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Abstract. An accurate and direct algorithm for solving the semiclassical Boltzmann
equation with relaxation time approximation in phase space is presented for parallel
treatment of rarefied gas flows of particles of three statistics. The discrete ordinate
method is first applied to discretize the velocity space of the distribution function to
render a set of scalar conservation laws with source term. The high order weighted es-
sentially non-oscillatory scheme is then implemented to capture the time evolution of
the discretized velocity distribution function in physical space and time. The method
is developed for two space dimensions and implemented on gas particles that obey
the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Computational ex-
amples in one- and two-dimensional initial value problems of rarefied gas flows are
presented and the results indicating good resolution of the main flow features can be
achieved. Flows of wide range of relaxation times and Knudsen numbers covering
different flow regimes are computed to validate the robustness of the method. The
recovery of quantum statistics to the classical limit is also tested for small fugacity
values.

AMS subject classifications: 82-08, 82B30, 82B40, 35Q20

Key words: Semiclassical Boltzmann-BGK equation, weighted essentially non-oscillatory, dis-
crete ordinate method.

1 Introduction

In kinetic theory of gases, the Boltzmann equation has been widely used to describe var-
ious transport phenomena in classical rarefied gas covering wide range of flow param-
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eters such as Reynolds number, Mach number and Knudsen number. The Chapman-
Enskog expansion method is usually applied to the Boltzmann equation to derive closed
set hydrodynamic transport equations that apply to a broad range of flow regimes, see
[8]. In analogy to the classical Boltzmann equation, a semiclassical Boltzmann equation,
which generalizes the collision term in order to treat the collision of particles of quan-
tum statistics, has been developed; For detail, readers may refer to [21, 34]. Hydrody-
namic behaviour of quantum gases has been the subject of some prominent researches,
see [3, 28, 36], and the application of quantum Boltzmann hydrodynamic equations have
been implemented in the analysis of electron flows in quantum semiconductor devices,
such as in the works of [2, 12, 37]. In recent years, due to the rapid advancements of
microtechnology and nanotechnology, the device or structure characteristic length scales
become comparable to the mean free path and the wavelength of energy and informa-
tion carriers (mainly electrons, photons, phonons, and molecules), some of the classical
continuum transport laws are no longer applicable. It is generally believed that the mi-
croscopic description of Boltzmann equation (classical and semiclassical) is adequate to
treat transport phenomena in the mesoscale range. Different types of carriers may in-
volve simultaneously in a single problem, therefore, it is desirable to have a method that
can allow one to treat them in a unified and parallel manner. Indeed, this is the view
advocated in micro- and nano-scale energy transport by Chen [9]. With the semiclassi-
cal Boltzmann equation, it is possible to describe adequately the mesoscale transport of
particles of arbitrary statistics.

The principal difficulty encountered in solving semiclassical Boltzmann equation as
derived by Uehling and Uhlenbeck is the same as that encountered in the classical coun-
terpart and is mainly due to the complicated integral nature of its collision term. The
relaxation time approximation proposed by Bhatnagar, Gross and Krook (BGK) [4] for
the classical Boltzmann equation provides a much simpler form of collision term and
retains the principal effects of particle collisions and enables more tractable solution
methods. The BGK relaxation time concept is rather general and can be applicable to
the semiclassical Boltzmann equation as well. The only change is that the equilibrium
Maxwell-Boltzmann distribution in the classical case is replaced by the Bose-Einstein
or Fermi-Dirac distribution depending on the types of carrier particles. The semiclas-
sical Boltzmann-BGK equation has been widely applied for electron carrier transport
in semiconductor [5–7, 11, 25–27, 29, 30] and phonon energy transport in thermoelectric
materials [9]. Similarly, the solution methodology developed for classical Boltzmann-
BGK equation can be applied to the semiclassical Boltzmann-BGK equation in phase
space. In this work, we aim at developing an accurate direct solver for the semiclassi-
cal Boltzmann-BGK equation in phase space that can treat particles of three statistics on
equal foot and in a parallel manner. Such a method will allow one to examine the same
physical flow problems but with different gas of particles. It is noted that even when
solving the problems for the classical Maxwell-Boltzmann statistics, the present formula-
tion allows the analysis fugacity which has not been included in the original Boltzmann-
BGK equation [4] nor in most of other existing works based on it. First, depending on
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the carrier particles, the discrete ordinate method is used to discretize the velocity (or
momentum or wave number) space in the semiclassical Boltzmann-BGK equation into a
set of equations for the discrete distribution functions which are continuous in physical
space with source terms [40]. Second, the resulting equations can be treated as scalar
hyperbolic conservation law with stiff source term whose evolution in space and time
can be modeled by existing shock-capturing schemes such as total variation diminishing
(TVD) schemes [13] and weighted essentially non-oscillatory (WENO) schemes [38]. The
latter is adopted in this paper to describe the evolution of these equations. We develop
the method in two space dimensions and validate the method using flow problems of
one and two space dimensions. Three main aspects of the developed method are exam-
ined and emphasized, namely, the range of relaxation time, the range of Knudsen num-
bers and the recovery of the classical limit. After the success of these tests, the present
method can provide a viable robust tool for treating many modern mesoscale carrier
transport phenomena covering electrons and phonons in addition to the usual classical
gas molecules. In the area of classical gas flows, the implementation of discrete ordi-
nate method to nonlinear model Boltzmann equations has been developed by Yang and
Huang [40] for the rarefied flow computations and has been able to cover broad range of
flow regimes. Similar approaches using different high resolution spatial schemes were
also given [23, 24]. In this work, the main purposes are first to explore the wide range
of physical parameters of the semiclassical Boltzmann-BGK equation and second to ex-
amine the effects of particle statistics under the same flow problems. We adopt well
established and previously developed spatial high resolution schemes such as TVD [14],
NND [42], WENO [17]and compacted WENO [10] methods. Also to exclude the com-
plexity due to solid boundary, we confine here to initial value problems. Under the same
motivation as in classical case, the present work is built using discrete ordinate method
to describe the hydrodynamic properties of rarefied gases of all the three statistics.

Elements of semiclassical Boltzmann-BGK equation is briefly described in Section 2.
Its correlation with hydrodynamic equations is outlined. In Section 3, we describe the
use of discrete ordinate method to discretize the particle distribution function into a set
of hyperbolic conservation laws with source terms. In the next section, we present the
description of fifth-order WENO scheme implementation in capturing the evolution of
discretized distribution function equations. In Section 5, numerical experiments of one
dimensional semiclassical gas dynamical flows in a shock tube in addition to two di-
mensional Riemann problems are presented to illustrate the present algorithm. Finally,
concluding remarks will be given in Section 6.

2 Semiclassical Boltzmann-BGK equation

In this section, we delineate the elements of semiclassical Boltzmann-BGK equation which
we expect to tackle in the present work. Following the works of [21, 34], we consider the
extension of the Boltzmann equation to quantum systems due to Uehling and Uhlenbeck
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in which they took the Pauli exclusion principle into account.

(

∂ f

∂t
+

p

m
·∇x−∇U(x,t)·∇p

)

f (p,x,t)=

(

δ f

δt

)

coll.

, (2.1)

where m is the particle mass, U is the mean field potential and f (~p,~x,t) is the distribu-
tion function which represents the average density of particles with momentum ~p at the
space-time point ~x,t. The (δ f /δt)coll. denotes the collision term and according to Uehling
and Uhlenbeck [34], it takes the form,

(

δ f

δt

)UU

coll.

=
∫

dp

∫

dΩK(p,q,Ω)
{

[1+θ f (p,t)][1+θ f (q)] f (p∗ ,t) f (q∗,t)

−[1+θ f (p∗,t)][1+θ f (q∗)] f (p,t) f (q,t)
}

, (2.2)

where K(p,q,Ω) denotes the collision kernel and Ω is the solid angle and θ is a parame-
ter which specifies the type of particle statistics. Here, for θ=+1, Bose-Einstein particles
are considered, for θ =−1, Fermi-Dirac particles, and for θ = 0, the Maxwell-Boltzmann
classical particles are considered. According to the Boltzmann’s H-theorem and con-
servation conditions, the collision integral of the semiclassical Boltzmann equation will
automatically vanish when the distribution functions are in equilibrium and the equilib-
rium distribution function for general statistics can be expressed as

f eq(p,x,t)=
1

z−1exp
{

[p−mu(x,t)]2/2mkBT(x,t)
}

−θ
, (2.3)

where u(x,t) is the mean velocity, T(x,t) is temperature, kB is the Boltzmann constant
and z(x,t) = exp(µ(x,t)/kBT(x,t)) is the fugacity, where µ is the chemical potential. In
(2.3), θ =−1 denotes the Fermi-Dirac statistics, θ =+1, the Bose-Einstein statistics and
θ=0 denotes the Maxwell-Boltzmann statistics. We note that even with the case of θ=0,
we still have chemical potential µ or fugacity z which is rather different from the usual
classical Maxwellian distribution. To avoid the mathematical difficulty caused by the
nonlinear integral collision term, the relaxation time concept of Bhatnagar, Gross and
Krook is generally applied to replace the collision term of Uehling and Uhlenbeck, thus
the semiclassical Boltzmann-BGK equation reads

(

∂ f

∂t
+

p

m
·∇x−∇U(x,t)·∇p

)

f (p,x,t)=

(

δ f

δt

)BGK

coll.

=− f− f eq

τ
. (2.4)

Here, τ is the relaxation time and needs to be specified for each carrier scattering.

The macroscopic dynamic variables of interest such as number density, momentum
density and energy density are low order moments of the distribution function and are
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defined by:

n(x,t)=
∫

dp

h3
f (p,x,t) , (2.5a)

j(x,t)=
∫

dp

h3

p

m
f (p,x,t)=n(x,t)u(x,t), (2.5b)

ǫ(x,t)=
∫

dp

h3

p2

2m
f (p,x,t) , (2.5c)

where h is Planck’s constant. Other higher-order moments such as stress tensor Pij and
the heat flux vector Φi(x,t) can also be defined accordingly as

Pij(x,t)=
∫

dp

h3

(

pi

m
−ui

)(

pj

m
−uj

)

f (p,x,t), (2.6a)

Φi(x,t)=
∫

dp

h3

(p−mu)2

2m

(

pi

m
−ui

)

f (p,x,t). (2.6b)

The conservation laws of macroscopic properties can be obtained by multiplying
Eq. (2.1) respectively by 1, p and p2/2m and integrating the resulting equations over all p.
Consequently, the integrals of the collision terms in all three cases vanish automatically
resulting in the conservation laws in the form of differential equations for the conserved
macroscopic quantities i.e., number density n(x,t), momentum density mnu(x,t), and
energy density ǫ(x,t) as follow:

∂n(x,t)

∂t
+∇x ·j(x,t)=0, (2.7a)

∂mj(x,t)

∂t
+∇x ·

∫

dp

h3
p

p

m
f (p,x,t)=−n(x,t)∇xU(x,t), (2.7b)

∂ǫ(x,t)

∂t
+∇x ·

∫

dp

h3

p

m

p2

2m
f (p,x,t)=−j(x,t)·∇xU(x,t). (2.7c)

Derivations of the semiclassical Euler and Navier-Stokes equations from the Boltzmann-
BGK equation can be obtained from the zeroth order and first order solutions via the
Chapman and Enskog expansion [8]. Also, the transport coefficients such as the viscosity
η and the thermal conductivity κ can be derived in terms of the relaxation time as

η=τnkBT
Q2(z)

Q1(z)
, (2.8a)

κ=τ
5kB

2m
nkBT

[

7

2

Q3(z)

Q1(z)
− 5

2

Q2(z)

Q1(z)

]

, (2.8b)

where Qν(z) is the Fermi or Bose function of order ν. For similar results derived from
the linearized semiclassical Boltzmann equation, see [28]. Here the case of two space
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dimensions is assumed. The relaxation times for various scattering mechanisms of dif-
ferent carrier transport in semiconductor devices including electrons, holes, phonons and
others have been proposed [15].

In this work, we will also consider the case of semiclassical Euler limit in which the
particle distribution function is always in equilibrium, i.e., f = f eq and the collision term
of Eq. (2.1) vanishes automatically. In the later section, we will present the comparison
of our results with those of the semiclassical Euler solutions. In recent years, notable
numerical methods to describe the ideal quantum gas flows have been developed, see
[32, 39, 41].

2.1 Fermi and Bose functions in relation to hydrodynamics properties

Before we proceed, without losing generality, we neglect the influence of externally ap-
plied field U(x,t). To illustrate the present method, we formulate the Fermi - Dirac equi-
librium distribution in two spatial dimension as the following.

f eq
(

px,py,x,y,t
)

=
1

z−1exp((px−mux)2+(py−muy)2)/(2mkBT(x,y,t))+1
. (2.9)

In a closed form in terms of quantum functions, we replace the distribution function f
with f eq which automatically reduces the source term in the BGK Boltzmann equation to
zero. The macroscopic moments, i.e., number density n(x,y,t), momentum j(x,y,t) and
energy density ǫ(x,y,t) are given by

n(x,y,t)=
∫ ∫

dpx dpy

h2
f eq(px,py,x,y,t)=

Q1(z)

λ

2

, (2.10a)

jx(x,y,t)=
∫ ∫

dpx dpy

h2

px

m
f eq(px,py,x,y,t)=n(x,y,t)ux(x,y,t), (2.10b)

jy(x,y,t)=
∫ ∫

dpx dpy

h2

py

m
f eq(px,py,x,y,t)=n(x,y,t)uy(x,y,t), (2.10c)

ǫ(x,y,t)=
∫ ∫

dpx dpy

h2

px
2+py

2

2m
f eq(px,py,x,y,t)

=
Q2(z)

βλ2
+

1

2
mn(ux

2+uy
2)=

P(x,y,t)

(γ+1)
+

1

2
mn(ux

2+uy
2), (2.10d)

where λ=
√

βh2

2πm is the thermal wavelength and β=1/kBT(x,y,t). The functionsQν(z) of
order ν are respectively defined for Fermi-Dirac and Bose-Einstein statistics as

Fν(z)≡
1

Γ(ν)

∫ ∞

0
dx

xν−1

z−1ex+1
≈

∞

∑
l=1

(−1)l−1 zl

lν
, (2.11a)

Bν(z)≡
1

Γ(ν)

∫ ∞

0
dx

xν−1

z−1ex−1
≈

∞

∑
l=1

zl

lν
. (2.11b)
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Here, Fν(z) applies for Fermi-Dirac integral and Bν(z) for Bose-Einstein’s, whereas Γ(ν)
is gamma function. The definition of macroscopic quantities in terms of Fermi or Bose
function applies for both cases of quantum distributions. One only needs to replace Fermi
function with Bose function or vice versa whilst maintaining the same procedure.

2.2 Classical limit

Note that for z≪ 1, both Qν(z) functions for all ν behave like z itself, i.e., Qν(z)≈ z.
Physically, a large and negative value of chemical potential of a dilute system and high
temperature environment do correspond to small z. On the other hand, we know that at
the low temperature, the Fermi-Dirac case displays its most distinctive property in terms
of one particle per one energy level mapping. We may intuitively say that the hydrody-
namic properties of classical case can be acquired by replacing the Qν(z) function into z
itself. Mathematically, we can obtain the classical hydrodynamic properties by applying
the same procedure to the Maxwell-Boltzmann statistics as done to the other quantum
statistics. For θ=0, the distribution function becomes

f MB
(

px,py,x,y,t
)

=1/
{

z−1 exp
{[

(px−mux)
2+(py−muy)

2
]

/2mkBT
}

}

. (2.12)

In this case, no approximation for Qν(z) is required and the macroscopic values for two
spatial dimensions can be obtained by

nc(x,y,t)=
∫ ∫

dpx dpy

h2
f MB(px,py,x,y,t)=

z

λ2
. (2.13)

In other words, in the classical limit,

z(x,y,t)= eµ(x,y,t)/kBT(x,y,t)=λ2 nc(x,y,t), (2.14a)

µ(x,y,t)= kBT(x,y,t)ln(λ2 nc(x,y,t)). (2.14b)

In the later section, we shall see the numerical examples that compare Fermi and Bose
gas to the classical limit.

2.3 Normalization

Before proceeding to discretize the equation, in this section we introduce the characteris-
tic properties of V∞ and t∞ for the purpose of normalization. The characteristic velocity
and time can be defined as,

V∞=

√

2kBT∞

m
, t∞ =

L

V∞

, (2.15)
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with L defined as the characteristic length of the problem. Hence the definitions of non-
dimensional variables are introduced as

(t̂,τ̂)=(t,τ)/t∞, (ûx,υ̂x)=(ux,υx)/V∞, x̂= x/L,T̂=T/T∞, (2.16a)

(ûy,υ̂y)=(uy,υy)/V∞, ŷ=y/L,n̂=n/

(

m2V2
∞

h2

)

, (2.16b)

ĵ= j/

(

m2V3
∞

h2

)

, ǫ̂=ǫ/

(

m3V4
∞

h2

)

, f̂ = f . (2.16c)

Hence the normalized semiclassical Boltzmann-BGK equation,

∂ f̂ (υ̂x,υ̂y, x̂,ŷ, t̂)

∂t̂
+ υ̂x

∂ f̂ (υ̂x,υ̂y, x̂,ŷ, t̂)

∂x̂
+ υ̂y

∂ f̂ (υ̂x,υ̂y, x̂,ŷ, t̂)

∂ŷ
=− f̂− f̂ eq

τ̂
, (2.17)

with υ̂x and υ̂y as particle velocities. Neglecting the hat sign, the normalized two-dimensional
semiclassical equilibrium distribution function becomes

f eq
(

vx,vy,x,y,t
)

=
1

z−1exp((vx−ux)2+(vy−uy)2)/T−θ
. (2.18)

3 Application of discrete ordinate method

As applied by Huang and Giddens [16] and Shizgal [33] to the linearized Boltzmann-BGK
equation, the discrete ordinate method represents functions by a set of discrete points
that coincide with the evaluation points in a quadrature rule. The method replaces the
original functional dependency on the integral variable by a set of functions with N el-
ements of Wi f (xi) with i = 1,··· ,N. The points xi are quadrature points and Wi are the
corresponding weights of the integration rule

∫ b

a
W(x) f (x)dx=

N

∑
i=1

Wi f (xi). (3.1)

The interval [a,b] will be either [0,∞] or [−∞,∞] depending on considered application.
Different weighting function W(x) is addressed accordingly. In general, in view of the
fact that in the classical limit all three statistics will coincide with each other, we shall
employ the Gauss-Hermite quadrature for all three statistics. This method is beneficial
given the fact that in the end, we are not just interested in the distribution function itself
but also in the macroscopic moments and the evaluations of the macroscopic moments
are also done with the same quadrature. The discrete ordinate method has been applied
to the classical nonlinear model Boltzmann equations for rarefied flow computations [40].
By applying the discrete ordinate method to Eq. (2.17), the distribution function in phase
space f (υx,υy,x,y,t) can be rendered into a set of hyperbolic conservation equation with
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source terms for fσ,δ(x,y,t) in the physical space, where σ=−N1,··· ,−1,1,··· ,N1 and δ=
−N2,··· ,−1,1,··· ,N2. The resulting equations are a set of

∂ fσ,δ(x,y,t)

∂t
+υσ

∂ fσ,δ(x,y,t)

∂x
+υδ

∂ fσ,δ(x,y,t)

∂y
=− fσ,δ− fσ,δ

eq

τ
, (3.2)

with fσ,δ, υσ and υδ represent the values of respectively f , υx and υy evaluated at the
discrete velocity points σ and δ.

3.1 Quadrature methods

In two-dimensional case, we may apply Gauss-Hermite quadrature rule over the interval
[−∞,∞]. The Gauss-Hermite quadrature rule reads,

∫ ∞

−∞

∫ ∞

−∞
e−υx

2
e−υy

2
f (υx,υy)dυx dυy≈

N1

∑
σ=−N1

N2

∑
δ=−N2

WσWδ fσ,δ (3.3a)

or
∫ ∞

−∞

∫ ∞

−∞
e−υx

2
e−υy

2
[eυx

2
eυy

2
f (υx,υy)dυx dυy]≈

N1

∑
σ=−N1

N2

∑
δ=−N2

Wσ Wδ eυσ
2
eυδ

2
fσ,δ . (3.3b)

The discrete points υα and weight Wα, with α= σ,δ, are tabulated in the table of the
Gauss-Hermite quadrature, see [1] and can be found through

Wα =
2l−1l!

√
π

l2[Hl−1(υα)]2
, (3.4)

with l is number of quadrature points and υα are the roots of the Hermite polynomial
Hl(υ) Once the discretized functions fσ,δ(x,y,t) are solved, for every time level we can
acquire and update the macroscopic moments in the physical space using a selected
quadrature method as described below.

n(x,y,t)=
∫ ∞

−∞

[

f (υx,υy,x,y,t)eυx
2
eυy

2
]

e−υx
2
e−υy

2
dυxdυy

=
N1

∑
σ=−N1

N2

∑
δ=−N2

WσWδ eυσ
2
eυδ

2
fσ,δ , (3.5a)

jx(x,y,t)=
∫ ∞

−∞

[

υx f (υx ,υy,x,y,t)eυx
2
eυy

2
]

e−υx
2
e−υy

2
dυxdυy

=
N1

∑
σ=−N1

N2

∑
δ=−N2

υσWσ Wδ eυσ
2
eυδ

2
fσ,δ =n(x,y,t)ux(x,y,t), (3.5b)

ǫ(x,y,t)=
∫ ∞

−∞

[υ2
x+υ2

y

2
f (υx,υy,x,y,t)eυx

2
eυy

2
]

e−υx
2
e−υy

2
dυxdυy

=
N1

∑
σ=−N1

N2

∑
δ=−N2

(υ2
σ+υ2

δ

2

)

Wσ Wδ eυσ
2
eυδ

2
fσ,δ. (3.5c)
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Pressure P(x,y,t) can be defined as

P(x,y,t)=

[

ǫ(x,y,t)− 1

2
n(x,y,t)(u2

x+u2
y)

]

(γ−1). (3.6)

The value of relaxation time is given by

τ=η/P. (3.7)

Here, we note that the basic criteria of choosing different quadratures is to guarantee
that the macroscopic moments can be accurately computed which requiring the accurate
representation of the distribution function with suitable velocity range being covered.
The equally spaced Newton-Cotes formula can also be used if one needs to cover the
high energy tail of the distribution function.

4 Numerical method

4.1 Application of weighted essentially non-oscillatory scheme

In this section, we describe the numerical algorithm to solve the set of equations (3.2). A
class of WENO schemes is implemented to solve the set of conservation laws with source
terms. We firstly discretize the space x,y and time t into a number of cells centered at i, j
at time n, hence we approximate fσ,δ by fσ,δ

n
i,j. In terms of numerical fluxes, the evolution

from nth time level to (n+1)th time level is expressed by

fσ,δ
n+1
i,j = fσ,δ

n
i,j−

∆t

∆x

(

FN
i+1/2,j−FN

i−1/2,j

)

− ∆t

∆y

(

GN
i,j+1/2−GN

i,j−1/2

)

+
∆t

τ

(

f
eq
σ,δ

n

i,j
− fσ,δ

n
i,j

)

, (4.1)

where the numerical fluxes are defined by

FN
i+1/2,j=F+

i+1/2,j+F−i+1/2,j, GN
i,j+1/2=G+

i,j+1/2+G−i,j+1/2, (4.2)

where the split flux vectors are defined by

F+
i,j =υ+

σ fσ,δ i,j , F−i,j =υ−σ fσ,δ i,j , (4.3a)

G+
i,j=υ+

δ fσ,δ i,j , G−i,j=υ−δ fσ,δ i,j . (4.3b)

Here, υ±σ =(υσ±|υσ|)/2 and υ±δ =(υδ±|υδ|)/2. The time step ∆t is chosen to be less than
the local relaxation time, τ. In this work, a fifth-order accurate (r=3) WENO (from now
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on, this will be denoted as WENO3) scheme is considered for the spatial difference of
numerical fluxes with the expression follows below:

F+
i+1/2,j=ω+

0

(

2

6
F+

i−2,j−
7

6
F+

i−1,j+
11

6
F+

i,j

)

+ω+
1

(

−1

6
F+

i−1,j+
5

6
F+

i,j +
2

6
F+

i+1,j

)

+ω+
2

(

2

6
F+

i,j +
5

6
F+

i+1,j−
1

6
F+

i+2,j

)

, (4.4a)

ω+
k =

α+
k

α+
0 +α+

1 +α+
2

, k=0,1,2, (4.4b)

α+
0 =

1

10(ǫ+ IS+
0 )

2
, α+

1 =
6

10(ǫ+ IS+
1 )

2
, α+

2 =
3

10(ǫ+ IS+
2 )

2
, (4.4c)

IS+
0 =

13

12

(

F+
i−2,j−2F+

i−1,j+F+
i,j

)2
+

1

4

(

F+
i−2,j−4F+

i−1,j+3F+
i,j

)2
, (4.4d)

IS+
1 =

13

12

(

F+
i−1,j−2F+

i,j +F+
i+1,j

)2
+

1

4

(

F+
i−1,j−F+

i+1,j

)2
, (4.4e)

IS+
2 =

13

12

(

F+
i,j−2F+

i+1,j+F+
i+2,j

)2
+

1

4

(

3F+
i,j−4F+

i+1,j+F+
i+2,j

)2
. (4.4f)

The numerical flux for the negative part is given by

F−i+1/2,j =ω−0

(

−1

6
F−i−1,j+

5

6
F−i,j +

2

6
F−i+1,j

)

+ω−1

(

2

6
F−i,j +

5

6
F−i+1,j−

1

6
F−i+2,j

)

+ω−2

(

11

6
F−i+1,j−

7

6
F−i+2,j+

2

6
F−i+3,j

)

, (4.5a)

ω−k =
α−k

α−0 +α−1 +α−2
, k=0,1,2, (4.5b)

α−0 =
3

10(ǫ+ IS−0 )
2

, α−1 =
6

10(ǫ+ IS−1 )
2

, α−2 =
1

10(ǫ+ IS−2 )
2

, (4.5c)

IS−0 =
13

12

(

F−i−1,j−2F−i,j +F−i+1,j

)2
+

1

4

(

F−i−1,j−4F−i,j +3F−i+1,j

)2
, (4.5d)

IS−1 =
13

12

(

F−i,j−2F−i+1,j+F−i+2,j

)2
+

1

4

(

F−i,j−F−i+2,j

)2
, (4.5e)

IS−2 =
13

12

(

F−i+1,j−2F−i+2,j+F−i+3,j

)2
+

1

4

(

3F−i+1,j−4F−i+2,j+F−i+3,j

)2
. (4.5f)

The expression of G+
i,j+1/2 and G−i,j+1/2 can be derived in a similar fashion.

4.2 Application of total variation diminishing (TVD) scheme

For comparison purpose, we also implement a second-order TVD scheme. Under the
same expression as Eq. (4.1), we can also define the numerical fluxes for a TVD scheme
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given by

FN
i+1/2,j=

(

F+
i+1/2,j+F−i+1/2,j

)

+
1

2
[sgn(υσ)−|υσ|]

[

υ+
σ ∆xφ(θx i,j)+υ−σ ∆xφ(θx i+1,j)

]

, (4.6)

with φ(θxi,j) chosen to be the van Leer limiter [35] given by

φ(θxi,j)=
(|θx i,j|+θx i,j)

1+|θx i,j|
, (4.7a)

θx i,j=
fσ,δ

n
i′+1,j− fσ,δ

n
i′,j

fσ,δ
n
i+1,j− fσ,δ

n
i,j

, i′= i−sgn

(

υσ
∆t

∆x

)

. (4.7b)

The expression of GN
i,j+1/2 can be derived similarly with i′ then becomes i′=i−sgn

(

υδ
∆t
∆y

)

.

Additionally, the comparison between the results generated using WENO3 and those us-
ing TVD will also be given in the later section. After acquiring the macroscopic moments,
we need to update the values of z and T. To solve z(x,y,t), which is the root of equation

Ψ2(z)=2ǫ−Q2(z)

π

( n

Q1(z)

)2
−n(u2

x+u2
y), (4.8)

we can use a range of numerical root finding methods. Note that Eq. (4.8) can be derived
from Eqs. (2.10a)-(2.10d). In this paper, the bisection method is used to solve z from
Eq. (4.8). After z is acquired, we can immediately find T before advancing to the solution
of the next time step.

5 Computational results

In this section we present the results of selected computational tests. Here, we test our
algorithm to solve one-dimensional shock tube flows and two-dimensional Riemann’s
problems of semiclassical gas dynamics.

5.1 One-dimensional shock tube problems

In this problem, a diaphragm, which is located at x=0.5, separating two regions of gases
of arbitrary statistics, each remains in a constant equilibrium state at initial time t=0. The
macroscopic properties on both sides of the diaphragm are different. Then the diaphragm
is removed and flow structures consisting of moving shock wave, contact discontinuity
and expansion fan are generated.
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Figure 1: Geometry of the 2-D Riemann’s problems set up.

5.1.1 Mesh refinement

As the computational grid mesh is refined, a correct algorithm should give the numer-
ical truncation error decreased. This results in sharper flow profiles especially in re-
gions where rarefaction fans, contact discontinuities and shocks are present. We spec-
ified the initial condition for Fermion gas at the left side and right side respectively to be
(nl,ul,Tl) = (0.724,0,4.38) and (nr,ur,Tr) = (0.589,0,8.97) which correspond to zl = 0.225
and zr = 0.12. In this mesh refinement test, three uniform grid systems are used with
100 , 200 and 400 cells. The flow is computed with CFL = 0.2 and Knudsen number
Kn=0.0001 and the results are output at t=0.1. In this example, we define the Knudsen
number based on the relation Kn=λ∞/L which indicates the degree of rarefaction of the
gas flow. The characteristic length chosen for this case is the length of the shock tube, i.e.,
1. Hence by choosing a specific Knudsen number, we automatically specify the mean free

path. Here, the relaxation time will vary with Kn number according to τ= 5
√

πKn

8nT(1−χ)

Q1(z)
Q2(z)

,

where χ=1. The quadrature method used in this example is Gauss-Hermite with 20 dis-
crete velocity points and the WENO3 method is used. Fig. 2 shows the grid convergence
of density profiles with the main features of shock tube flow, namely, shock wave, contact
discontinuity and expansion fan all well captured. We remark that even small Kn=0.0001
is used there still exists some physical viscosity so that the flow profiles are not so sharp
as that of the Euler solution. As can be observed from these results, the use of 100 cells
for this case is adequate.

5.1.2 Application of varying Knudsen numbers

The initial condition specified here is applied to Fermion gas with the same values as
those set in the first and second test cases except for the application of varying Knudsen
numbers ranging from 0.1 to 0.0001. The profiles are compared to those acquired in the
Euler limit in which f = f (0) so that the source term vanishes automatically. Fig. 3 shows
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Figure 2: Mesh refinement test. Figure 3: Application of different Knudsen numbers.

flow profiles converge into that solved in the Euler limit as Knudsen number decreases.
The effect of rarefaction on the shock tube flow is seen for Kn=0.1,0.01, and 0.001. For
such condition (close to the transitional flow regime), the shock profiles are not as con-
spicuous as they are for a smaller Knudsen number e.g., Kn=0.0001.

5.1.3 Recovery to classical limit

In this example, we fix the initial condition as applied in the first, second and third test
cases except for the initial fugacities which are decreased on both sides. We respectively
set zl=0.01126 and zr=0.006. This is to show how gases of quantum statistics will recover
to classical limit under low fugacity. We can see in Fig. 4 that the profiles of density of
the three statistics become closer to each other except for some small deviations as the
fugacities are decreased. It is noted that the result of Maxwell-Boltzmann gas lies always
between that of Fermi-Dirac gas and Bose-Einstein gas.

5.1.4 Comparison with TVD scheme

In this example, the comparison of the results generated by WENO3 and that by TVD
is given. The treatment of discrete velocity space and grid points are the same for the
two schemes compared. Here, van Leer limiter is applied in the TVD scheme to generate
second order accurate solution. The grid points used are 100 and the initial conditions are
set to be the same with those of the first example for Fermion gas. The relaxation time is
set to be relatively small (τ=0.0001) so that the physical dissipation will not dominate the
results. In Fig. 5, we can observe that the result generated by WENO3 is slightly superior
to that of the second-order TVD scheme. We note that the small difference between TVD
and WENO3 in this case is due to the existence of physical viscosity in the flow. For Euler
solution without physical viscosity, the profiles obtained by WENO3 will be sharper than
that by TVD scheme.
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Figure 4: Test on low fugacities (recovery to classical
limit).

Figure 5: Comparison with TVD scheme on case:
τ=0.0001.

5.2 Two-dimensional Riemann problems

Following the works of Lax and Liu, [22] and Schultz-Rinne et al. [31], we selected sev-
eral configurations to be tested among those of the above-cited papers. In the Riemann
problems of two-dimensional gas dynamics, the initial state is in equilibrium and kept
constant in each of the four quadrants. See the illustration in Fig. 1. The set up is made so

that only one elementary wave, a 1-D shock, ~S, a 1-D rarefaction wave, ~R, or a 2-D contact
discontinuity, J, appears at each interface. To satisfy these constraints, the set initial data
must satisfy the Rankine-Hugoniot relations i.e., for a given left an right state (denoted
by the indices l and r), we define

Φlr =
2
√

γ

γ−1

(
√

Pl

nl
−
√

Pr

nr

)

, (5.1a)

Ψ2
lr =

(Pl−Pr)(nl−nr)

nlnr
, Ψlr >0, (5.1b)

Πlr =

(

Pl

Pr
+
(γ−1)

(γ+1)

)

/

(

1+
(γ−1)Pl

(γ+1)Pr

)

. (5.1c)

For cases that include rarefaction waves or shocks, these equations are respectively ap-
plied,

nl/nr =(Pl/Pr)
1/γ or nl/nr =Πlr . (5.2)

In this two-dimensional formulation, γ=2 is chosen. All cases are tested with both 200×
200 and 400×400 spatial grid points with υσ = υ1,υ2,··· ,υ20 and υδ = υ1,υ2,··· ,υ20. As an
addition to the application of WENO3, results generated with TVD will also be shown for
comparison purpose. Van Leer’s limiter is applied to generate a second order accuracy in
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Figure 6: Comparison with TVD scheme on Euler limit.

x and y for the case of TVD. In the case of Euler solutions, it is assumed that fσ,δ = f
eq
σ,δ so

that the collision term automatically vanishes, thus yields an Euler limit solution. We will
also apply various values of constant relaxation times to achieve Navier-Stokes solution.

5.2.1 Tests on the three statistics with the setup of config. 13

In this subsection, we test the class of 2-D Riemann’s problem with the following initial
set up for configuration 13,

J21,
←

S32, J34,
→

S41, P1=P2>P3=P4 , (5.3a)

ux1=ux2=ux3=ux4 , (5.3b)

uy4−uy1=Ψ41, uy3−uy2=Ψ32 . (5.3c)

The initial conditions set in the four quadrants are

z2 =0.4253 uy2=0.3
ux2=0 T2=1.1494

,
z1=0.142 uy1=−0.3

ux1=0 T1=2.0782
, (5.4a)

z3 =0.4448 uy3=0.697
ux3=0 T3=0.7083

,
z4=0.151 uy4=0.26254

ux4=0 T4=1.273
. (5.4b)

We shall expect the slip lines J21 and J34 to separate the solution into a left and right sec-

tion while the shocks
←

S32 and
→

S41 to propagate with their respective set velocities. The
results are generated with 200×200 grid points using WENO3 scheme in two space di-
mensions. All figures are displayed with 30 contour lines. Here, a constant relaxation
time τ= 0.0001 is applied for the cases of all the three statistics with CFL number set to
be 0.1. In Figs. 7 to 12, we can see the plots of density of all the three statistics along with
pressure plot for the case of Fermi gas and fugacity plots for the case of the other two
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Figure 7: Density contour of Configuration 13:
Maxwell-Boltzmann with WENO3 scheme. τ=
0.0001.

Figure 8: Fugacity contour of Configuration 13:
Maxwell-Boltzmann with WENO3 scheme. τ=
0.0001.

Figure 9: Density contour of Configuration 13:
Fermi-Dirac with WENO3 scheme. τ=0.0001.

Figure 10: Pressure contour of Configuration
13: Fermi-Dirac with WENO3 scheme. τ =
0.0001.

Figure 11: Density contour of Configuration
13: Bose-Einstein with WENO3 scheme. τ =
0.0001.

Figure 12: Fugacity contour of Configuration
13: Bose-Einstein with WENO3 scheme. τ =
0.0001.
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statistics. The color legends are given with which we can observe the values of densi-
ties, fugacities and pressure. The top and bottom peaks of Maxwell-Boltzmann density
values, as one can see from the figures, are higher than Fermi-Dirac gas and is lower
than Bose-Einstein gas. Aside from value differences between the three statistics, from
the density contours in these figures it can be seen that the roll-ups of slip lines in Bose-
Einstein gas make the biggest vortex followed respectively by Maxwell-Boltzmann and
Fermi-Dirac gases. The difference could be attributed to the different particle effects be-
tween these three statistics which generates different viscosities. Additionally, one can
refer to [32, 41] to see the effect of different particle statistics. The shown results are in a
good agreement with those discussed in the work of Lax [22]. However, the additional
application of relaxation time τ=0.0001 and less usage of grid points (200×200) result in
more smeared profiles of densities. In addition to the previous works, we are able to pro-
vide the plots of fugacity contours which in this case displayed for Maxwell-Boltzmann
and Bose-Einstein gases.

5.2.2 Application of various constant relaxation times

We now test the algorithm with the application of varying constant relaxation times. Al-
though an application of constant relaxation times is more of a numerical test rather than
physical, we can still show that, based on the relation τ=η/P that this present algorithm
can yield an analysis that includes the effect of physical viscosity. In this test, 200×200
grid points in x and y directions along with WENO3 scheme are used in the computation.
20×20 points of abscissas along with the Gauss-Hermite quadrature rule are applied. The
Configuration 17 is simulated with the following initial setup: Configuration 17.

J21,
←

S32, J34,
→

R41, P1=P2>P3=P4 , (5.5a)

ux1=ux2=ux3=ux4 , (5.5b)

uy4−uy1=Φ41 , uy3−uy2=Ψ32 , (5.5c)

and

z2=0.37 uy2=−0.3
ux2=0 T2=1.25

,
z1=0.14 uy1=−0.4
ux1=0.1 T1=2.08

, (5.6a)

z3=0.38 uy3=0.12
ux3=0 T3=0.77

,
z4=0.14 uy4=−0.98
ux4=0 T4=1.31

. (5.6b)

In this configuration, shock, slip discontinuity and rarefaction fan are expected to be seen
propagating from interfaces of the four quadrants. A shock shall be seen propagating
through quadrants 3 and 2, rarefaction fan through quadrants 4 and 1 and slip disconti-
nuities through quadrants 2 and 1 and through quadrants 4 and 1. In Figs. 13 and 14 we
can see the density plot of Configuration 17 for Maxwell-Boltzmann gases with the appli-
cation of τ=0.0005 and τ=0.01. In these figures, we see more of the effect of dissipation
as the value of τ increases. For example, at τ = 0.01 we can see how the flow profiles
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Figure 13: τ= 0.01, density contour. Application
of different values of Relaxation times on Maxwell-
Boltzmann gas (Config. 17).

Figure 14: τ = 0.0005, density contour. Appli-
cation of different values of Relaxation times on
Maxwell-Boltzmann gas (Config. 17).

become very smeared compared to the results with smaller relaxation time values. In the
application of BGK source terms in these range tested in this paper, we did not experi-
ence stiffness problems due to source terms. However, we are aware that such problem
can possibly appear under different circumstances. Interested reader could refer to the
work of Shi [18–20] which describes a method to tackle stiffness problem.

5.3 Mesh refinement and comparison to TVD scheme

In this subsection, we present the results using refined grid mesh of 400×400 points
using (i) WENO3 scheme and (ii) TVD scheme for the purpose of comparison. Here,
the usage of TVD scheme instead of WENO3 scheme is the only difference between the
two cases, while other initial attributes are applied similarly. Note that all the previous
two dimensional examples shown are generated using 200×200 grid points. Thus this
example also gives us an illustration of high mesh points convergence. The problem is
initially set for Bose gas with τ= 0.0001. The initial condition of Bose gas is adjusted to

Figure 15: Density contour using TVD spatial dis-
cretization on configuration 5. τ=0.0001.

Figure 16: Density contour using WENO3 spatial
discretization on configuration 5. τ=0.0001.
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that of configuration 5, i.e., Configuration 5.

J21, J32, J34, J41 , P1=P2=P3=P4 , (5.7a)

ux1=ux2<ux3=ux4 , uy1=uy4<uy3=uy2 , (5.7b)

and

z2=0.4253 uy2=0.5
ux2=−0.75 T2=1.1494

,
z1=0.142 uy1=−0.5

ux1=−0.75 T1=2.078
, (5.8a)

z3 =0.142 uy3=0.5
ux3=0.75 T3=2.078

,
z4=0.6635 uy4=−0.5
ux4=0.75 T4=0.8768

. (5.8b)

Here, only slip discontinuities are expected to propagate from each interfaces. The CFL
numbers are set to be 0.1. The quadrature rule used is Gauss-Hermite rule with 20 abscis-
sas both in υx and υy directions. In Figs. 15 and 16, due to the difference in the order of
accuracy, we can see the comparison in which WENO3 outperform TVD in terms of flow
profiles sharpness when considered under the same numerical treatment. Note that the
purpose of the authors is not to subordinate TVD in comparison to WENO3 since these
two methods are of two different order of accuracy. Although the kind of gas used in
this example is Bose gas, the results are comparable to the earlier work of Lax [22] (clas-
sical gas) in terms of the expected form of flows. Note that the application of constant
relaxation time, although small, contribute to a more diffusive form of flows.

6 Concluding remarks

In this work, an accurate algorithm for solving the initial value problems of the semiclas-
sical Boltzmann-BGK transport equation using the discrete ordinate method and fifth-
order accurate WENO3 scheme is presented. The former is used to remove the depen-
dency of the distribution functions on molecular velocity while the latter is used to solve
a set of discretized conservation laws with source terms. The results see the method ap-
plied to one-dimensional shock tube problems and two-dimensional Riemann problems
for dilute gas flows of arbitrary particle statistics. Different aspects of the present algo-
rithm are tested including ranges of constant relaxation time values, various Knudsen
numbers and physical relaxation times. These computational examples serve the pur-
pose of testing the robustness of the present method. The demonstration of how Fermi
and Bose gas will behave in the low fugacities is also given and explained. When the
flow Knudsen number is small in the continuum regime, all the expected flow profiles
comprising shock, rarefaction wave and contact discontinuities in both one- and two-
dimensional examples can be seen with considerably good details and are in good agree-
ment with available results. Moreover, with this algorithm, we are able to present the
fugacity plots even for gases within Maxwell-Boltzmann statistics. The feasibility of this
algorithm and its capability in describing the gas flows of arbitrary particle statistics in
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various flow regimes have been illustrated without much major constraints. The present
work emphasizes on building the unified and parallel framework for treating semiclas-
sical rarefied gas dynamics and examinating the flow physics of the three different gas
particle statistics under the same hydrodynamic flow conditions. Specific application to
different individual carrier in specific physical problem can be individually investigated
such as electrons transport [7, 26] or phonons [15] or the electron-phonon transport [29]
and will be the subject of future endeavor. Direct extension to three-dimensional cases
and more complex geometries in general coordinates are straightforward and will be re-
ported elsewhere.

Acknowledgments

The authors thank Dr. J. C. Huang and Dr. Y. H. Shi for many fruitful discussions.
The authors would also like to acknowledge the National Center for High-Performance
Computing in providing resources under the national project Knowledge Innovation Na-
tional Grid in Taiwan. This work is done under the auspices of National Science Council,
TAIWAN through grants NSC-99-2922-I-606-002 and CQSE subproject No. 5 99R-80873.
Z. H. Li and H. X. Zhang would like to thank the support by project No. 599R-80873 and
by National Nature Science Foundation of China under grant No. 91016027.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo print-
ing edition, 1964.

[2] M. G. Ancona and G. J. Iafrate. Quantum correction to the equation of state of an electron
gas in a semiconductor. Phys. Rev. B, 39(13):9536–9540, May 1989.

[3] M. G. Ancona and H. F. Tiersten. Macroscopic physics of the silicon inversion layer. Phys.
Rev. B, 35(15):7959–7965, May 1987.

[4] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i. small
amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–
525, May 1954.

[5] J. A. Carrillo, I. M. Gamba, A. Majorana, and C.-W. Shu. A weno-solver for the 1d non-
stationary boltzmannVpoisson system for semiconductor devices. Journal of Computational
Electronics, 1:365–370, 2002. 10.1023/A:1020751624960.

[6] J. A. Carrillo, I. M. Gamba, A. Majorana, and C.-W. Shu. A direct solver for 2d non-
stationary boltzmann-poisson systems for semiconductor devices: A mesfet simulation
by weno-boltzmann schemes. Journal of Computational Electronics, 2:375–380, 2003.
10.1023/B:JCEL.0000011455.74817.35.

[7] J. A. Carrillo, I. M. Gamba, A. Majorana, and C.-W. Shu. A weno-solver for the transients of
boltzmann-poisson system for semiconductor devices: performance and comparisons with
monte carlo methods. Journal of Computational Physics, 184(2):498 – 525, 2003.



J.-Y. Yang et al. / Commun. Comput. Phys., 14 (2013), pp. 242-264 263

[8] S. Chapman and T. G. Cowling. The mathematical theory of non-uniform gases: an account
of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge
University Press, 1970.

[9] G. Chen. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons,
Molecules, Phonons, and Photons (Mit-Pappalardo Series in Mechanical Engineering). Ox-
ford University Press, USA, Mar. 2005.

[10] X. G. Deng and H. X. Zhang. Developing high-order weighted compact nonlinear schemes.
Journal of Computational Physics, 165:24–44, 2000.

[11] E. Fatemi and F. Odeh. Upwind finite difference solution of boltzmann equation applied to
electron transport in semiconductor devices. Journal of Computational Physics, 108(2):209
– 217, 1993.

[12] C. L. Gardner. The quantum hydrodynamic model for semiconductor devices. SIAM J.
Appl. Math., 54(2):409–427, 1994.

[13] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computa-
tional Physics, 49(3):357 – 393, 1983.

[14] A. Harten and P. D. Lax. On a class of high resolution total-variation-stable finite-difference
schemes. SIAM Journal on Numerical Analysis, 21(1):pp. 1–23, 1984.

[15] T.-Y. Hsieh and J.-Y. Yang. Thermal conductivity modeling of circular-wire nanocomposites.
Journal of Applied Physics, 108:044306, 2010.

[16] A. B. Huang and D. P. Giddens. The Discrete Ordinate Method for the Linearized Boundary
Value Problems in Kinetic Theory of Gases. In C. L. Brundin, editor, Rarefied Gas Dynamics,
Volume 1, pages 481–+, 1967.

[17] G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher, and E. Tadmor. High-resolution nonoscillatory
central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM Journal
on Numerical Analysis, 35(6):pp. 2147–2168, 1998.

[18] S. Jin. Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms. J.
Comput. Phys, 122:51–67, 1995.

[19] S. Jin and C. D. Levermore. Numerical schemes for hyperbolic conservation laws with stiff
relaxation terms. J. Comput. Phys, 126:449–467, 1996.

[20] S. Jin and Z. P. Xin. The relaxation schemes for systems of conservation laws in arbitrary
space dimensions. Communications on Pure and Applied Mathematics, 48:235, 2006.

[21] L. P. Kadanoff and G. Baym. Quantum Statistical Mechanics. Benjamin, New York, 1962.
[22] P. D. Lax and X. D. Liu. Solution of two dimensional riemann problem of gas dynamics by

positive schemes. SIAM J. Sci. Comput, 19:319–340, 1995.
[23] Z.-H. Li and H.-X. Zhang. Numerical investigation from rarefied flow to continuum by

solving the boltzmann model equation. Intern. J. Numer. Fluids, 42:361–382, 2003.
[24] Z.-H. Li and H.-X. Zhang. Study on gas kinetic unified algorithm for flows from rarefied

transition to continuum. Journal of Computational Physics, 193:708–738, 2004.
[25] M. Lundstrom. Fundamentals of Carrier Transport. Cambridge University Press, 2nd edi-

tion, 2000.
[26] A. Majorana and R. M. Pidatella. A finite difference scheme solving the boltzmann-poisson

system for semiconductor devices: Volume 174, number 2 (2001), pages 649-668. Journal of
Computational Physics, 177(2):450 – 450, 2002.

[27] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, 1
edition, 2002.

[28] T. Nikuni and A. Griffin. Hydrodynamic damping in trapped bose gases. Journal of Low
Temperature Physics, 111:793–814, 1998.



264 J.-Y. Yang et al. / Commun. Comput. Phys., 14 (2013), pp. 242-264

[29] A. Pattamatta and C. K. Madnia. Modeling electron-phonon nonequilibrium in gold films
using boltzmann transport model. Journal of Heat Transfer, 131:082401–1, 2009.

[30] S. Scaldaferri, G. Curatola, and G. Iannaccone. Direct solution of the boltzmann transport
equation and poisson schrodinger equation for nanoscale mosfets. IEEE Transaction on
Electron Devices, 54:2901, 2007.

[31] C. W. Schultz-Rinne, J. P. Collins, and H. M. Glaz. Numerical solution of the riemann prob-
lem for two-dimensional gas dynamics. SIAM J. Sci. Comput., 14(6):1394–1414, 1993.

[32] Y. H. Shi and J. Y. Yang. A gas kinetic bgk scheme for semiclassical boltzmann hydrodynamic
transport. Journal of Computational Physics, 227(22):9389 – 9407, 2008.

[33] B. Shizgal. A gaussian quadrature procedure for use in the solution of the boltzmann equa-
tion and related problems. Journal of Computational Physics, 41(2):309 – 328, 1981.

[34] E. A. Uehling and G. E. Uhlenbeck. Transport phenomena in einstein-bose and fermi-dirac
gases. i. Phys. Rev., 43(7):552–561, Apr 1933.

[35] B. van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel
to godunov’s method. Journal of Computational Physics, 32(1):101 – 136, 1979.

[36] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev.,
40(5):749–759, Jun 1932.

[37] D. L. Woolard, H. Tian, M. A. Littlejohn, K. W. Kim, R. J. Trew, M. K. Ieong, and T. W.
Tang. Construction of higher-moment terms in the hydrodynamic electron transport model.
Journal of Applied Physics, 74(10):6197 –6207, nov 1993.

[38] Z. Xu and C.-W. Shu. Anti-diffusive flux corrections for high order finite difference weno
schemes. Journal of Computational Physics, 205(2):458 – 485, 2005.

[39] J. Y. Yang, T. Y. Hsieh, and Y. H. Shi. Kinetic flux vector splitting schemes for ideal quantum
gas dynamics. SIAM J. Sci. Comput., 29(1):221–244, 2007.

[40] J. Y. Yang and J. C. Huang. Rarefied flow computations using nonlinear model boltzmann
equations. Journal of Computational Physics, 120(2):323 – 339, 1995.

[41] J. Y. Yang and Y. H. Shi. A kinetic beam scheme for ideal quantum gas dynamics.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,
462(2069):1553–1572, 2006.

[42] H.-X. Zhang. Non-oscillatory and non-free-parameter dissipation difference scheme. Acta
Aerodynamica Sinica, 9(6):143–165, 1988.


