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Abstract. In the first of a series of papers, we will study a discontinuous Galerkin (DG)
framework for many electron quantum systems. The salient feature of this framework
is the flexibility of using hybrid physics-based local orbitals and accuracy-guaranteed
piecewise polynomial basis in representing the Hamiltonian of the many body sys-
tem. Such a flexibility is made possible by using the discontinuous Galerkin method
to approximate the Hamiltonian matrix elements with proper constructions of numer-
ical DG fluxes at the finite element interfaces. In this paper, we will apply the DG
method to the density matrix minimization formulation, a popular approach in the
density functional theory of many body Schrödinger equations. The density matrix
minimization is to find the minima of the total energy, expressed as a functional of the
density matrix ρ(r,r′), approximated by the proposed enriched basis, together with
two constraints of idempotency and electric neutrality. The idempotency will be han-
dled with the McWeeny’s purification while the neutrality is enforced by imposing the
number of electrons with a penalty method. A conjugate gradient method (a Polak-
Ribiere variant) is used to solve the minimization problem. Finally, the linear-scaling
algorithm and the advantage of using the local orbital enriched finite element basis in
the DG approximations are verified by studying examples of one dimensional lattice
model systems.
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1 Introduction

In the ab-inito quantum mechanical modelling of many electron system, the density-
functional theory together with pseudo-potential approximations has established itself
as the method of choice [20], especially through the implementation of Kohn-Sham wave
functions. Various numerical methods have been developed to solve the one-electron
nonlinear Schrödinger equation for the Kohn-Sham (K-S) wave functions, resulting in a
diagonalization of the Hamiltonian of the many electron system [8, 9]. Most of the nu-
merical methods are based on plane waves [20], due to the diagonal representation of the
kinetic operator, but at a large computational cost scaling as the cubic power of the size
of the system (number of atoms) and with a memory use as second power of the system
size. Therefore, for large systems it is imperative to develop numerical methods with a
linear scaling complexity both in computational time and memory. The development of
linear scaling method usually starts with a 1-D lattice system, where an empirical po-
tential representing those of the nuclear cores of the atoms is stipulated, on which the
performance of a numerical method will be tested first. This will be our objective in this
paper before we tackle the more difficult nonlinear density functional theory for many
electron systems. However, most of the key components of the algorithms will be appli-
cable to the latter case except for the treatment of nonlinearity and exchange-correlation
energy.

Linear scaling algorithms for many electron systems have seen much development
over last decades in the following areas [12]: Fermi operator expansion method [13],
Fermi operator projection method [11], the divide-and-conquer method [26], the density-
matrix minimization approach [16], the orbital minimization approach [21], and the op-
timal basis density-matrix minimization scheme [14]. Also, Galli and Parrinello [7] in-
troduced a plane-wave-based algorithm using localized nonorthogonal wave functions.
In the paper of Galli [6], it was pointed out that one of the important characteristics of
the O(N) methods is that the calculation of energy and forces do not require the calcu-
lation of the eigen energies/states of the effective single-atom Hamiltonian. There are
two popular ways of minimizing the total energy E: density matrix (DM) formulation
and localized function (LF) formulation [6]. Within both DM and LF formulations, two
basic concepts are introduced to go from an O(N3) method to an O(N) scaling method
for the minimization of E. Firstly, in the DM approaches, the idempotency constrain on
the density operator, i.e. ρ̂= ρ̂2, is not strictly enforced, and a weaker condition is used
instead when minimizing E. In addition, the constraint of N-electron equaling to the
trace of the density operator is observed. On the other hand, in the LF approaches the
orthonormality condition is not explicitly enforced. Weakening either the idempotency
or the orthonormality condition leads to the definition of an energy functional of particle
density n or wavefunction ψ, respectively, which is different from the energy functional
minimized in conventional approaches, but has the same absolute minimum. Secondly,
in the DM frameworks this energy functional is minimized with respect to spatially lo-
calized DMs; in the LF approaches, the functional is minimized with spatially localized
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single particle orbitals.

In this paper, we mainly address the issue of how to optimally discretize the Hamil-
tonian energy operator with a finite element basis in the framework of density matrix
minimization (DMM). The main goal is to combine the physics-based local orbitals asso-
ciated with the local atomic behavior of the system and traditional piecewise polynomial
finite element basis to discretize the support functions. The latter is used to represent the
density operator. The discontinuous Galerkin (DG) approximation method is shown to
be able to combine efficiently these two types of functions in the calculation of the ki-
netic energy operator under the hybrid basis. There are two unique features in this DG
framework [1, 5], which can be utilized for faster performance of the nonlinear eigen-
value problems in the K-S DFT theory: (1) Flexibility and locality of DG basis: As the
basis for the discontinuous Galerkin method is defined locally over each element, we can
enrich the usual polynomial basis by physics-based local wave functions, such as local
atomic orbital, Gaussian functions, among others, to reflect the general behavior of the
local density profiles around atoms inside a given element K. While the enrichment with
local orbital functions captures the main physics of the support functions, the regular
polynomial basis will provide correction to possible inaccuracy from a specific selection
of local wave functions, thus ensure the convergence of the overall discretization once
the mesh is refined or the polynomial order is increased. Such a systematic convergence
is lacking if only specially selected local orbitals, such as Gaussian functions, are used.
Also, by selecting the correct physics-based local wave functions adjusted iteratively to
fit the local properties of the simulated system, the matrix for the discrete Hamiltonian is
expected to be reduced significantly, allowing large saving in later iterative solutions for
the eigenspaces or energy minimizations. (2) Intrinsic parallelism: In the DG discretiza-
tion of the K-S equation, where the numerical solutions are ”patched” together through
appropriately defined numerical fluxes along the shared interface between neighboring
elements, the communication is only local to these elements. It is well known that such
data exchange allows a high degree of parallel efficiency in implementations.

It is evident to see similarity in philosophy between the use of local orbital enriched
finite element basis and that of the augmented plane wave (APW) of Slater [23], who
proposed the idea of using radial symmetric orbitals corresponding to the strong nuclear
potential within a sphere and plane waves outside the sphere corresponding to a con-
stant potential. Both methods use basis functions adaptive to the physical property of
wave functions of the system. The major difference though is that in the APW, the pro-
posed basis function is energy dependent with a required continuity of the basis function
at the sphere interface, which defines the so-called muffin-tin potential profile. While,
the hybrid basis functions proposed here are general and energy independent, and the
DG method, with a guarantied numerical convergence in approximation, combine them
at the element interfaces at ease with a correct definition of common flux quantity there,
as shown later in the paper. It should be noted that the idea of enriching finite element
space is a well established technique in computational mechanics in treating corner sin-
gularity [2, 3]. DG approximation to Schrödinger equation has also been used in treat-
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ing discontinuous potential in quantum dots [18], in computing the resonant tunnelling
diode [25] with special high frequency plane wave functions, and, more recently in a sim-
ilar attempt to this paper in density functional application, in computing the K-S wave
functions using numerically calculated basis functions based on a local Hamiltonian of
the system [17].

The rest of the paper is organized as follows. In Section 2, we will review the ba-
sic components of density matrix minimization (DMM) method for finding the ground
state energy for a many-electron system. Then, in Section 3 the discontinuous Galerkin
approximation of the energy functional will be introduced using a local orbital enriched
piecewise polynomial finite element basis to approximate the support functions, the latter
are used to represent the density matrix. In Section 4, the algorithm detail of DG-DMM
algorithm is given for a model 1-D lattice system. In Section 5, numerical tests and lin-
ear scaling performance of the DG-DMM is given. Finally, a conclusion is presented in
Section 6.

2 Density matrix minimization (DMM) for ground state energy

In the Kohn-Sham (K-S) wave function approach of density functional theory of a Nel-
electron (Nel-even) [15], the K-S wave functions are assumed to be orthogonal and the
density operator ρ will have the following matrix form

ρ(r,r′)=
N

∑
i

ψ∗
i (r

′)ψi(r), (2.1)

from which the total energy Etot can be calculated by

Etot [{ψi}]=EK[ρ(r,r)]+EXC[ρ(r,r)]

+
1

2

∫

R3

∫

R3

(ρ−m)(r)(ρ−m)(r′)
|r−r′| drdr′+EPS [{ψi}], (2.2)

where the kinetic energy EK[ρ(r,r)],

EK[ρ(r,r)]=2∑
i

∫

R3
drψ∗

i (r)

(
− h̄2

2m
∇2

)
ψi(r)≡2tr[ρ̂T̂], (2.3)

and T̂ is the kinetic energy operator as indicated. EXC[ρ(r,r)] is the exchange-correlation
functional, usually calculated by a local density approximation [20], and m(r) and EPS are
the nuclear ionic function and the pseudo-potential, which account for the interaction of
the valence electrons and the nuclear charges and core electrons [24].

Referred to [14], the ground state can be calculated by minimizing the total energy
with respect to the density matrix ρ(r,r′), which is required to satisfy the idempotency
condition

ρ̂= ρ̂2, (2.4)
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namely,

ρ(r,r′)=
∫

Ω
dr′′ρ(r,r′′)ρ(r′′,r′), (2.5)

where Ω is the computational domain. Also, the total number of electron is maintained
by the trace of the density operator with a factor of 2 accounting for the spin of the elec-
trons,

Nel =2
∫

Ω
drρ(r,r). (2.6)

The idempotency constrain (2.4) can be satisfied at convergence of a purification pro-
cedure proposed in McWeeny [22], by casting ρ as

ρ=3ϑ∗ϑ−2ϑ∗ϑ∗ϑ, (2.7)

for some auxiliary two-point function ϑ(r,r′). Here, the asterisk represents the continuum
analog of matrix multiplication, i.e.

ϑ∗ϑ(r,r′)≡
∫

Ω
dr′′ϑ(r,r′′)ϑ(r′′,r′). (2.8)

The rational behind (2.7) is that if λ is an eigenvalue of ϑ, then the corresponding eigen-
value of ρ is f (λ) = 3λ2−2λ3. This transformation ensures that if ϑ is close to being
idempotent, ρ will be closer to being idempotent due to the {0,1}-limits of the iteration
given by the mapping f . During the process of minimizing Etot, using ρ in the form of
(2.7) has the effect of driving the eigenvalues towards zero or unity, namely, ρ is driven
towards idempotency. For details of this procedure, refer to Li et al. [16].

Next, to achieve the linear scaling of the algorithm, the auxiliary function ϑ is ex-
pressed in terms of compact supported functions φα(r) – called support functions

ϑ(r,r′)=∑
α,β

φα(r)Lαβφβ(r
′), (2.9)

which implies that the density matrix will be in the following form

ρ(r,r′)=∑
α,β

φα(r)Kαβφβ(r
′), (2.10)

and
K=3LSL−2LSLSL, (2.11)

where Sαβ is the overlap matrix of the support functions,

Sαβ=
∫

Ω
drφα(r)φβ(r). (2.12)

Moreover, the kinetic energy through the trace operation becomes

EK[ρ(r,r)]=2∑
α,β

∫

Ω
drφβ(r)Kαβ

(
− h̄2

2m
∇2

)
φα(r). (2.13)
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The support functions φα(r) will be selected to be nonzero only within localized spa-
tial regions, referred to as support regions, and that the matrix elements Lαβ be nonzero
only if the corresponding regions are separated by less than a chosen cutoff distance Rcut.
It is natural to impose these conditions because in general ρ(r,r′) decays to zero as the
separation |r−r′| goes to infinity. This implies that the calculation will become exact as
the cutoff distance and the size of the support regions are increased.

The strategy of density matrix minimization (DMM) algorithm now is to minimize
the total energy both with respect to the support functions and with respect to the Lαβ

coefficients, subject only to the condition that the number of electrons keeps a required
value.

3 Discontinuous Galerkin (DG)-DMM with enriched basis

In the discontinuous Galerkin DMM approach, the support functions in (2.9) will be ap-
proximated with piecewise polynomial basis enriched by physics-based local orbitals as-
sociated with one-atom Hamiltonian. The latter will make sure the dominant profile of
the support functions can be captured by the local orbitals, which could be truncated to
a local region around each atom. Meanwhile, the polynomial basis will provide numer-
ical convergence of the hybrid enriched basis by either refining the underlying mesh (h-
refinement) or raising the degree of the polynomials (p-refinement) or a h-p refinement.
It will be clear later that the construction of the numerical fluxes provides the flexibility to
employ any type of basis in the DG approximation and allows us to design the DG-DMM
approach using both physical intuition and mathematical convergence consideration.

The support regions are chosen to be spherical with radius Rreg and are centered on
the atoms. Each region is associated with a certain number ν support functions, where
ν is the same for all regions. It is important to note that the total number of support
functions must be greater than half the number of electrons Nel . We use α,β,γ denote
the index of support function, k,l denote the index of element and i, j denote the index of
basis function in an element. Each support function φα(r) is then represented as

φα(r)=ulo
α (r)+uα(r)=ulo

α (r)+∑
k,j

uk
α,j ϕ

k
j (r), (3.1)

using a hybrid basis, i.e. ulo
α (r) is an analytical local orbital function, possibly localized

by truncations, related to one atom Hamiltonian, and is selected to capture the domi-
nant feature of the support function φα(r), while uk

α,j is the coefficients of the usual basis

functions ϕk
j (r), taken to be polynomials with support only on the element Ik.

In an exact calculation, the kinetic energy EK would be given by (2.13). We assume
that the calculation domain Ω = ∪k Ik. Ik are non-overlapping elements of the domain
Ω. The interior boundary set is {Sk}=

⋃
k ∂Ik\∂Ω. When we use the periodic boundary

condition, the interior boundary is {Sk}=
⋃

k ∂Ik.
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Due to the discontinuous nature of the representation (3.1) for the support function, a
direct evaluation of the Laplacian operator φα(r) will produce a divergent integral. In the
usual approach for a discontinuous Galerkin finite element method, the integration over
Ω will be split into integration over individual element Ik and, to ensure the continuity
of the converged solution as the mesh size is decreased or the degree of polynomial is
increased, some type of connection between the DG basis functions in neighboring ele-
ments should be introduced. In the DG method introduced by Cockburn and Shu [5],
such a connection is achieved by defining a unique numerical flux across the common
interface between the elements. The detailed derivation of formulae would be illustrated
in Section 4.1.

As the energies Eps, EH, and Exc are considered as a functional of the electron density
n(r)≡ρ(r,r) as in DFT, which is simply the trace of the Hamiltonian matrix,

n(r)=2∑
αβ

φα(r)Kαβφβ(r). (3.2)

The pseudopotential energy is evaluated by multiplying n(r) by the total pseudopoten-
tial and integration over the computational domain [24]. (For present purpose, we are
working with local pseudopotentials, although the extension to nonlocal pseudopoten-
tial is straightforward). The LDA exchange-correlation energy is evaluated similarly by∫

Ω
n(r)εxc[n(r)]dr, where εxc(n) is the exchange-correlation energy per electron at density

n. The Hartree energy is evaluated in reciprocal space using the Fourier components of
n(r) obtained by a discrete Fourier transform.

Now, the ground state will be determined by minimizing the total energy with respect
to both the support function φα(r) and the Lαβ coefficients, though alternatively, with the
electron number held constant. The total energy

Etot=2∑
αβ

KαβHβα=2tr(KH), (3.3)

where Hβα=
∫

Ω
φα(r)Ĥφβ(r)dr. As we are using DG finite element to describe the support

function, we would introduce an interior penalty term to make sure the support function
to be less continuous. We rewrite the total energy as

2tr(KH)+
a

h ∑
α

∑
k

∫

Sk

(φ+
α (x)−φ−

α (x))2dx=Etot+EDG
tot , (3.4)

where a is the penalty parameter, h is the mesh size and {Sk} is the set of inner boundary
between the elements.

When we are finding the minimization of the total energy with the electron number
held constant, we will modify the objective energy function into

EPen
tot =2tr((3LSL−2LSLSL)H)+µ[Nel−2tr((3LSL−2LSLSL)S)]2 , (3.5)
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where K is replaced with (3LSL−2LSLS) by applying McWeeny’s purification, and the
total electron number constraint is handled by the penalty method [19]. Let µ be the
penalty parameter, and it can be seen that as µ →+∞, the unconstraint minimization
problem has the same minimization point as the constraint problem. The analytical ex-
pressions for the derivatives ∂EPen

tot /∂Lαβ is given by

∂EPen
tot

∂Lαβ
=6(SLH̃+H̃LS)βα−4

(
SLSLH̃+SLH̃LS+H̃LSLS

)
βα

. (3.6)

Here H̃ = H−2µ[Nel−2tr((3LSL−2LSLSL)S)]S. The minimization problem of finding
the minimization of (3.5) is solved by using the Polak-Ribiere variant of the conjugate
gradient method.

Next, we find the minimum of the total energy with respect to the coefficients uk
α,j

of the support functions φα(r) with the fixed electron number constraint. We obtain the
objective energy function when we are minimizing the total energy with respect to the
coefficients of all the DG basis functions for the support functions φα(r), which is u =(
u0

00,u0
01,··· ,uk

αj,···
)T

. We use the chain rule to evaluate
∂EPen

tot

∂uk
γj

∂EPen
tot

∂uk
γj

=∑
αβ

∂EPen
tot

∂Sαβ

∂Sαβ

∂uk
γj

+∑
αβ

∂EPen
tot

∂Hαβ

∂Hαβ

∂uk
γj

. (3.7)

Observing (3.5), we have

∂EPen
tot

∂Sαβ
=[6(LHL)−4(LSLHL+LHLSL)]βα

+2µ[2tr((3LSL−2LSLSL)S)−Nel](6LSL−6LSLSL)βα, (3.8a)

∂EPen
tot

∂Hαβ
=2(3LSL−2LSLSL)βα . (3.8b)

Meanwhile,
∂Sαβ

∂uk
γj

and
∂Hαβ

∂uk
γj

will be given later. When we are minimizing the total energy

with respect to u, the object function should be EPen
tot +EDG

tot . The analytical expressions for
the derivatives ∂EDG

tot /∂uk
αj is given by

∂EDG
tot

∂uk
αj

=
a

h

∫

∂Ik

ϕ
j
k(s)(φα(s)|Ik

−φα(s)|Ik(bd))ds, (3.9)

where Ik(bd) is the neighbor element of Ik, which is next to the certain boundary.
The linear-scaling behavior arises from the spatial localization of the support func-

tions, which implies that the overlap and Hamiltonian matrices Sαβ and Hαβ vanish if the
distance between the support functions exceeds a certain cutoff distance. With the cutoff
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we are imposing on Lαβ, it follows that all matrices appearing in the expressions for Etot

and its derivatives are sparse and the number of nonzero elements grows linearly with
the number of atoms.

In practice, the minimization is currently performed by making a sequence of conju-
gate gradients steps for the minimization with respect to the Lαβ coefficients, followed by
a sequence of steps for the minimization with respect to the DG coefficients uαk for the
support functions, alternating between these two types of iterations.

The above general scheme has been implemented in the local-density approximation
(LDA) using the pseudopotential technique and all calculations are done on a grid in
real space. In this respect, our techniques have much in common with the real-space
grid methods recently developed in [4, 14] for DFT pseudopotential calculations. At the
moment, periodic boundary conditions are used to in order to avoid edge effects, but the
technique could easily be applied with other boundary conditions.

Though we use discontinuous Galerkin element to approximate support function, the
interior penalty term would ensure the support function to be almost continuous when
we set the penalty parameter large enough.

4 Algorithm details of the DG-DMM for a 1-D lattice model

In this section, we will apply the DG-DMM method to a one dimensional tight binding
model of poly-atomic system [10], whose nuclear potential are represented by a series of
Gaussian. Our main objective here in this work is to test the performance of the hybrid
enriched basis in the DG approximation and the linear scaling complexity as the number
of atoms increases.

Assume that there is an infinite array of atoms on a line with a unit spacing: Xi=i, for
i∈Z. Each atom has one valence electron and we ignore spin degeneracy. The electrons
are noninteracting, so that the electronic structure of the system is determine by solving
linear eigenvalue problems (instead of nonlinear eigenvalue problems as in the full Kohn-
Sham DFT),

Ĥψi= ε iψi, (4.1)

where the Hamiltonian is given by

Ĥ=−1

2
∇2+V(x). (4.2)

The effective potential V is a sum of Gaussian wells located at the atom sites

V(x)=−∑
i∈Z

a√
2πσ2

exp
[
−(x−Xi)

2/2σ2
]

. (4.3)

This model has two parameters: a, which characterizes the depth of the wells, and σ,
which characterizes its width.

The parameters of the problem are as follows:
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• N — number of atoms;

• periodic boundary condition;

• φiα, i indicates the atoms, α the orbitals on each atom, and φi,α is the basis orbitals
at atom i;

• Hiα,jβ =< iα|Ĥ|jβ>;

• Find the minimum of the total energy Etot = 2tr(ρ̂Ĥ) under constraints: (1) fixed
number of electrons, (2) idempotency, i.e., ρ̂2= ρ̂.

In the first subsection, we discuss the formulae about the auxiliary function σ. In the
next two subsections, we discuss the derivation of formulae about the overlap matrix and
Hamiltonian matrix without the terms of local orbital function. In the fourth section, we
add the terms of local orbital function and obtain the final formulae.

4.1 Auxiliary variable σ(x)= φ′(x)

In order to achieve the connection between the DG basis functions in neighboring ele-
ments, we introduce an auxiliary function(s) to approximate the gradient of the support
function φ(r) (the index of support function is omitted)

σ(r)=∇φ(r), (4.4)

which is assumed to have a corresponding representation as

σ(r)=∇ulo(r)+∑
k,j

σk
j ϕ

j
k(r), (4.5)

where ∇ulo(r) is also localized by truncations. Plugging (3.1) and (4.5) into (4.4), we have

∑
k,j

σk
j ϕk

j (r)=∇u(r)=∇∑
k,j

uk
j ϕk

j (r). (4.6)

In the finite element method, a weak form of (4.6) is used instead, which is obtained
by multiplying its both sides by a test function ϕl

i(r), and using integration by parts,

∑
k,j

σk
j

∫

Il

ϕk
j (r)ϕl

i(r)dr=
∫

Il

∇u(r)ϕl
i(r)dr

=
∫

∂Il

u(r)ϕl
i(r)nds−

∫

Il

u(r)∇ϕl
i(r)dr, (4.7)

where n is the norm unit outward vector to the boundary ∂Il . However, the support
function u(r) has two values — indicated by + and −, on the boundary ∂Il due to the
discontinuous representation in (3.1). To remove this ambiguity, a unique quantity —
numerical flux h(u−,u+), will be defined on the boundary to approximate the true flux
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f (u). There are various constructions of the numerical fluxes such as taking the average
of the u± (central flux) or the value on one side (upwinding). The numerical flux is
required to satisfy a consistent condition, namely, if u has no discontinuity at the common
interface of two elements, then we should have

h(u−,u+)= f (u), if u−=u+=u. (4.8)

In this paper, we will use the upwinding approach as it results in a more compact repre-
sentation of the Hamiltonian. Replacing the term on the element boundary in (4.7) by the
numerical flux, we have for each basis function ϕl

i on element Il

∑
k,j

σk
j

∫

Il

ϕk
j (r)ϕl

i(r)dr=
∫

∂Il

h(u−,u+)ϕl
i(r)nds−

∫

Il

u(r)∇ϕl
i(r)dr, (4.9)

which gives a linear system for the coefficients σk on each of the element Il,

Sl
σ

k=b, (4.10)

where the local mass matrix (Sl)ij =
∫

Il
ϕl

i(r)ϕl
j(r)dr, the right hand side b depending

on ul′ , Il′∩ Il 6=∅. We can express the coefficients σk in terms of coefficient ul′ from the
neighboring elements Il′ ,

σ
k =(Sl)−1b. (4.11)

We will provide the explicit formula of σk, which allows explicit formulae for the dif-

ferentiation
∂σk

i

∂ul
j

. Rewriting Eq. (4.9) for each element Ik without the term of local orbital

function, in 1-D case we have

∑
j

Sk
ijσ

k
j = ϕk

i (x)hφ(x)
∣∣∣
xk+1/2

xk−1/2

−
∫

Ik

φ(x)
d

dx
ϕk

i (x)dx, (4.12)

with an upwinding flux,
hφ(xk+1/2)=φ(x−k+1/2), (4.13)

we have

∑
l

Sk
ijσ

k
j = ϕk

i (xk+1/2)φ(x−k+1/2)−ϕk
i (xk−1/2)φ(x−k−1/2)−∑

j

Mk
iju

k
j , (4.14)

where the local overlap matrix

Sk
ij =

∫

Ik

ϕk
i (x)ϕk

j (x)dx, (4.15)

and
Sk={Sk

ij}. (4.16)
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For the local stiffness matrix,

Mk
ij =

∫

Ik

ϕk
j (x)

d

dx
ϕk

i (x)dx, (4.17)

and
Mk={Mk

ij}. (4.18)

After introducing the following notations:

uk=(uk
0,··· ,uk

j ,···)T, (4.19a)

σ
k =(σk

0 ,··· ,σk
j ,···)T, (4.19b)

ϕ
k(xk+1/2)=(ϕk

0(xk+1/2),··· ,ϕk
j (xk+1/2),···)T, (4.19c)

(uk,ϕk(xk+1/2))=(uk)T
ϕ

k(xk+1/2)=∑
j

uk
j ϕk

j (xk+1/2), (4.19d)

we can rewrite (4.14) as

Sk
σ

k =ϕ
k(xk+1/2)(ϕ

k(xk+1/2))
Tuk

−ϕ
k(xk−1/2)(ϕ

k−1(xk−1/2))
Tuk−1−Mkuk, (4.20)

or equivalently

σ
k=(Sk)−1

[
ϕ

k(xk+1/2)(ϕ
k(xk+1/2))

Tuk

−ϕ
k(xk−1/2)(ϕ

k−1(xk−1/2))
Tuk−1−Mkuk

]
. (4.21)

From (4.21), we obtain the derivative of the i-th component of the coefficient σk with
respect to the j-th component of the coefficient ul,

∂σk
i

∂ul
j

=δkl

{
(Sk)−1

[
ϕ

k(xk+1/2)
(

’k(xk+1/2)
)T

−Mk

]}

ij

−δ(k−1)l

{
(Sk)−1

[
ϕ

k(xk−1/2)
(

ϕ
k−1(xk−1/2)

)T
]}

ij

. (4.22)

We will also use the notation:

M̃k,l =

{
∂σk

i

∂ul
j

}
. (4.23)

In a traditional DG implementation without using local orbital function in (3.1), the
support function φ(x) is expressed into the linear combination of the DG piecewise poly-
nomial basis functions ϕk

j (x),

φ(x)=∑
k,j

uk
j ϕk

j (x), (4.24)
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where the index k is for the element Ik and j is the index of the DG basis function on the
element Ik. The number of DG basis functions on different element Ik can be different.
ϕk

j (x) can be chosen to be the Legendre polynomial of order j on the element Ik and to be

zero on the other elements.

4.2 Calculation of the overlap matrix Sαβ

The global overlap matrix can be expressed in terms of the local overlap matrices in (4.16),

Sαβ=
∫

Ω
φα(x)φβ(x)dx=∑

k

∫

Ik

φα(x)φβ(x)dx=∑
k

Sk
αβ. (4.25)

From the above equation, we can calculate the derivative of Sαβ with respect to ul
γi with

the formula

∂Sαβ

∂ul
γi

=∑
k

∂Sk
αβ

∂ul
γi

, (4.26a)

∂Sk
αβ

∂ul
γi

=δkl

[
δαγSkuk

β+δβγSkuk
α

]
i
. (4.26b)

4.3 Hamiltonian matrix Hβα=
∫

Ω
φα(x)Ĥφβ(x)dx

In the following, we use the Hartree atom units for simplicity, i.e., the numerical values
of the following four fundamental physical constants:

• electron mass m,

• elementary charge qe,

• reduced Planck’s constant h̄,

• Coulomb’s const 1
4πǫ0

.

The total energy will be expressed into

Etot=2∑
α,β

KαβHβα. (4.27)

For the Hamiltonian operator given in (4.2), we have

Hβα=Hkinetic+Hpot, (4.28)

where the kinetic energy

Hkinetic
βα =−1

2

∫

Ω
φα(x)

d2

dx2
φβ(x)dx, (4.29)
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and the potential energy

H
pot
βα =

∫

Ω
V(x)φα(x)φβ(x)dx. (4.30)

If V(x)=Vk is a constant in the element Ik, we can obtain H
pot
βα and

∂H
pot
βα

∂ul
γ,i

as what we have

done in (4.25) and (4.26a). Generally, we have

H
pot
βα =

∫

Ω
φα(x)V(x)φβ(x)dx=∑

k

H
pot,k
βα , (4.31)

where

H
pot,k
βα =

∫

Ik

φα(x)V(x)φβ(x)dxdx=
(

uk
α

)T
Spot,kuk

β , (4.32)

and

S
pot,k
ij =

∫

Ik

ϕk
i (x)V(x)ϕk

j (x)dx. (4.33)

From the above equation, we can calculate the derivative of H
pot
βα with respect to ul

γi as

follows,

∂H
pot
βα

∂ul
γi

=∑
k

∂H
pot,k
βα

∂ul
γi

, (4.34a)

∂H
pot,k
βα

∂ul
γi

=δkl

[
δαγSpot,kuk

β+δβγSpot,kuk
α

]
i
. (4.34b)

Next, for the kinetic energy term, we first rewrite (4.29) as

Hkinetic
βα =−1

2

∫

Ω
φα(x)∇σβ(x)dx, (4.35)

and express φα(x) and φβ(x) with the linear combination of the DG basis functions

φα(x)=∑
k,j

uk
α,j ϕ

k
j (x), φβ(x)=∑

k,j

uk
β,jϕ

k
j (x), (4.36)

and, similarly, σα(x) and σβ(x)

σα(x)=∑
k,j

σk
α,j ϕ

k
l (x), σβ(x)=∑

k,j

σk
β,j ϕ

k
j (x). (4.37)

And (4.35) will be calculated by integration by parts and introducing appropriate numer-
ical fluxes for σβ(x) at the boundary of each element Ik, namely,

Hkinetic
βα =∑

k

Hkinetic,k
βα , (4.38)
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where

Hkinetic,k
βα =−1

2

∫

Ik

φα(x)∇σβ(x)dx

=−1

2

[∫

∂Ik

φα(x)hσ(σβ(x−),σβ(x+))ds−
∫

Ik

(
d

dx
φα(x)

)
σβ(x)dx

]
. (4.39)

In 1-D case, the boundary flux in (4.39) would be written as

hσ

(
σβ(x−k+1/2),σβ(x+k+1/2)

)
=σβ(x+k+1/2), (4.40)

which is similar to (4.13) but is on an opposite side. Replacing d
dx φα(x) in (4.39) with

σα(x), we have

Hkinetic,k
βα =−1

2

∫

Ik

φα(x)
d

dx
σβ(x)dx

=−1

2

[
(uk

α,ϕk(xk+1/2))(σ
k+1
β ,ϕk+1(xk+1/2))

−(uk
α,ϕk(xk−1/2))(σ

k
β,ϕk(xk−1/2))−

∫

Ik

σα(x)σβ(x)dx

]
, (4.41)

or in a matrix-vector product form

Hkinetic,k
βα =− 1

2

[(
uk

α

)T
ϕk(xk+1/2)

(
ϕk+1(xk+1/2)

)T
σ

k+1
β

−
(

uk
α

)T
ϕk(xk−1/2)

(
ϕk(xk−1/2)

)T
σ

k
β −
(

σ
k
α

)T
Sk

σ
k
β

]
. (4.42)

Using the matrix-form of the Hkinetic,k
βα (4.42), and the derivative ∂u′k

i

∂ul
j

(4.21), we obtain

∂Hkinetic
βα

∂ul
γ,j

=∑
k

∂Hkinetic,k
βα

∂ul
γ,j

, (4.43)

where

∂Hkinetic,k
βα

∂ul
γ,j

=

[
δklδαγ

(
σk+1

β

)T
ϕk+1(xk+1/2)ϕk(xk+1/2)

+
(

uk
α

)T
ϕk(xk+1/2)δβγ

(
M̃k+1,l

)T
ϕk+1(xk+1/2)

−δklδαγ

(
σ

k
β

)T
ϕk(xk−1/2)ϕk(xk−1/2)

−
(

uk
α

)T
ϕk(xk−1/2)δβγ

(
M̃k,l

)T
ϕk(xk−1/2)

−δαγ

(
M̃k,l

)T
Sk

σ
k
β−δβγ

(
M̃k,l

)T
Sk

σ
k
α

]

j

. (4.44)
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Finally, from (4.28), (4.31) and (4.43), we can obtain
∂Hβα

∂ul
γi

.

4.4 Physics-based local orbitals enriched DG approximation of φα(x)

In this case, we have the support functions and their derivatives approximated by

φ(x)=ulo(x)+ud(x), (4.45a)

σ(x)= ∇ulo(x)+σ
d(x), (4.45b)

where ud(x) and σd(x) are the same as the second term in (3.1) and (4.5), and their co-
efficients are related by (4.21). We use the local orbital function ulo(x) and its derivative
∇ulo(x) are localized by truncations.

Next we exam what happens to the overlap matrix S and the Hamiltonian matrix
H when local orbital functions ulo(x) are included in the representation of the support
function φα(x). In this case, we have the overlap matrix

Sαβ=
∫

Ω
φα(x)φβ(x)dx

=
∫

Ω
[ud

α(x)+ulo
α (x)][ud

β(x)+ulo
β (x)]dx

=
∫

Ω
ud

α(x)ud
β(x)dx+

∫

Ω
ulo

α (x)ud
β(x)dx

+
∫

Ω
ud

α(x)ulo
β (x)dx+

∫

Ω
ulo

α (x)ulo
β (x)dx. (4.46)

First, we will show the matrix form of Sαβ and its derivative with respect to ul
γi. We

rewrite Sαβ of (4.46) in four terms:

Sαβ =∑
k

Sk
αβ=∑

k

(Sk1
αβ+Sk2

αβ+Sk3
αβ+Sk4

αβ), (4.47)

where

Sk1
αβ=

∫

Ik

ud
α(x)ud

β(x)dx, Sk2
αβ=

∫

Ik

ulo
α (x)ud

β(x)dx, (4.48a)

Sk3
αβ=

∫

Ik

ud
α(x)ulo

β (x)dx, Sk4
αβ =

∫

Ik

ulo
α (x)ulo

β (x)dx. (4.48b)

The derivative of the first term Sk1
αβ was shown in Section 4.2. The second term becomes

Sk2
αβ=

∫

Ik

ulo
α (x)∑

j

uk
βj ϕ

k
j (x)dx

=∑
j

(∫

Ik

ulo
α (x)ϕk

j (x)dx

)
×uk

βj. (4.49)
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The derivative of Sk2
αβ is

∂Sk2
αβ

∂ul
γi

=δklδβγΓk
αi , (4.50)

where Γk
αi =

∫
Ik

ulo
α ϕk

i dx. The derivative of the third term can be written in the same way.

Thus the derivative of Sk
αβ is

∂Sk
αβ

∂ul
γi

=δkl

[
δαγSkuk

β+δβγSkuk
α

]
i
+δkl

(
δβγΓk

αi+δαγΓk
βi

)
. (4.51)

In 1-D case, for the Hamiltonian matrix, we have

Hkinetic
βα =

∫

Ω

[
ud

α(x)+ulo
α (x)

] d

dx

[
σ

d
β(x)+ulo

β

′
(x)
]

dx

=
∫

Ω
ud

α(x)
d

dx
σ

d
β(x)dx+

∫

Ω
ulo

α (x)
d

dx
σ

d
β(x)dx

+
∫

Ω
ud

α(x)
d

dx
ulo

β

′
(x)dx+

∫

Ω
ulo

α (x)
d

dx
ulo

β

′
(x)dx. (4.52)

where the ′ denotes differentiation. The calculation of
∫

Ω
ud

α(x) d
dx σd

β(x)dx in (4.52) has

been discussed and given in the previous section. The second term in (4.52) is

∫

Ω
ulo

α (x)
d

dx
σ

d
β(x)dx=∑

k

∫

Ik

ulo
α (x)

d

dx
σ

d
β(x)dx, (4.53)

where

∫

Ik

ulo
α (x)

d

dx
σ

d
β(x)dx=ulo

α (xk+1/2)σ
d
β(x+k+1/2 )

−ulo
α (xk−1/2)σ

d
β(x+k−1/2 )−

∫

Ik

ulo
α
′
(x)σd

β(x)dx. (4.54)

Using the fact that ulo
α (x) and σd

β(x) are periodic, we have

∫

Ω
ulo

α (x)
d

dx
σ

d
β(x)dx=−∑

k

∫

Ik

ulo
α
′
(x)σd

β(x)dx. (4.55)

The third term in (4.52) reads

∫

Ω
ud

α(x)
d

dx
ulo

β

′
(x)dx=∑

k

∫

Ik

ud
α(x)

d

dx
ulo

β

′
(x)dx, (4.56)
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where

∫

Ik

ud
α(x)

d

dx
ulo

β

′
(x)dx=ud

α(x−k+1/2 )u
lo
β

′
(xk+1/2)

−ud
α(x+k−1/2 )u

lo
β

′
(xk−1/2)−

∫

Ik

σ
d
α(x)ulo

β

′
(x)dx. (4.57)

The fourth term in (4.52) becomes

∫

Ω
ulo

α (x)
d

dx
ulo

β

′
(x)dx= ulo

α (x)ulo
β

′
(x)
∣∣∣
∂Ω

−
∫

Ω
ulo

α
′
(x)ulo

β

′
(x)dx. (4.58)

Using the fact that ulo(x) and ulo ′(x) are periodic, we can reduce (4.58) into

∫

Ω
ulo

α (x)
d

dx
ulo

β

′
(x)dx=−

∫

Ω
ulo

α
′
(x)ulo

β

′
(x)dx. (4.59)

Now, we can find the derivative of Hkinect
αβ with respect to ul

γi. For the purpose, we

denote

Hkinetic
αβ =∑

k

Hkinetic,k
αβ =∑

k

(Hkinetic,k1
αβ +Hkinetic,k2

αβ +Hkinetic,k3
αβ +Hkinetic,k4

αβ ). (4.60)

The derivative of first term is calculated in Section 4.3. According to (4.55), the derivative
of the second term is

∂Hkinectic,k2
αβ

∂ul
γi

=−δβγ

(
(M̃k,l)T Γ̃k

α

)
i
, (4.61)

where

Γ̃k
α =

(∫

Ik

ulo
α
′
ϕk

0dx,··· ,
∫

Ik

ulo
α
′
ϕk

i dx,···
)T

. (4.62)

According to (4.57), the derivative of the third term is

∂Hkinectic,k3
αβ

∂ul
γi

=δklδαγ

(
ulo

β

′
(xk+1/2)ϕk(xk+1/2)−ulo

β

′
(xk−1/2)ϕk(xk−1/2)

)
i

−δαγ((M̃k,l)TΓ̃k
β )i. (4.63)

Thus, the derivative of Hkinectic
αβ can be written as combination of (4.44), (4.61) and (4.63).

In addition, the derivative of H
pot
αβ can be calculated the same way as the derivative of

Sαβ.
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4.5 Choose local orbitals

We set a single atom Hamiltonian for the atom at position 0

Ĥatom =−1

2

d2

dx2
+Vatom(x), (4.64)

where

Vatom(x)=
a√

2πσ2
exp

(
− x2

2σ2

)
. (4.65)

We can use a finite difference method to solve the eigen problem

Ĥatomψi(x)= ε iψi(x). (4.66)

After we get the eigen-solutions, the local orbitals can be found by a fitting procedure
using the Levenberg-Marquardt method as

ψi(x)≈Pi(x)exp

(
−
( x

G

)2
)

, (4.67)

where Pi(x) is a polynomial function of i-th order. For example,

ψ0(x)≈Bexp

(
−
( x

G

)2
)

. (4.68)

Also we will modify the local orbitals obtained into a periodic function on the inter [0,L]
(where L = Natom) where the atom is at the position Ratom. In one period x ∈ [0,L], we
define

ψ0(x;Ratom)=





Bexp

(
−
(

x−Ratom
G

)2
)

, if |x−Ratom|< Natom
2 ,

Bexp

(
−
(

x+Natom−Ratom
G

)2
)

, if x−Ratom<−Natom
2 ,

Bexp

(
−
(

x−Natom−Ratom
G

)2
)

, if x−Ratom>
Natom

2 .

(4.69)

5 Numerical tests

5.1 Convergence

The calculation domain contains 8 atoms which locate at 0,1,2,··· ,7, respectively. The
periodic boundary condition is used. In this subsection, we will study two systems which
model insulator and semiconductor, respectively.
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5.1.1 Insulator case

We study the case for which the system models an insulator [10], i.e., a=1000 and σ=0.15.

First, we use central difference to discretize and use the diagonalization method to get
the reference ground state energy. Then we present the ground state energy and the error
with respect to the reference energy of two methods, LODG (local orbital enriched DG)
and DG only, by h-refinement in Fig. 1. We use quadratic polynomial as basis functions
in DG part. The ∆x stands for the mesh size. Obviously, the ground state energy from
the calculation decreases monotonically towards the reference energy when we refine
the mesh size. We also present the result by p-refinement in Fig. 2 with the mesh size
∆x= 1

40 . We can conclude that when we raise the degree of basis polynomial functions
in each element, the ground state energy decreases towards the reference energy. The
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Figure 1: Left: ground state energy with different mesh size by LODG and pure DG only. Right: error of ground
state energy with different mesh size by LODG and pure DG only.
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Figure 2: Left: ground state energy with different degree of basis polynomials by LODG and pure DG only.
Right: error of ground state energy with different degree of basis polynomials by LODG and pure DG only.
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reasons that the error converges at about 10−2 are two-fold. The first is that the reference
ground state energy is calculated numerically. The second one is that there is a system
error between the minimizations by the wave function method and by the density matrix
method.

Comparing the results from two methods, LODG and pure DG only, in Figs. 1 and
2, LODG shows its advantage when we use coarse mesh or low degree basis functions.
That means we can get a fine result with less calculation by using LODG. Meanwhile,
when the mesh size was refined or the degree of basis polynomial was raised, pure DG
only method performs as well as LODG.

5.1.2 Semiconductor

We study the case for which the system models a semiconductor [10], i.e., a = 10 and
σ=0.3.

We use central difference to discretize and use the diagonalization method to get the
reference ground state energy. We present the error of ground state energy with respect
to the reference energy of two methods, LODG (local orbital enriched DG) and DG only,
by h-refinement and p-refinement in Fig. 3. In h-refinement case, we use quadratic poly-
nomial as basis functions in DG part. The ∆x stands for the mesh size. The ground state
energy from the calculation converges towards the reference energy when we refine the
mesh size. In p-refinement, we use mesh size ∆x = 1

40 . We can conclude that when we
raise the degree of basis polynomial functions in each element, the ground state energy
converges towards the reference energy.

Comparing the results from two methods, LODG and pure DG only, in Fig. 3, LODG
shows its advantage when we use coarse mesh or low degree basis functions. That means
we can get a fine result with less calculation by using LODG. Meanwhile, when the mesh
size was refined or the degree of basis polynomial was raised, DG only method performs
as well as LODG.

0 0.02 0.04 0.06 0.08 0.1

−2.46

−2.455

−2.45

−2.445

−2.44

∆ x

E
rr

o
r(

1
0

y
)

 

 

LODG
DG

1.5 2 2.5 3 3.5 4
−2.5

−2.45

−2.4

−2.35

−2.3

−2.25

degree of basis polynomials

E
rr

o
r(

1
0

y
)

 

 
LODG
DG

Figure 3: Left: error of total energy with different mesh size by LODG and DG only in h-refinement. Right:
error of total energy with different degree of basis polynomials by LODG and DG only in p-refinement.
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Figure 4: Support function φ and its two parts, local orbital part ulo and DG part udg.

We draw a support function, φ4 = ulo+udg, in Fig. 4. We can observe that the local
orbital part domain the main part of the support function while the DG part provide
small correction.

5.2 Nonlinear system

The Hamiltonian of the previous test is given by

Ĥ=−1

2

d2

dx2
+V(x), (5.1)

where the potential

V(x)=Vps=−∑
i

a√
2πσ2

exp
[
−(x−Xi)

2/2σ2
]

(5.2)

is given and the Ĥ is a linear operator.

Now, we introduce the exchange potential and Hartree potential

V(x)=Vps+Vex+VH. (5.3)

We can use local density approximation to calculate exchange potential term [15] as

Vps(r)=− 1

π
(3π2ρ(r,r))

1
3 . (5.4)

We can get the Hartree potential by solving Poisson equation

∇2VH(r)=−4πρ(r,r). (5.5)
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Figure 5: Left: error of ground state energy with different mesh size by LODG and pure DG in h-refinement.
Right: error of ground state energy with different degree of basis polynomials by LODG and pure DG only in
p-refinement.

We use self-consistent iteration to solve the nonlinear system. As in former cases, we
use central difference to discretize Ĥ and use the diagonalization method to get the ref-
erence ground state energy. We present the error of ground state energy with respect to
the reference energy of two methods, LODG(local orbital enriched DG) and DG only, by
h-refinement and p-refinement in Fig. 5. In h-refinement case, we use quadratic polyno-
mial as basis functions in DG part. In p-refinement, we use mesh size ∆x= 1

40 . We can
observe that the ground state energy also decrease towards the reference energy but the
accuracy is not as good as the linear case due to error in the self-consistent iteration.

5.3 Linear scaling performance

The degree of matrices H, S, L is the number of support function, which is νN =O(N).
Considering the cut-off radius, if |Xα−Xβ|> 2Rreg then Hαβ,Sαβ,Lαβ equal zero. Thus,
matrices H,S,L are sparse and the numbers of non-zero terms are O(N). The calculation
of Hαβ,Sαβ,Lαβ only involve the multiplication of matrices of which the degree is the
number of basis function in each element, which can be considered as O(1). We can
conclude that the calculation time is linear scaling with N (the number of atoms).

We studied the linear system which models an insulator using LODG with quadratic
polynomials. We set different sizes of calculation domain containing corresponding num-
ber of calculation atoms and record the calculation time by serial program. From the Fig. 6
we can see that the calculation time increasing linearly with the number of atoms, namely
the calculation time is O(N).

6 Conclusions

In this paper, we have proposed a linear scaling discontinuous Galerkin density ma-
trix minimization algorithm for finding the ground state energy using the K-S wave ap-
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Figure 6: Calculation time with different numbers of calculation atoms.

proach. The key result in this work is the use of physics-based local orbital enriched finite
element basis with discontinuous Galerkin method to approximate the support functions
for the representation of density operators. It is found that the physics based local or-
bitals allows the use of coarse finite element mesh, resulting in a compact and efficient
discretization of the energy functional in the DMM method. The DG method using this
hybrid basis ensures both numerical convergence and efficient capturing of the main
structure of the wave functions as shown by numerical tests on simple 1-D lattice sys-
tems, where linear scaling performance of the DG-DMM method is also shown. Work is
under way to extend the results for the model system to self-consistent computation of
electronic structure, especially for 3-D many electron systems.
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