that the treatment of boundary conditions, es-
pecially solid boundary, is crucial to ensure stable solution. Various approaches are avail-
able for implementing the solid or wall boundary conditions, such as strong formulation
where the zero normal velocity across the solid wall is enforced explicitly and weak for-
mulation where the zero normal velocity is enforced in the flux function [13]. Consider
triangle I in Fig. 3 which is inside the computational domain with its lower edge located
on a physical boundary. In the weak formulation with a vertex-centered finite volume
method, one calculates the numerical flux across the boundary directly by substituting
the pressure and velocity adopted from interior cells into the physical flux definition. The
implementation of the weak boundary conditions is easy and used successfully in gas-
dynamics simulation. However, when applied to the solid boundary associated with the
current cavitating flow, this strategy gives rise to problems and the resulting method is
quite unstable. This may be attributed to the fact that flow variables on the boundary, i.e.
the lower edge of cell I, is approximated directly as the corresponding cell averages of cell
I. The approximations are less accurate than those based on Riemann solution on edge
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Figure 3: Definition of a ghost cell along a physical boundary.

inside the computational domain. Due to the stiffness of EOS employed, the numerical
errors introduced by the approximations on the boundary may be amplified and deterio-
rate the stability of method. To fix this problem, we resort to the approach of employing
ghost cells which are imaginary layers of cells as illustrated in Fig. 3. The approach is
similar to those in [9, 13]. In Fig. 3, ghost cell G outside the computational domain and
real cell I are symmetric with respect to the edge on the physical boundary. The ghost
cells are introduced to simplify the flux calculation on the boundary. The primitive vari-
ables in the ghost cells are obtained based on different types of boundary conditions. In
the case of solid boundary shown in Fig. 3, the velocity vector in cell G is obtained by
reflecting the velocity vector of cell I, while other variables take the values of cell I. With
the reconstructed state, the Riemann problem can be solved on the boundary as on an
interior edge. The use of ghost cells for treatment of wall boundary is a crucial ingredient
of the present method and ensures a robust code.

4 Code validation

In this section, the developed code is validated by resolving some test problems and
comparing the numerical results with analytical solution or experimental data. Unless
stated otherwise, the isentropic cavitation model is employed with the saturated vapour
pressure of 62.5Pa and CFL number is set to 0.8 in all the calculations below.

4.1 Accuracy check with the 1D Riemann problem

To check order of accuracy of our method, we shall consider a single-component problem
where the exact solution must be sufficiently smooth. However, for the barotropic flow
modeled by system (2.1) together with Tait EOS, it is not possible to find a suitable test
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case with smooth solution. Therefore, we have to solve a 1D Riemann problem involving
discontinuity. Initially, a 1m long tube is filled with two water streams moving in the
opposite direction away from the centre of domain with the velocity magnitude of 50m/s.
The pressure is set to 108Pa or 1000 atm. The 1D problem is run as a 2D case with y
velocity component set to 0 initially. In this case, CFL number is set equal to 0.1 and
limiter in (3.11) is turned on in variable reconstruction.

The evolution of initial discontinuity gives rise to a left rarefaction, a right rarefaction
and a stationary contact discontinuity in between. There is no cavitation as velocity mag-
nitude is not high enough. The simulation is run to 0.2ms on a series of triangular meshes
with characteristic grid length of hk =1/Nk where Nk=40, 80, 160, 320, 640 and 1280. We

calculate L1 error norm of density, L1 = ∑
Nm
i=1 |ρi−ρexact|∆Ωi, where ρi is the numerical

result in cell i, ρexact is the corresponding exact solution, ∆Ωi is volume of cell i and Nm

is the total number of cell elements. The exact solution is obtained using an iterative
method as detailed in [8]. Fig. 4 plots L1 error norm for density shown as solid line with
squares against hk. Although MUSCL is formally a second-order accurate method, the
convergence rate for this case is about 1. This is consistent with the facts that the solution
contains sharp flow structures and accuracy of MUSCL with limiter locally degrades to
first order in the presence of large gradients and local extrema. The method should still
be second order accurate over smooth part of the solution.

log(h)

lo
g

(L
1)

-3 -2.5 -2
-1

-0.5

0

0.5

slope 1

Figure 4: Log-Log plot of L1 error norm versus hk for the 1D Riemann problem.

4.2 1D cavitation in an open tube

The second test problem is concerned with a 1D cavitation in a 1m long open tube. The
initial condition is the same as that of the 1D Riemann problem in Subsection 4.1 except
that the velocity magnitude of two water streams is 100m/s. The initial setup would
generate two rarefactions propagating to the left and right, respectively, and a cavitation
pocket around the centre of the domain.

An unstructured triangular mesh with hk = 1/400m is used, as illustrated in Fig. 5.
The top and bottom of the computational domain are treated as reflecting boundaries,
while the left and right ends are considered as open boundaries. In Fig. 6, the numerical
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Figure 5: View of the part of triangular mesh used for the 1D cavitating flow.

solution from the isentropic cavitation model at 0.2ms is compared with the analytical
solution based on Vacuum model developed in [18]. It is obvious that the two solutions
are in good agreement. The flow structures including rarefactions and cavitation are
well captured. The cavitation boundary is free of pressure oscillations and the code is
still stable although CFL number is set at a relatively high value of 0.8. The isentropic
model results in the relatively low pressure close to 0 in the cavitation as depicted in
the pressure plot of Fig. 6. Our calculation also shows good occurrence with the pub-
lished results of Liu et al. [2]. The profile of mass fraction of vapour, which is defined as
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Figure 6: The comparison of numerical solution based on isentropic model (squares) and analytical solution
(solid lines) for the 1D cavitating flow at 0.2ms. The numerical solution is extracted along the centerline of the
computational domain shown in Fig. 5. The close-up view of pressure distribution from the isentropic model in
the cavitation region is embedded in the pressure plot. The mass fraction profile of vapour is depicted in the
last subfigure where the analytical solution is not presented.
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β= αρsv/(αρsv+(1−α)ρsw), is presented in the last frame of Fig. 6. The mass fraction is
almost 0 outside cavitation. In the cavitation pocket full of the mixture of vapour and wa-
ter, minimum mixture density is around 50kg/m3 and maximum void fraction is greater
than 0.9. However, due to the fact that the saturated vapour density is several orders
of magnitude smaller than the saturated water density, the mass fraction is quite small
in cavitation as shown in Fig. 6. This case indicates that the developed code is able to
resolve the 1D cavitating flow correctly.

4.3 Supercavitation over a high-speed underwater projectile

In the third test problem, the experiments of Hrubes [4] for the high-subsonic and tran-
sonic conical-shaped underwater projectile are resolved numerically and the modeling
results are compared with experimental shadowgraphs. The projectile has a disk cavita-
tor of radius of 0.71mm, a length of 157.4mm and the length to base radius ratio of 24. The
experimental water depth is 4m and the freestream pressure of approximately 1.4×105Pa
is used in the simulation. The computational domain is a rectangle with region covering
the projectile cut off. A triangular mesh is used with local refinement along the surface
of the projectile which is treated as solid boundary. The inflow boundary conditions are
imposed on the left hand side of the domain, while the other three sides are treated as
open boundaries.

The experimental freestream flow velocity of 970m/s results in a small cavitation
number of approximately σ=2×10−4. The cavitation number representing the surround-
ing flow conditions is defined as σ=2(p∞−psat)/(ρ∞U2

∞), where ρ∞, p∞, U∞ denote the
ambient water density, pressure and velocity, respectively; psat is the saturated vapour
pressure set to 62.5Pa. The experimental shadowgraph and numerical density maps in
the subsonic regime are compared in Fig. 7. It is clear that the computed flow supercav-
itation is developed and has enveloped the entire object. It is observed that the experi-
mental supercavity in Fig. 7(a) is qualitatively comparable to the computed cavity shown
in Fig. 7(b). The slight asymmetry of the supercavity in the experiment is probably at-
tributed to the projectile that is at a slight angle of attack. In Fig. 8, the computed cavity
profiles are compared quantitatively with Hrubes’ supercavity size measurements [4] and
prediction of Munzer-Richardt theory [20]. The radial coordinate is magnified for clarity.
The two numerical cavity profiles are determined at 0.1 and 0.9 void fraction contours,
respectively, because the cavity boundary is diffused numerically and no information is
given on the overall accuracy bound of the experimental data. As illustrated in Fig. 8,
the numerical results are in good agreement with the experimental measurements and
the predicted profile by Munzer-Richardt theory, however, is thicker. Our results are also
comparable to those published in [3]. In Fig. 7(c), the cavities are compared between the
planar and axisymmetric flow configurations. It is found that the cavity size is sensitive
to flow regime and is thicker in the planar flow.

The experimental shadowgraph and computed density contour map are presented
in Fig. 9 for the projectile traveling at transonic speed corresponding to Mach number
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Figure 7: Experimental and numerical results for a high-subsonic underwater projectile at speed of 970m/s:
(a) experimental image of Hrubes [4]; (b) density map with the isentropic cavitation model; (c) comparison
between axisymmetric (upper half) and planar (lower half) supercavitation.
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Figure 8: The comparison of supercavity profiles between the theoretical prediction, experimental measurements
and numerical simulation for the high-subsonic projectile shown in Fig. 7. The two supercavity boundaries from
the numerical results are measured at 0.1 and 0.9 void fraction contours, respectively. Here, the radial coordinate
is magnified for clarity.

Figure 9: The comparison of the experimental shadowgraph (a) and computed density contour map (b) for the
transonic projectile traveling at speed of Mach 1.03.
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of 1.03. The numerical setup remains the same except that the object is traveling in the
slightly supersonic regime. In the numerical simulation, the detached bow shock in front
of cavitator, supercavity and wake are all well resolved. The calculated shock and cavity
wake agree well with their counterparts in the experimental shadowgraph. Again, our
results are comparable to those presented in [3].

To assess the convergence of the method, the histories of residual errors in the density
for the subsonic supercavitating projectile shown in Fig. 7(b) are recorded and plotted in
Fig. 10 for CFL numbers of 0.8 and 0.4, respectively. The solution is considered to be
convergent only if the residual error drops below 1×10−6. For both CFL numbers, the
overall errors are relatively small as the flow field evolves slowly. It is observed that the
error corresponding to larger CFL number of 0.8 decreases faster and the convergence
criterion is satisfied after approximately 34000 time steps. However, for CFL number 0.4,
the solution converges after around 62000 time steps. The computational cost at CFL
number 0.4 is about 1.8 times that with CFL number 0.8. It is reported in the literature
that some methods are stable only at small CFL value like 0.1. But in the present method,
the CFL number is as high as 0.8. Therefore, our method is much more computationally
efficient, which is an advantage of our method.

Figure 10: Histories of residual error for the subsonic supercavitating projectile shown in Fig. 7(b).

The 1D and 2D axisymmetric simulations presented here verify the ability of the
method to accurately resolve both unsteady and steady cavitations. The numerical re-
sults indicate that this method is quite stable, robust and time efficient. It does not pro-
duce any pressure oscillations on the cavity boundary at high CFL number and is reliable
in simulations.

5 Numerical results and discussion

In this section, the simulation results of pressure wave-cavitation interaction are pre-
sented and discussed. Again, the isentropic cavitation model is used and the CFL num-
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Figure 11: The schematic of computational domain for the cavitation impacted by a wave.

ber is set to 0.8. The axisymmetric supercavitating flow past a cylinder and planar flow
around a 2D plane are resolved. The interest is centered on the evolution of the devel-
oped cavity as impacted by waves including shock and those arising from freestream
velocity change, and the resulting unsteady flow features are examined. The numerical
setup for simulations is as follows. The computational domain for each flow configura-
tion is a rectangle 450mm long and 300mm high. The cylinder immersed in water has the
length of 150mm and radius of 10mm. If the object is 2D plane, it is 150mm long and 20mm
high. For object at angle of attack of 0 degree, only the upper half of flow field is resolved
due to the symmetry of flow as illustrated in the schematic of numerical setup in Fig. 11.
Along the left side of the domain, the flow variables values are fixed as freestream flow
conditions, while the top and right sides are treated as open boundaries. The reflecting
boundary conditions are enforced along object surface and line of symmetry is treated as
symmetric boundary. In all the calculations below, the freestream pressure is initially set
to 105Pa (1atm).

5.1 On flow supercavitation subjected to freestream velocity increase

A possibly encountered case associated with underwater object is that the object may
change its traveling speed along its course. It is therefore of great interest to examine
how the cavitation formed over the object responds dynamically to the freestream or in-
flow velocity variation. The topological change of cavity such as deformation or collapse
may affect the performance of the underwater body. Motivated by the abovementioned
scenario, a model problem of supercavity subjected to sudden velocity change is consid-
ered. Initially, a cylinder with the length of 150mm and radius of 10mm is submerged in
a uniform water flow at the pressure of 105Pa and velocity of 100m/s. Along the inflow
boundary on the left side of the computational domain shown in Fig. 11, the freestream
pressure and velocity are specified as p∞ = 105Pa and U∞ = 100m/s, respectively. With
the initial setup, the code is run until a steady state cavity is formed over the cylinder as
indicated in Fig. 12(a) where the time coordinate is shifted so that time t=0 corresponds
to the instant when the supercavity is well developed. Then, from time t=0, the incoming
freestream speed is changed instantaneously to 120m/s, while the freestream density and
pressure remain unchanged. The cavity evolution process is illustrated through density
contour maps in Fig. 12 where ∆τ=0.1ms denotes a fixed time period for ease of compar-
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Figure 12: The density contour maps for a supercavity subjected to the sudden freestream velocity increase of
∆U=20m/s. The initial freestream flow speed is 100m/s. Here, ∆τ=0.1ms.

ison. In Fig. 12(a), the fully developed cavity is shown at t=0. The sudden increase in the
freestream velocity generates a pressure wave which travels through the computational
domain and alters the flow field. The pressure wave is thought to be sufficiently weak
and is not reflected visibly in the density plots in Fig. 12. Shortly after the velocity change,
the wave has passed over the cylinder head and the leading edge of supercavity has con-
tracted and flattened accordingly as illustrated in Fig. 12(b) at time t= 3∆τ. In water at
atmospheric pressure, the speed of sound is around 1500m/s. Hence any perturbation
will travel through water very fast and the typical time scale of interest ∆τ is fairly small.
By t= 3.5∆τ, the original supercavity has been cut in half and the two cavities continue
to contract as time progresses, see Fig. 12(c). In Fig. 12(d), the dimension of both cavities
decreases further and a water jet is formed along the cylinder surface and penetrating
into the right cavity. It is also observed that the right or downstream cavity is collapsing
from its leading edge while the thickness or vertical extent of the cavity decreases rela-
tively slowly. As time moves on, the upstream or left cavity collapses almost completely
and the downstream or right one becomes smaller and smaller as shown in Fig. 12(e)
at t = 6∆τ. By t = 7∆τ, the cavities have vanished, see Fig. 12(f). At this moment, the
computational domain is filled with high pressure water. It takes a relatively long time
of approximately 350∆τ for the pressure to drop below the saturated vapour condition
again and for the cavity to appear and eventually envelop the cylinder, see Fig. 12(g)-(h).

The pressure distribution along the cylinder surface is plotted in Fig. 13 at three dif-
ferent times as the cavities are collapsing. At t=3.5∆τ, the original supercavity is divided
into two cavities as illustrated in Fig. 12(c). In the corresponding pressure plot in Fig. 13,
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Figure 13: The pressure distribution along the cylinder surface at three different times for the cavitating flow
shown in Fig. 12.

the overall pressure has increased dramatically outside the two cavities. There are two
local pressure peak values of order of 107Pa. One is located immediately behind the trail-
ing edge of the upstream cavity and the other is immediately before the leading edge of
the downstream cavity. It is observed that phase transition on the cavities boundaries is
followed by the huge pressure pulses which contrast sharply with the pressure values
close to 0 before the cavities are destroyed. The pressure pulses then decrease and new
pressure extrema appear accompanying further cavities shrinkage. The pressure profile
at t = 5∆τ in Fig. 13 is similar to that at t = 3.5∆τ except that values on the former are
larger, especially at the two pressure pulses. At t=6∆τ, the upstream cavity almost com-
pletely collapses and meanwhile, the downstream cavity becomes smaller and leads to
an even larger pressure increase up to 330 atm, see Fig. 12(e) and Fig. 13. The extremely
high pressure increase of O(100) atm caused by the cavities collapse is believed to do se-
rious damage to any underwater devices. Therefore, some protection means is still being
explored to avoid the sudden collapse of cavities on the surface of device during change
of flow/operating conditions.

The above calculation indicates that the supercavity is highly unstable due to an
abrupt increase of 20% in the freestream velocity. Next, the freestream velocity is in-
creased suddenly to 110m/s once the steady cavitating flow is reached at p∞=105Pa and
U∞=100m/s and the corresponding supercavity evolution is presented in Fig. 14(a1)-(e1).
This flow configuration is similar to the previous one except that the upstream speed is
increased by 10% only. The smaller magnitude of freestream velocity jump generates a
weaker pressure wave and therefore the supercavity is not destroyed completely by the
wave as illustrated in Fig. 14. For the scenario of ∆U = 20m/s as shown in Fig. 12, the
original supercavity is split into two cavities which continue contracting and disappear
finally. However, this is not the case for the smaller velocity increase magnitude of 10m/s.
By t=6.5∆τ, the supercavity has been cut into two parts as illustrated in Fig. 14(b1). The
right or downstream cavity contracts from its leading edge and collapses completely with
time advancing as shown in Fig. 14(c1)-(d1). But the left or upstream cavity grows and
develops into a supercavity enveloping the entire cylinder in a short time of O(25)∆τ, see
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Fig. 14(c1)-(e1). The reason that the disturbed flow field by the pressure wave recovers
fast to the normal cavitating flow conditions is due to the fact that the pressure wave is
much weaker compared with that generated by ∆U=20m/s and the pressure increase in
the flow field following the wave passage is not so high.

Although the magnitude of sudden freestream velocity jump is reduced to 10m/s,
the original supercavity still collapses partially, which is followed by high pressure pulse
like that present in the case of ∆U =20m/s. To avoid this, it is suggested the freestream
speed be allowed to accelerate uniformly from 100m/s to 110m/s via U∞=100+at where
a= 10/(nT) is the acceleration, t∈ [0,nT] is time and n is an adjustable integer. Beyond
time t=nT, the freestream velocity is fixed at 110m/s. Here, the larger n corresponds to
a smaller magnitude of constant acceleration and a longer acceleration time. As in [19],
the characteristic time T is defined as T = rc/aw where rc is the radius of cylinder and
aw is speed of sound in water at pressure of 1atm. The density contour maps associated
with n=50, 100 are presented in the second and third columns of Fig. 14, respectively. It
is observed that for both accelerations at n= 50 and 100, the supercavity is not induced
to collapse and its boundary is only deformed by the pressure wave arising from the
gradual velocity increase. It is also found that the deformation of supercavity boundary
resulting from larger acceleration as illustrated in Fig. 14(a2)-(e2) is more severe than the
deformation due to smaller acceleration shown in Fig. 14(a3)-(e3). In other words, given
a magnitude of freestream speed increase, the smaller acceleration or longer acceleration
time results in the slighter deformation. Hence, to avoid the possible cavity collapse
and the resulting damage to devices, one can change the velocity of underwater object
smoothly.

5.2 On flow supercavitation subjected to freestream velocity perturbation

In practice, the velocity of object may not remain constant and may experience small per-
turbation or oscillation. This could affect the already existing cavitation over the object.
To mimic this process, a sinusoidal perturbation in the freestream velocity is considered.
The freestream speed is given by,

U∞=







100+10sin
(2π

nT
t
)

, 0≤ t≤nT,

100, t>nT,
(5.1)

where t denotes time and nT is the period of perturbation with n being an adjustable in-
teger and T being characteristic time defined in the previous subsection. The initial con-
ditions are the same as those for the sudden velocity increase in the previous subsection.
After the supercavity is formed and the flow has reached the steady state, the freestream
velocity is changed according to formula (5.1) where time t is measured from this instant.
Three sets of density field maps corresponding to n=5, 10 and 30, respectively, are pre-
sented and compared in Fig. 15. A larger value of n corresponds to a longer period of
velocity perturbation and longer response time. Here, only one period of perturbation
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Figure 14: The density contour maps for a supercavity subjected to the freestream velocity change of ∆U =
10m/s. Frames (a1)-(e1): the freestream velocity is increased suddenly from 100m/s to 110m/s; frames (a2)-
(e2): the freestream velocity accelerates uniformly from 100m/s to 110m/s, i.e. U∞=100+at with a=10/(nT),
n= 50 and t∈ [0,nT]; frames (a3)-(e3): the uniform acceleration of the freestream speed with n= 100. Here,
∆τ=0.1ms.

Figure 15: The density field evolution of the cavity with sinusoidal freestream velocity perturbation, i.e. U∞ =
100+10sin(2πt/(nT)) with t∈ [0,nT]. Frames (a1)-(e1): n= 5; frames (a2)-(e2): n= 10; frames (a3)-(e3):
n=30. Here, ∆τ=0.1ms.
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is implemented with nT = n×6.6µs. This means that in a fairly short time period, the
freestream speed reaches the maximum of 110m/s first, then decreases to the minimum
of 90m/s and increases again and finally returns to its original value of 100m/s. It is
observed from the set of density contour maps with n=5 (Fig. 15(a1)-(e1)) that a remark-
able difference from the sudden velocity change scenario shown in Fig. 14(a1)-(e1) is that
the supercavity is only deformed slightly by the pressure wave resulting from the sinu-
soidal velocity perturbation and does not collapse completely. In Fig. 15(a1) at t= 4∆τ
with ∆τ=0.1ms, the freestream speed has recovered to 100m/s and the wave has passed
over the cylinder. The supercavity boundary is distorted slightly and a ripple is present
near the cylinder head. As the freestream velocity is changed smoothly, the generated
complex system of wave should be correspondingly weaker than that with the sudden
velocity increase. As a result, the supercavity can resist the perturbation and does not
lead to total collapse. As time advances, the ripple moves downstream along the cavity
boundary, the distorted cavity interface expands transversely and a smooth cavity pro-
file gradually recovers behind the ripple as depicted in Fig. 15(b1)-(d1). After the ripple
exits the computational domain, the cavity rapidly recovers to its original shape. In fact,
the deformation of supercavity is fairly slight and almost invisible for the case of n= 5.
Next, the period of perturbation is increased by setting n to 10 and 30. The corresponding
density evolution processes are illustrated in Fig. 15(a2)-(e2) and (a3)-(e3), respectively.
The overall flow patterns for n = 10 and 30 are similar to that with n = 5. The super-
cavity boundary undergoes deformations and eventually recovers to its original shape
following wave passage over the whole cylinder. However, the longer the period of per-
turbation is, the more significant the deformations and ripple are, as demonstrated in
Fig. 15. The finding contrasts with the conclusion reached for the flow configuration
under the constant acceleration of the freestream speed presented in the previous sub-
section, where the longer response time or smaller constant acceleration results in the
smaller deformation. In the present case, the freestream speed perturbation varies from
0 to a range of values and returns to 0 over the short time period. The deceleration
process in the second- and third-quarter of sine perturbation in Eq. (5.1) has the effect
of relieving the deformation of the supercavity boundary caused by the pressure wave
due to the velocity increase in the first quarter period of sine oscillation. For the smaller
period of velocity perturbation, say n= 5, the velocity increase and decrease processes
affect the cavity boundary development in a short time and the combined effect results
in the smaller deformation. Here, the freestream velocity perturbation is analogous to a
velocity pulse in some sense where its period is relatively small.

5.3 On high-subsonic and transonic supercavitating flow impacted by shock

In this subsection, the simulation of cavitating flow in high-subsonic and transonic
regime accelerated by shock wave is performed to examine the influence of freestream
flow velocity and shock strength on cavitation development. The initial numerical setup
is the same as that employed in Subsection 5.1 except that the freestream velocity is much
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higher. The object submerged in water is assumed to be parallel to the flow direction.
Again, the calculation for each flow configuration is divided into two steps. After the
supercavity is formed, the incident shock wave is introduced along the left hand side of
the computational domain by changing the freestream velocity and pressure to the post-
shock flow state which is related to pre-shock flow conditions as well as shock Mach
number via Rankine-Hugoniot jump relations. The time sequence of computed density
contours for the axisymmetric cavitating flow over the cylinder impacted by a Mach 1.1
shock wave are presented in Fig. 16(a1)-(e1), and compared with the corresponding 2D
planar cavitating flow depicted in Fig. 16(a2)-(e2). Here, the freestream flow velocity
is 1000m/s, which results in a relatively high traveling speed of perturbation in water.
Comparing the two sets of figures, it is observed that the overall flow patterns are similar
between the axisymmetric and planar configurations. Take the axisymmetric cavitation
as an example of analysis. At t = 13∆τ with ∆τ = 0.01ms, the incident shock wave has
passed over cylinder head and collided with leading edge of cavitation region. The su-
percavity appears to be quite stable and is not destroyed by the passing shock wave
with its boundary locally taking a saddle shape, see Fig. 16(a1). As demonstrated in
Fig. 16(b1), the saddle is observed to be deepening as it moves downstream. At the same
time, the cavity interface to the left of the saddle is recovering from the initial defor-
mation. At t= 22∆τ, the saddle is approaching right end of the computational domain
and deepens further; one can refer to Fig. 16(c1). By t = 29∆τ, it appears that the sad-
dle has cut the supercavity in half and a re-entrant jet like structure is visible near the
cylinder end as illustrated in Fig. 16(d1). At t = 59∆τ, the cavity with smooth profile
is recovered. In this case, ∆τ is 0.01ms and the shock-cavitation interaction process has
proceeded very quickly. Recall that the cavity at the freestream velocity of 100m/s is de-
stroyed completely by the pressure wave arising from the sudden increase of ∆U=20m/s
in the upstream speed. However, for a Mach 1.1 normal shock propagating through wa-
ter at atmospheric pressure, the velocity and pressure jumps across the shock are around
∆u= 76m/s and ∆p= 1.28×108Pa, respectively. This calculation indicates that the cav-
ity at higher upstream speed is more stable and better able to withstand the imposed
perturbation. The evolution process of planar cavity as shown in Fig. 16(a2)-(e2) is sim-
ilar to the axisymmetric scenario. The major flow feature due to the shock impact is the
saddle-like structure traveling along the cavity boundary. But the planar cavity is thicker
than the axisymmetric one and is even more resilient and resistant to perturbations, see
Fig. 16. The density contours under a higher perturbation at larger Mach 1.2 shock are
presented in Fig. 16(a3)-(e3). As perhaps to be expected, the cavity locally collapses with
shock strength increasing. The saddle with M=1.2 in Fig. 16(a3) moves a little faster and
is deeper compared with that in Fig. 16(a2) at M=1.1, which means that the cavity bound-
ary undergoes a more severe deformation. The increasingly distorted cavity has been cut
in half by t = 19∆τ, shortly after which the right cavity collapses completely while the
left one expands downstream as shown Fig. 16(b3)-(c3). By t= 29∆τ, the left cavity has
developed into a supercavity enveloping the object, which simultaneously grows trans-
versely, see Fig. 16(d3)-(e3). Next, the shock Mach number is increased further to 1.6 and
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Figure 16: The density contour maps for the cavitating flow impacted by shock. Frames (a1)-(e1): axisymmetric
flow; the others: planar flow. Here, U∞ =1000m/s and ∆τ=0.01ms.

Figure 17: The density contour maps for the planar cavitating flow impacted by shock. Here, U∞ = 1500m/s
and ∆τ=0.01ms.
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numerical results are presented in Fig. 16(a4)-(e4) where the time sequence is different
from that at the lower Mach numbers. The cavity evolution is similar to that with M=1.2,
but entails some new flow features. At t= 13∆τ, a water jet is created from the leading
edge of right cavity after the original supercavity is split into two parts. An interesting
feature observed is that the left cavity becomes extended while its trailing cavitation re-
gion is shed and got convected downstream, see Fig. 16(c4)-(d4). Finally, the upper region
cavity continues to grow and envelops the whole object, see Fig. 16(e4).

The planar flow results for higher freestream velocity of 1500m/s are illustrated in
Fig. 17. For the arrangement with U∞ = 1500m/s and M=1.1, the time evolution of cav-
ity as shown in Fig. 17(a1)-(e1) is fairly similar to that at the lower upstream speed as
depicted in Fig. 16(a2)-(e2). As perturbation propagates faster through water at higher
freestream speed, the shock-cavitation interaction occurs in a shorter time duration and
the cavity evolves faster accordingly, as shown in Fig. 17. The higher upstream speed usu-
ally corresponds to a thinner supercavity and therefore the recovered cavity in Fig. 17(e1)
is narrower than that in Fig. 16. With U∞ = 1500m/s, the supercavity is still stable at
M=1.2 and only induced to collapse locally by the higher strength Mach 1.3 shock, see
Fig. 17(a2)-(e2) and (a3)-(e3). The calculation shows that the higher the freestream speed
is, the more stable the supercavity is. It is also not unexpected that a higher magnitude
of perturbation expressed in terms of higher shock strength has led to the collapse of the
supercavity.

6 Conclusion

A simple homogeneous flow method is presented for resolving the cavitating flow im-
pacted by the pressure wave. The isentropic cavitation model together with Tait EOS
is employed to close the governing equations. Several aspects of the method are out-
lined. The resulting code is validated against analytical solution and experimental data
and proves to be accurate, stable, robust and computationally efficient. Numerical ex-
periments indicate that the treatment of solid boundary through use of ghost cells is key
to the stability of the method. The interaction between supercavity and pressure wave
is studied systematically for the first time. The sudden acceleration of underwater object
may lead to collapse of cavity over it and generate great pressure pulse, which, however,
can be avoided by changing the velocity smoothly. The cavity starting from a relatively
low freestream speed is usually unstable with respect to the freestream speed variation.
On the contrary, for the high-speed flow, although cavity interface may be deformed by
the incident shock, well-developed profile can be recovered finally. The larger upstream
flow velocity usually leads to the more perturbation resistant cavity. These findings may
help us better control the cavitation evolution.
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