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Abstract. The local one-dimensional multisymplectic scheme (LOD-MS) is developed
for the three-dimensional (3D) Gross-Pitaevskii (GP) equation in Bose-Einstein con-
densates. The idea is originated from the advantages of multisymplectic integrators
and from the cheap computational cost of the local one-dimensional (LOD) method.
The 3D GP equation is split into three linear LOD Schrödinger equations and an ex-
actly solvable nonlinear Hamiltonian ODE. The three linear LOD Schrödinger equa-
tions are multisymplectic which can be approximated by multisymplectic integrator
(MI). The conservative properties of the proposed scheme are investigated. It is mass-
preserving. Surprisingly, the scheme preserves the discrete local energy conservation
laws and global energy conservation law if the wave function is variable separable.
This is impossible for conventional MIs in nonlinear Hamiltonian context. The numer-
ical results show that the LOD-MS can simulate the original problems very well. They
are consistent with the numerical analysis.

AMS subject classifications: 65M06, 65M12, 65Z05, 70H15
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1 Introduction

The existence of the Bose-Einstein Condensate (BEC) was predicted in the early 1920s
by Bose and Einstein. It was experimentally created and confirmed until 1995 in atomic
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gas at ultra low temperature [7]. The BEC phenomena can be reported by the mean-
field theory in physics and can be modeled by the well-known Gross-Pitaevskii (GP)
equation [9, 18]

ih̄ut=−
h̄2

2m
∇2u+Vd(x)u+

4πh̄2as

m
|u|2u, x∈R

d, t>0, (1.1)

where m is the atomic mass, h̄ is the Planck constant, as is the s-wave scatting length
(as > 0 for repulsive interaction and as < 0 for attractive interaction), and Vd(x) is the
external potential imposed on the physical system.

For convenience, it is necessary to scale GP equation (1.1) into the dimensionless form

iut =−
1

2
∇2u+Vd(x)u+βd|u|

2u, x∈R
d, t>0, (1.2)

where βd is a real constant, and Vd(x) is the external potential acting on the physical
system which can be periodic

Vd(x)=







1−sin2 x, d=1,

1−sin2 xsin2y, d=2,

1−sin2 xsin2ysin2 z, d=3,

or harmonic

Vd(x)=



















γ2
xx2

2 , d=1,

γ2
xx2+γ2

yy2

2 , d=2,

γ2
xx2+γ2

yy2+γ2
zz2

2 , d=3,

with the trapped frequencies γx,γy,γz in x-, y- and z-direction, respectively.
We consider the Cauchy problem of GP equation (1.2) with the initial value

u(x,0)=u0(x), x∈R
d. (1.3)

By direct calculation, one can derive that the GP equation (1.2)-(1.3) endows with the
following two important invariants: the first one is mass invariant

Q(t)=
∫

Rd
|u(x,t)|2dx=

∫

Rd
|u(x,0)|2dx=Q(0), (1.4)

and the second one is energy invariant

E(t)=
∫

Rd

[

1

2
|▽u(x,t)|2+Vd(x)|u|

2+
βd

2
|u|4

]

dx=E(0). (1.5)

Significant progress on numerical simulation of BEC phenomena has been made over
the last ten years (see [2–4, 8, 14, 20, 23, 24, 27] and references therein). In [2–4], Bao et al.
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presented time-splitting spectral methods for various GP equation with different bound-
ary conditions. Zhang et al. designed local absorbing boundary conditions for GP equa-
tion combined with split-step method [26]. Du and Ju [8] developed a finite volume
method for the Ginzburg-Landau model. Tian et al. [23] considered a completely implicit
multisymplectic structure-preserving scheme for GP equation with vortices. However,
the partition of the considered domain must be crude because of the limitation of the
performance of computer. Islas et al. proposed a multisymplectic spectral method for
the GP equation [14], but it is very difficult in practical computing. Ruprecht et al. [20]
simulated the ground state solution and dynamics of GP equations by Crank-Nicolson
scheme. In [24], Wang presented a split-step difference scheme for GP equation.

Splitting technique has different names in different subjects. It is fractional-step method
in computational fluid dynamics, split-step method in optics, acoustics and nonlinear
PDEs, dimensional splitting, alternative directional method and local one-dimensional
(LOD) method in multidimensional PDEs, etc. In multidimensional context, it was orig-
inally developed for multidimensional parabolic equations by Douglas et al. [16, 17], in-
cluding alternative direction implicit (ADI) method, LOD method. It was generalized to
nonlinear KdV equations by Tappert [22] which split the KdV equations into purely lin-
ear and nonlinear subproblems. Now, it is widely employed for solving nonlinear PDEs
for its simplicity and flexibility, including the GP equation [24]. The method has also been
successfully applied to symplectic geometric integrators [10].

Multisymplectic integrators (MIs) preserving multisymplectic geometric structure are
favorable and applied to many mathematical and physical dynamics (see [1,5,6,12,13,19,
25] and references therein). As is well-known, for general multisymplectic Hamiltonian
system, there are no explicit MIs. Therefore, it is rather difficult to establish an efficient
and approachable MI for multidimensional Hamiltonian systems (d≥2 for instance). To
wipe off the flaw, recently, we developed a novel kind of splitting MIs for intricate or
multidimensional Hamiltonian PDEs (MHPDEs) [11,15]. The method makes neither non-
linear iterative nor expensive algebraic systems. The basic thought of the method is to
decompose the original MHPDEs into several LOD HPDEs. Then we approximate them
by MIs, which preserve discrete LOD multisymplectic conservation laws. We call the
method LOD-MS for multidimensional MHPDEs. In this paper, we investigate LOD-MS
for the GP equation (1.2).

The general 3D MHPDE reads

Mzt+
3

∑
j=1

Kjzxj
=∇zS(z), (1.6)

where M,Kj (j=1,2,3) are skew-symmetric matrices, and S(z) is a smooth function which
is called Hamiltonian function. It is easy to derive that the multisymplectic system (1.6)
satisfies the following local conservation laws:
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• Multisymplectic conservation law (MCL)

∂

∂t
ω+

3

∑
j=1

∂

∂xj
κj =0,

with the symplectic density and symplectic fluxes

ω=dz∧Mdz, κj =dz∧Kjdz, j=1,2,3.

• Local energy conservation law (LECL)

∂

∂t
E(z)+∇·F(z)=0,

where the energy density E(z) and energy flux F(z) are

E(z)=S(z)−
1

2

3

∑
j=1

zTKjzxj
, F(z)=(F1,F2,F3)

T,

Fj(z)=
1

2
zTKjzt, j=1,2,3.

The local conservation laws suggest that the density and fluxes can vary from time to
time and from point to point. Nevertheless, the density increment in time must be equal
to the flux increment at every space point.

The outline of the paper is planned as follows: In Section 2, we give a brief overview
on the splitting method and multisymplectic Runge-Kutta (RK) methods. Section 3 is
about the multisymplectic structure and its LOD multisymplectic structure of the GP
equation (1.2). The conservation laws of the structures are discussed in the section. In
Section 4, based on the established LOD multisymplectic structure of the GP equation
in Section 3, we develop LOD-MS I and LOD-MS II. The splitting error of the former is
of first-order and the latter is of second-order. The conservative properties and stability
of the LOD-MS are investigated in Section 5. In Section 6, some numerical examples are
reported to verify the numerical behavior of the new developed LOD-MS. Finally, some
conclusions and remarks come into being in Section 7.

2 Review of splitting methods and Runge-Kutta type MIs

As we know that one can only construct explicit partitioned RK type MIs for separa-
ble MHPDEs [19]. However, most MHPDEs are inseparable. In other words, we can only
construct completely implicit MIs for them. In consideration of stability, implicit schemes
are superior to explicit ones. In this section, we give a brief review for the splitting meth-
ods and the RK type MIs.
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Firstly, we give a short retrospection of the splitting method. The basic point in split-
ting method is to decouple the original mathematical model into a group of appropriate
subproblems. Then one solves the subproblems in a given sequence approximately or
accurately. The solver of the preceding subproblem is employed as the initial value of
the rear. The mathematical description of the thought is as follows. Consider the initial
value problem







∂

∂t
u(t)=Au(t)=(L+N )u(t),

u(0)=u0,

(2.1)

where A,L and N are spatial operators. The formal solution of the initial value problem
(2.1) is

u(t)=exp(tA)u0=exp(t(L+N ))u0. (2.2)

The computational of exponential operator exp(t(L+N )) is very difficult or very ex-
pensive regularly. However, the exponential operators exp(tL) and exp(tN ), which are
formal solution operators of the simpler procedures

∂

∂t
u(t)=Lu(t), (2.3)

∂

∂t
u(t)=N u(t), (2.4)

respectively, may be computed either more easily or accurately. We resolve the sim-
pler problems (2.3) and (2.4) in a given sequence instead of solving the original prob-
lem (2.1) directly. Generally speaking, exp(t(L+N )) 6=exp(tL)exp(tN ) due to the non-
commutativity between L and N . Suppose τ be the time step size, tn = nτ, the two
frequently used sequences are:

• First-order version: Lie-Trotter splitting

u(tn)=exp(τ(L+N ))u(tn−1)≈exp(τL)exp(τN )u(tn−1)

≈ [exp(τL)exp(τN )]n u0. (2.5)

• Second-order version: Strang splitting [21]

u(tn)≈exp
(τ

2
L
)

exp(τN )exp
(τ

2
L
)

u(tn−1)

≈exp
(τ

2
L
)

exp(τN )exp(τL)exp(τN )exp
(τ

2
L
)

u(tn−2)

≈exp
(τ

2
L
)

[exp(τN )exp(τL)]n−1
exp(τN )exp

(τ

2
L
)

u0. (2.6)
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By the Baker-Campbell-Hausdorf (BCH) formula, the time-splitting error of the first ver-
sion (2.5) and the second version (2.6) are of first-order and second-order, respectively.

An s-stage RK method for a general Hamiltonian system

d

dt
z= J∇z H(z), (2.7)

is














K j =zn+τ
s

∑
l=1

ajl J∇zH(Kl), j=1,2,··· ,s,

zn+1=zn+τ
s

∑
j=1

bj J∇zH(K j),
(2.8)

where J is the standard symplectic matrix, and τ is the step length of the method, H(z) is
the Hamiltonian function, and ajl ,bj are undetermined weighted factors.

Proposition 2.1 ([10]). An s-stage RK method (2.8) for (2.7) is symplectic if

aljbl+ajlbj−blbj =0, for any l, j=1,2,··· ,s. (2.9)

For s=1, one has the midpoint rule

zn+1=zn+τ J∇z H
(

zn+1/2
)

, where zn+1/2=
1

2
(zn+zn+1), (2.10)

which is symplectic.
For a general one-dimensional multisymplectic Hamiltonian system

Mzt+Kzx =∇zS(z), (2.11)

where M and K are skew-symmetric matrices, and S(z) is some smooth functional, con-
catenating a pair of symplectic RK integrators in space and time directions, it results in
a MI [19]. For example, if one discretizes the system (2.11) by a pair of midpoint rules
(2.10) it achieves

Mδtz
n+1/2
j+1/2 +Kδxzn+1/2

j+1/2 =∇zS(zn+1/2
j+1/2 ), (2.12)

where δsz
n+1/2
j+1/2 is the centered quotient in the s-direction with s being either x or t, and

zn+1/2
j+1/2 =

1

2

(

zn+1/2
j+1 +zn+1/2

j

)

=
1

4

(

zn+1
j+1 +zn

j+1+zn+1
j +zn

j

)

.

The midpoint scheme (2.12) is multisymplectic, that is to say, it satisfies the discrete
MCL [5, 19]

ωn+1
j+1/2−ωn

j+1/2

τ
+

κn+1/2
j+1 −κn+1/2

j

h
=0. (2.13)
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For simplicity, we set the spatial domain be [0,h]3, that is, the spatial index (j,k,l) :≡
(0,0,0). For the 3D Hamiltonian system (1.6), one can devise MIs for it, such as the cen-
tered box scheme [19]

Mδtz
n+ 1

2
1
2 , 1

2 , 1
2

+
3

∑
m=1

Kmδxm z
n+ 1

2
1
2 , 1

2 , 1
2

=∇zS
(

z
n+ 1

2
1
2 , 1

2 , 1
2

)

, (2.14)

where δsz
n+1/2
1
2 , 1

2 , 1
2

is the centered quotient in the s-direction with s being either x1,x2,x3 or t,

and zn
j,k,l is an approximation of function z(x1,x2,x3,t) at node (x1 j,x2k,x3l ,t

n). However,

this scheme is rather inefficient and resource consuming. In a manner, it is inapproach-
able due to the limitation of the power of computer. We turn to the LOD-MS [15].

For general cases, it is very hard in establishing approachable MIs for the MHPDE
(1.6) as what was alleged previously. We split them into several LOD MHPDEs as follows:

Mzt+Kjzxj
=∇zSj(z), j=1,2,3, (2.15)

where S1(z)+S2(z)+S3(z) = S(z), and M,Kj and z may be either the same as those in
(1.6) or different from them. This can be observed from [11, 15]. It is obvious that the
LOD HPDEs (2.15) fulfill the LOD MCLs and LOD LECLs

∂

∂t
ω+

∂

∂xj
κj =0, j=1,2,3, (2.16)

∂

∂t
E+

∂

∂xj
Fj =0, j=1,2,3. (2.17)

Certainly, one can further decompose one or more of the LOD MHPDEs (2.15) into sim-
pler ones if necessary, such as linear subproblem and nonlinear subproblem [11].

3 Multisymplectic structure for GP equation

In this section, we investigate the multisymplectic structure and LOD multisymplectic
formulation for the 3D GP equation,

iut=[L+N(V,|u|2)]u=(Lx+Ly+Lz)u+N(V,|u|2)u, (3.1)

where Lx=− 1
2 ∂xx, Ly=− 1

2 ∂yy, Lz=− 1
2 ∂zz are linear differential operators, and N(V,|u|2)=

V(x,y,z)+β|u|2 is a nonlinear operator.

To reformulate the GP equation (3.1) into the form (1.6), we suppose u = p+iq and
introduces the conjugate momenta px =v, qx =w, py = ϕ, qy =ψ, pz = ζ, qz =η. Thus, the
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GP equation can be cast into the multisymplectic Hamiltonian system,































































−qt+
1

2
(vx+ϕy+ζz)=V(x,y,z)p+β(p2+q2)p,

pt+
1

2
(wx+ψy+ηz)=V(x,y,z)q+β(p2+q2)q,

−
1

2
px =−

1

2
v, −

1

2
qx =−

1

2
w,

−
1

2
py =−

1

2
ϕ, −

1

2
qy=−

1

2
ψ,

−
1

2
pz =−

1

2
ζ, −

1

2
qz =−

1

2
η,

(3.2)

with z=[p,q,v,w,ϕ,ψ,ζ,η]T , and the skew-symmetric matrices

M=

[

J4 04

04 04

]

, K1=
1

2

[

L4 04

04 04

]

, K2=
1

2

[

04 C4

−C4 04

]

, K3=
1

2

[

04 D4

−D4 04

]

.

Here

J4 =









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









, L4=

[

02 I2

−I2 02

]

, C4=

[

I2 02

02 02

]

, D4=

[

02 I2

02 02

]

,

where In and 0n are n×n identity matrix and zeros matrix, respectively.

The Hamiltonian function is

S(z)=
1

4

[

2V(x,y,z)(p2+q2)+β(p2+q2)2−(v2+w2+ϕ2+ψ2+ζ2+η2)
]

.

By straightforward calculation, the symplectic structures are

ω=dq∧dp, κ1 =
1

2
(dp∧dv+dq∧dw),

κ2 =
1

2
(dp∧dϕ+dq∧dψ), κ3 =

1

2
(dp∧dζ+dq∧dη),

and the energy density and energy fluxes are

E(z)=2V(x,y,z)(p2+q2)+β(p2+q2)2+(v2+w2+ϕ2+ψ2+ζ2+η2),

F1(z)=−2(ptv+qtw), F2(z)=−2(pt ϕ+qtψ), F3(z)=−2(ptζ+qtη).

As was stated previously, it was very difficult in developing practical MIs for the non-
separable MHPDE (3.2). In view of the importance of MI, we split (3.2) into the following
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LOD PDEs

iut =−
1

2
uxx= Lxu, (3.3)

iut =−
1

2
uyy= Lyu, (3.4)

iut =−
1

2
uzz= Lzu, (3.5)

iut =[V(x,y,z)+β|u|2]u=N(V,|u|2)u. (3.6)

The LOD PDEs (3.3), (3.4), (3.5) can be written in the LOD multisymplectic formulation

J4
∂

∂t
zj+L4

∂

∂xj
zj =∇zj

Sj(zj), j=1,2,3, (3.7)

where x1= x, x2 =y, x3= z, and z1=(p,q,v,w)T , z2 =(p,q,ϕ,ψ)T, z3=(p,q,ζ,η)T ,with the
Hamiltonian functions

S1(z)=−
1

4
(v2+w2), S2(z)=−

1

4
(ϕ2+ψ2), S3(z)=−

1

4
(ζ2+η2).

The nonlinear subproblem (3.6) degenerates to the Hamiltonian formulation

d

dt
ẑ= J−1∇ẑH(ẑ), ∀x,y,z, (3.8)

where

ẑ=(p,q)T , J=

[

0 −1
1 0

]

,

and the Hamiltonian function is

H(ẑ)=
1

4
[2V(x,y,z)(p2+q2)+β(p2+q2)2].

Accordingly, the LOD MHPDEs (3.3), (3.4), (3.5), (3.6) satisfy the following LOD
MCLs

∂

∂t
(dq∧dp)+

∂

∂x
(dp∧dv+dq∧dw)=0, ∀y,z, (3.9)

∂

∂t
(dq∧dp)+

∂

∂y
(dp∧dϕ+dq∧dψ)=0, ∀x,z, (3.10)

∂

∂t
(dq∧dp)+

∂

∂z
(dp∧dζ+dq∧dη)=0, ∀x,y, (3.11)

d

dt
(dq∧dp)=0, ∀x,y,z,t, (3.12)
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respectively, and the LOD LECLs

∂

∂t
E1+

∂

∂x
F1=

∂

∂t
(v2+w2)−2

∂

∂x
(vpt+wqt)=0, ∀y,z, (3.13)

∂

∂t
E2+

∂

∂y
F2=

∂

∂t
(ϕ2+ψ2)−2

∂

∂y
(ϕpt+ψqt)=0, ∀x,z, (3.14)

∂

∂t
E3+

∂

∂z
F3=

∂

∂t
(ζ2+η2)−2

∂

∂z
(ζpt+ηqt)=0, ∀x,y, (3.15)

d

dt
[2V(x,y,z)(p2+q2)+β(p2+q2)2]=0, ∀x,y,z,t, (3.16)

respectively. Moreover, for the nonlinear Hamiltonian system (3.6), one has the point-
wise mass conservation law

|u(x,y,z,t)|2 = |u(x,y,z,0)|2, ∀x,y,z,t, (3.17)

which makes the subproblem exactly solvable by the method of separating variables.

4 LOD-MS for the GP equation

We can approximate the LOD MHPDEs (3.3)-(3.5) by some pairs of symplectic RK meth-
ods. This type of methods will make them satisfy discrete LOD MCLs [15].

We approximate the LOD MHPDEs (3.3), (3.4), (3.5) by the midpoint rule (2.12) and
have



































−
q∗1

2 ,0,0
−qn

1
2 ,0,0

τ + 1
2

v
n∗+ 1

2
1,0,0 −v

n∗+ 1
2

0,0,0

h =0,

p∗1
2 ,0,0

−pn
1
2 ,0,0

τ + 1
2

w
n∗+ 1

2
1,0,0 −w

n∗+ 1
2

0,0,0

h =0,

p
n∗+ 1

2
1,0,0 −p

n∗+1
2

0,0,0

h =v
n∗+ 1

2
1
2 ,0,0

,
q

n∗+ 1
2

1,0,0 −q
n∗+ 1

2
0,0,0

h =w
n∗+ 1

2
1
2 ,0,0

,

(4.1)



































−
q∗∗

0, 1
2 ,0

−q∗
0, 1

2 ,0

τ + 1
2

ϕ
n∗∗+ 1

2
0,1,0 −ϕ

n∗∗+ 1
2

0,0,0

h =0,

p∗∗
0, 1

2 ,0
−p∗

0, 1
2 ,0

τ + 1
2

ψ
n∗∗+ 1

2
0,1,0 −ψ

n∗∗+1
2

0,0,0

h =0,

p
n∗∗+ 1

2
0,1,0 −p

n∗∗+1
2

0,0,0

h = ϕ
n∗∗+ 1

2

0, 1
2 ,0

,
q

n∗∗+ 1
2

0,1,0 −q
n∗∗+1

2
0,0,0

h =ψ
n∗∗+ 1

2

0, 1
2 ,0

,

(4.2)



































−
q∗∗∗

0,0, 1
2

−q∗∗
0,0, 1

2
τ + 1

2

ζ
n∗∗∗+ 1

2
0,0,1 −ζ

n∗∗∗+1
2

0,0,0

h =0,

p∗∗∗
0,0, 1

2

−p∗∗
0,0, 1

2
τ + 1

2

η
n∗∗∗+1

2
0,0,1 −η

n∗∗∗+1
2

0,0,0

h =0,

p
n∗∗∗+1

2
0,0,1 −p

n∗∗∗+1
2

0,0,0

h = ζ
n∗∗∗+ 1

2

0,0, 1
2

,
q

n∗∗∗+1
2

0,0,1 −q
n∗∗∗+1

2
0,0,0

h =η
n∗∗∗+ 1

2

0,0, 1
2

,

(4.3)
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where un∗+ 1
2 = 1

2 (u
n+u∗), un∗∗+ 1

2 = 1
2(u

∗+u∗∗), un∗∗∗+ 1
2 = 1

2(u
∗∗+u∗∗∗). Here we have

neglected the spatial indexes j,k,l.

As usual, the LOD-MS (4.1), (4.2), (4.3) can be coded in the following manner, respec-
tively, by eliminating the conjugate momenta

i
(u∗

j− 1
2 ,kl

+u∗
j+ 1

2 ,kl
)−(un

j− 1
2 ,kl

+un
j+ 1

2 ,kl
)

τ
+δ2

xu
n∗+ 1

2

jkl =0, (4.4)

i
(u∗∗

j,k− 1
2 ,l
+u∗∗

j,k+ 1
2 ,l
)−(u∗

j,k− 1
2 ,l
+u∗

j,k+ 1
2 ,l
)

τ
+δ2

yu
n∗∗+ 1

2

jkl =0, (4.5)

i
(u∗∗∗

jk,l− 1
2

+u∗∗∗
jk,l+ 1

2

)−(u∗∗
jk,l− 1

2

+u∗∗
jk,l+ 1

2

)

τ
+δ2

z u
n+ 1

2

jkl =0, (4.6)

where

δ2
xun

jkl =
un

j+1,kl−2un
jkl+un

j−1,kl

h2
, δ2

yun
jkl =

un
j,k+1,l−2un

jkl+un
j,k−1,l

h2
,

δ2
z un

jkl =
un

jk,l+1−2un
jkl+un

jk,l−1

h2
.

As for the solver of Hamiltonian system (3.6), it can be exactly solved due to the
point-wise conservation law (3.17)

un+1
jkl =exp

(

−i(Vjkl+β|u∗∗∗
jkl |

2)τ
)

u∗∗∗
jkl =exp

(

−iθ∗∗∗jkl

)

u∗∗∗
jkl , (4.7)

where θ∗∗∗jkl =(Vjkl+β|u∗∗∗
jkl |

2)τ.

It can be observed that the scheme (4.4)-(4.7) is the first-order version (2.5). The dis-
crete errors of the scheme (4.4)-(4.6) are of second-order accuracy in both time and space.
The solution (4.7) is accurate. Therefore, the whole errors of the scheme (4.4)-(4.7) is of
first-order in time and second-order in space. To improve the accuracy in time, we com-
posite schemes (4.4)-(4.7) by using the second-order version (2.6) and obtain

i
(u∗

j− 1
2 ,kl

+u∗
j+ 1

2 ,kl
)−(un

j− 1
2 ,kl

+un
j+ 1

2 ,kl
)

τ/2
+δ2

xu
n∗+ 1

2

jkl =0, (4.8)

i
(u∗∗

j,k− 1
2 ,l
+u∗∗

j,k+ 1
2 ,l
)−(u∗

j,k− 1
2 ,l
+u∗

j,k+ 1
2 ,l
)

τ/2
+δ2

yu
n∗∗+ 1

2

jkl =0, (4.9)

i
(u∗∗∗

jk,l− 1
2

+u∗∗∗
jk,l+ 1

2

)−(u∗∗
jk,l− 1

2

+u∗∗
jk,l+ 1

2

)

τ/2
+δ2

z u
n+ 1

2

jkl =0, (4.10)

ūjkl =exp
(

−i(Vjkl+β|u∗∗∗
jkl |

2)τ
)

u∗∗∗
jkl =exp

(

−iθ∗∗∗jkl

)

u∗∗∗
jkl , (4.11)



230 L. Kong, J. Hong and J. Zhang / Commun. Comput. Phys., 14 (2013), pp. 219-241

i
( ¯̄ujk,l− 1

2
+ ¯̄ujk,l+ 1

2
)−(ūjk,l− 1

2
+ūjk,l+ 1

2
)

τ/2
+δ2

z u
n⋄+ 1

2

jkl =0, (4.12)

i
( ¯̄̄uj,k− 1

2 ,l+
¯̄̄uj,k+ 1

2 ,l)−( ¯̄uj,k− 1
2 ,l+ ¯̄uj,k+ 1

2 ,l)

τ/2
+δ2

yu
n⋄⋄+ 1

2

jkl =0, (4.13)

i
(un+1

j− 1
2 ,kl

+un+1
j+ 1

2 ,kl
)−( ¯̄̄uj− 1

2 ,kl+
¯̄̄uj+ 1

2 ,kl)

τ/2
+δ2

xu
n⋄⋄⋄+ 1

2

jkl =0. (4.14)

where un⋄+ 1
2 = 1

2(ū+ ¯̄u), un⋄⋄+ 1
2 = 1

2( ¯̄u+ ¯̄̄u), un⋄⋄⋄+ 1
2 = 1

2(
¯̄̄u+un+1). For simplicity, we denote

LOD-MS (4.4)-(4.7) as LOD-MS I and LOD-MS (4.8)-(4.14) as LOD-MS II.

5 Analysis of conservative properties

In this section, we investigate the LOD-MS I theoretically. The numerical analysis of the
second-order scheme LOD-MS II can be programmed in the same way. For convenience,
the unitary inner product and l2-norm are recalled:

〈u,v〉=hxhyhz ∑
j,k,l

ujklvjkl , ‖u‖2 = 〈u,u〉,

‖u‖2
1
2
=hxhyhz ∑

j,k,l

|uj+ 1
2 ,k+ 1

2 ,l+ 1
2
|2, ‖u‖∞ =max

j,k,l
|ujkl |.

By the theory in multisymplectic background, the LOD schemes (4.1), (4.2), (4.3) sat-
isfy the discrete LOD MCLs

ω∗
j+ 1

2 ,kl
−ωn

j+ 1
2 ,kl

τ
+

κ1
n∗+ 1

2

j+1,kl−κ1
n∗+ 1

2

jkl

h
=0, (5.1)

ω∗∗
j,k+ 1

2 ,l
−ω∗

j,k+ 1
2 ,l

τ
+

κ2
n∗∗+ 1

2

j,k+1,l −κ2
n∗∗+ 1

2

jkl

h
=0, (5.2)

ω∗∗∗
jk,l+ 1

2

−ω∗∗
jk,l+ 1

2

τ
+

κ3
n∗∗∗+ 1

2

jk,l+1 −κ3
n∗∗∗+ 1

2

jkl

h
=0, (5.3)

and the LOD LECLs

E1
∗
j+ 1

2 ,kl
−E1

n
j+ 1

2 ,kl

τ
+

F1
n∗+ 1

2

j+1,kl−F1
n∗+ 1

2

jkl

h
=0, (5.4)

E2
∗∗
j,k+ 1

2 ,l
−E2

∗
j,k+ 1

2 ,l

τ
+

F2
n∗∗+ 1

2

j,k+1,l −F2
n∗∗+ 1

2

jkl

h
=0, (5.5)

E3
∗∗∗
jk,l+ 1

2
−E3

∗∗
jk,l+ 1

2

τ
+

F3
n∗∗∗+ 1

2

jk,l+1 −F3
n∗∗∗+ 1

2

jkl

h
=0, (5.6)
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where

E1
n
j+ 1

2 ,kl
=(vn

j+ 1
2 ,kl

)2+(wn
j+ 1

2 ,kl
)2,

E2
∗
j,k+ 1

2 ,l
=(ϕ∗

j,k+ 1
2 ,l
)2+(ψ∗

j,k+ 1
2 ,l
)2,

E3
∗∗
jk,l+ 1

2
=(ζ∗∗

jk,l+ 1
2
)2+(η∗∗

jk,l+ 1
2
)2,

F1
n∗+ 1

2

jkl =−2(v
n∗+ 1

2

jkl δt p
n∗+ 1

2

jkl +w
n∗+ 1

2

jkl δtq
n∗+ 1

2

jkl ),

F2
n∗∗+ 1

2

jkl =−2(ϕ
n∗∗+ 1

2

jkl δt p
n∗∗+ 1

2

jkl +ψ
n∗∗+ 1

2

jkl δtq
n∗∗+ 1

2

jkl ),

F3
n∗∗+ 1

2

jkl =−2(ζ
n∗∗∗+ 1

2

jkl δt p
n∗∗∗+ 1

2

jkl +η
n∗∗∗+ 1

2

jkl δtq
n∗∗∗+ 1

2

jkl ).

Of course, the solution (4.7) of the nonlinear subproblem (3.6) satisfies the conservation
laws that the original system (3.6) possesses, such as symplectic-preserving, point-wise
mass-preserving and point-wise energy-preserving as well

dqn+1
jkl ∧dpn+1

jkl =dqn
jkl∧dpn

jkl = ···=dq0
jkl∧dp0

jkl , (5.7)

|un+1
jkl |2= |un

jkl |
2= ···= |u0

jkl |
2, (5.8)

2Vjkl |u
n+1
jkl |2+β|un+1

jkl |4=2Vjkl |u
n
jkl |

2+β|un
jkl |

4= ···=2Vjkl |u
0
jkl |

2+β|u0
jkl |

4. (5.9)

In fact, the solution (4.7) can be written in

pn+1
jkl +iqn+1

jkl =
(

cosθn
jkl−isinθn

jkl

)

(pn
jkl+iqn

jkl).

That is to say,

{

pn+1
jkl = pn

jkl cosθn
jkl+qn

jkl sinθn
jkl ,

qn+1
jkl =−pn

jkl sinθn
jkl+qn

jkl cosθn
jkl .

Consequently, one has

dqn+1
jkl ∧dpn+1

jkl =
[

−dpn
jkl sinθn

jkl+dqn
jkl cosθn

jkl

]

∧
[

dpn
jkl cosθn

jkl+dqn
jkl sinθn

jkl

]

=dqn
jkl∧dpn

jkl .

This is precisely the symplectic conservation law (5.7). Taking the norm on both sides
of (4.7), it results in the point-wise mass invariant (5.8). The third invariant (5.9) can be
derived from the second one (5.8).

To pick up the total conservation laws of the LOD-MS (4.1), (4.2), (4.3) and (4.7), we
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reformulate them into follows:































































q∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2

−qn

j+ 1
2 ,k+ 1

2 ,l+ 1
2

τ − 1
2

v
n∗+ 1

2

j+1,k+ 1
2 ,l+ 1

2

−v
n∗+ 1

2

j,k+ 1
2 ,l+ 1

2
h =0,

−
p∗

j+ 1
2 ,k+ 1

2 ,l+ 1
2

−pn

j+ 1
2 ,k+ 1

2 ,l+ 1
2

τ − 1
2

w
n∗+ 1

2

j+1,k+1
2 ,l+ 1

2

−w
n∗+1

2

j,k+1
2 ,l+ 1

2
h =0,

1
2

p
n∗+ 1

2

j+1,k+1
2 ,l+ 1

2

−p
n∗+1

2

j,k+1
2 ,l+ 1

2
h = 1

2 v
n∗+ 1

2

j+ 1
2 ,j+ 1

2 ,l+ 1
2

,

1
2

q
n∗+ 1

2

j+1,k+1
2 ,l+ 1

2

−q
n∗+1

2

j,k+1
2 ,l+ 1

2
h = 1

2 w
n∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

,

(5.10)































































q∗∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2

−q∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2
τ − 1

2

ϕ
n∗∗+ 1

2

j+ 1
2 ,k+1,l+ 1

2

−ϕ
n∗∗+ 1

2

j+ 1
2 ,k,l+ 1

2
h =0,

−
p∗∗

j+ 1
2 ,k+ 1

2 ,l+ 1
2

−p∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2
τ − 1

2

ψ
n+ 1

2

j+ 1
2 ,k+1,l+ 1

2

−ψ
n+∗∗1

2

j+ 1
2 ,k,l+ 1

2
h =0,

1
2

p
n∗∗+1

2

j+ 1
2 ,k+1,l+ 1

2

−p
n∗∗+1

2

j+ 1
2 ,k,l+ 1

2
h = 1

2 ϕ
n∗∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

,

1
2

q
n∗∗+1

2

j+ 1
2 ,k+1,l+ 1

2

−q
n∗∗+1

2

j+ 1
2 ,k,l+ 1

2
h = 1

2 ψ
n∗∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

,

(5.11)































































q∗∗∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2

−q∗∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2
τ − 1

2

ζ
n∗∗∗+1

2

j+ 1
2 ,k+ 1

2 ,l+1
−ζ

n∗∗∗+1
2

j+ 1
2 ,k+ 1

2 ,l

h =0,

−
p∗∗∗

j+ 1
2 ,k+ 1

2 ,l+ 1
2

−p∗∗
j+ 1

2 ,k+ 1
2 ,l+ 1

2
τ − 1

2

η
n∗∗∗+1

2

j+ 1
2 ,k+ 1

2 ,l+1
−η

n∗∗∗+1
2

j+ 1
2 ,k+ 1

2 ,l

h =0,

1
2

p
n∗∗∗+1

2

j+ 1
2 ,k+ 1

2 ,l+1
−p

n∗∗∗+1
2

j+ 1
2 ,k+ 1

2 ,l

h = 1
2 ζ

n∗∗∗+ 1
2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

,

1
2

q
n∗∗∗+1

2

j+ 1
2 ,k+ 1

2 ,l+1
−q

n∗∗∗+1
2

j+ 1
2 ,k+ 1

2 ,l

h = 1
2 η

n∗∗∗+ 1
2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

,

(5.12)

un+1
1
2 , 1

2 , 1
2

=exp
(

−i(V1
2 , 1

2 , 1
2
+β|u∗∗∗

1
2 , 1

2 , 1
2
|2)τ

)

u∗∗∗
1
2 , 1

2 , 1
2
=exp

(

−iθ∗∗∗1
2 , 1

2 , 1
2

)

u∗∗∗
1
2 , 1

2 , 1
2
. (5.13)

As a counterpart of (4.4), (4.5), (4.6), the schemes (5.10), (5.11), (5.12), (5.13) can be coded
as follows:

iδt(u
n∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

+u
n∗+ 1

2

j− 1
2 ,k+ 1

2 ,l+ 1
2

)+δ2
xu

n∗+ 1
2

j,k+ 1
2 ,l+ 1

2

=0, (5.14)

iδt(u
n∗∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

+u
n∗∗+ 1

2

j+ 1
2 ,k− 1

2 ,l+ 1
2

)+δ2
yu

n∗∗+ 1
2

j+ 1
2 ,k,l+ 1

2

=0, (5.15)
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iδt(u
n∗∗∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l+ 1
2

+u
n∗∗∗+ 1

2

j+ 1
2 ,k+ 1

2 ,l− 1
2

)+δ2
z u

n∗∗∗+ 1
2

j+ 1
2 ,k+ 1

2 ,l
=0, (5.16)

un+1
1
2 , 1

2 , 1
2

=exp
(

−i(V1
2 , 1

2 , 1
2
+β|u∗∗∗

1
2 , 1

2 , 1
2
|2)τ

)

u∗∗∗
1
2 , 1

2 , 1
2
=exp

(

−iθ∗∗∗1
2 , 1

2 , 1
2

)

u∗∗∗
1
2 , 1

2 , 1
2
. (5.17)

Theorem 5.1. The LOD-MS (4.4)-(4.7) admits the global mass and global LOD energy conser-
vation laws

Qn+1=Q∗∗∗=Q∗∗=Q∗=Qn = ···=Q0, (5.18)

E∗
x =En

x , E∗∗
y =E∗

y , E∗∗∗
z =E∗∗

z , (5.19)

where

Q=‖u‖2
1
2
, Ex =hxhyhz ∑

j,k,l

|δxuj+ 1
2 ,k,l|

2,

Ey =hxhyhz ∑
j,k,l

|δyuj,k+ 1
2 ,l|

2, Ez =hxhyhz ∑
j,k,l

|δzuj,k,l+ 1
2
|2,

with the centered difference quotient δsum+ 1
2
= um+1−um

hs
.

Remark 5.1. From the point-wise conservation laws (5.8), (5.9), it is quite clear that

Qn+1=Q∗∗∗∗=Qn, (5.20)

En+1
non =h3 ∑

j,k,l

[

Vjkl |u
n+1
jkl |2+β|un+1

jkl |4
]

=E∗∗∗
non . (5.21)

Therefore, the proposed LOD-MS (4.4)-(4.7) is unconditionally stable.

In what follows, we investigate the energy conservation laws of the novel LOD-MS
(4.1), (4.2), (4.3) and (4.7), including LECL and global energy conservation law.

Theorem 5.2. Let the solution function u(x,y,z,t) of the GP equation (1.2) be variable separable,
i.e.,

u(x,y,z,t)=X(x)Y(y)Z(z)T(t), (5.22)

or equally

un
jkl =TnXjYkZl . (5.23)

Then the LOD-MS (4.1)-(4.3), and (4.7) is local energy conservative

En+1
j+ 1

2 ,k+ 1
2 ,l+ 1

2

−En
j+ 1

2 ,k+ 1
2 ,l+ 1

2

τ
+∇h ·F

n+ 1
2

jkl =0. (5.24)
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Proof. Under the assumption of (5.23) and the discrete mass conservation law (5.20), one
has

|Tn+1|2= |T∗∗∗|2= |T∗∗|2= |T∗|2= |Tn|2= ···= |T0|2, (5.25)

and

δtu
n+ 1

2

jkl =(δtT
n+ 1

2 )XjYkZl, δxu
n+ 1

2

j+ 1
2 ,kl

=Tn+ 1
2 (δxXj+ 1

2
)YkZl,

δyu
n+ 1

2

j,k+ 1
2 ,l
=Tn+ 1

2 Xj(δyYk+ 1
2
)Zl, δzu

n+ 1
2

jk,l+ 1
2

=(Tn+ 1
2 XjYkδzZl+ 1

2
).

It is reasonable to form a hypothesis as follows:

pn
jkl =Tn

p Xp j
Ypk

Zpl
, qn

jkl =Tn
q Xp j

Yqk
Zql

,

vn
jkl =Tn

p δxXp j
Ypk

Zpl
, wn

jkl =Tn
q δxXqj

Yqk
Zql

,

ϕn
jkl =Tn

p Xp j
δyYpk

Zpl
, ψn

jkl =Tn
q Xqj

δyYqk
Zql

,

ζn
jkl =Tn

p Xp j
Ypk

δzZpl
, ηn

jkl =Tn
q Xq j

Yqk
δzZql

,

then

|Tn|2=(Tn
p )

2+(Tn
q )

2. (5.26)

Thus, it is reminding (5.25) that the three LOD LECLs (5.4), (5.5) and (5.6) can be replaced
by

E1
n+1
j+ 1

2 ,kl
−E1

n
j+ 1

2 ,kl

τ
+

F1
n∗+ 1

2

j+1,kl−F1
n+ 1

2

jkl

h
=0, (5.27)

E2
n+1
j,k+ 1

2 ,l
−E2

n
j,k+ 1

2 ,l

τ
+

F2
n+ 1

2

j,k+1,l−F2
n+ 1

2

jkl

h
=0, (5.28)

E3
n+1
jk,l+ 1

2

−E3
n
jk,l+ 1

2

τ
+

F3
n+ 1

2

jk,l+1−F3
n+ 1

2

jkl

h
=0. (5.29)

Adding up the above three equalities and (5.9), we obtain the discrete LECL (5.24). This
proof is finished.

Theorem 5.3. The LOD-MS I and LOD-MS II conserves the discrete energy exactly

En+1=En = ···=E0, (5.30)

where
En =h3 ∑

j,k,l

[

(2Vjkl+|un
jkl |

2)|un
jkl |

2+|∇hun
jkl |

2
]

,

with the discrete gradient ∇hun
jkl = |δxun

j+ 1
2 ,kl

|2+|δyun
jk+ 1

2 ,l
|2+|δzun

jk,l+ 1
2

|2, provided that the so-

lution is separable in terms of the independent variables.



L. Kong, J. Hong and J. Zhang / Commun. Comput. Phys., 14 (2013), pp. 219-241 235

Proof. Using (5.23), (5.9) and (5.25), the global LOD energy conservation laws (5.19) and
(5.21) can be written as

|Tn+1|2 ∑
j,k,l

|YkZlδxXj+ 1
2
|2= |Tn|2 ∑

j,k,l

|YkZlδxXj+ 1
2
|2, (5.31)

|Tn+1|2 ∑
j,k,l

|XjZlδyYk+ 1
2
|2= |Tn|2 ∑

j,k,l

|XjZlδyYk+ 1
2
|2, (5.32)

|Tn+1|2 ∑
j,k,l

|XjYkδzZl+ 1
2
|2= |Tn|2 ∑

j,k,l

|XjYkδzZl+ 1
2
|2, (5.33)

h3 ∑
j,k,l

(

2Vjkl |u
n+1
jkl |2+β|un+1

jkl |4
)

=h3 ∑
j,k,l

(

2Vjkl |u
n
jkl |

2+β|un
jkl |

4
)

. (5.34)

Sum over the above equalities, we get

h3 ∑
j,k,l

(2Vjkl |u
n+1
jkl |2+β|un+1

jkl |4)+
∥

∥

∥
∇hun+1

∥

∥

∥

2

=h3 ∑
j,k,l

(2Vjkl |u
n
jkl |

2+β|un
jkl |

4)+‖∇hun‖2 . (5.35)

This is just what we desire. The proof is finished.

Remark 5.2. It is noted that the conclusions in Theorems 5.2 and 5.3 are true in case of
the solution function is separable. Otherwise, they will not always necessarily true.

Remark 5.3. The LOD-MS for GP equations and the conclusions we have obtained can
be extended to some initial boundary problem, such as, periodic boundary condition,
Dirichlet boundary condition. This will be verified in the following numerical illustra-
tions.

6 Numerical examples

In this section, we will take several examples to investigate the numerical behavior of the
LOD-MS. We will observe that the developed scheme is economic and simply in coding.
For convenience, we define the following notations to present numerical results.

en
2 =h3

√

∑
j,k,l

|un
jkl−ûn

jkl |
2, en

∞ =max
j,k,l

|un
jkl−ûn

jkl |,

where un
jkl and ûn

jkl denote approximate solution and exact solution, respectively.

Example 6.1. The test problem in 1d






i
∂

∂t
u(x,t)=−

1

2
uxx+V(x)u+|u|2u,

u(x,0)=sinx,

(6.1)
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where V(x)=cos2 x is a periodic potential. The exact solution for the problem is

u(x,t)= e−3it/2sinx.

First, we test the convergence rate in the space direction. To the purpose, we fix the time
step length very small, such as τ = 0.0001, such that nearly all the discretization error
comes from the space. The numerical errors and their convergence rates under different
spatial steps at different time t are listed in Table 1, which implies that LOD-MS II is
indeed of second-order accuracy in space. Here the convergence rate order is calculated
by formula order = ln(es1

/es2)/ln(s1/s2), where esm , m= 1,2, are numerical errors using
step length sm.

Table 1: The errors and spatial accuracy at different time t.

t h en
∞ order en

2 order

π/20 1.6507×10−2 − 1.1596×10−2 −
8 π/40 4.1159×10−3 2.0037 2.0445×10−3 2.5038

π/20 3.3013×10−2 − 2.3191×10−2 −
16 π/40 8.2318×10−3 2.0038 4.0890×10−3 2.5037

π/20 4.9516×10−2 − 3.4784×10−2 −
24 π/40 1.2348×10−2 2.0038 6.1335×10−3 2.5036

π/20 6.6018×10−2 − 4.6375×10−2 −
32 π/40 1.6464×10−2 2.0036 8.1779×10−3 2.5035

Next, we investigate the time convergence rate of the LOD-MS II via the above prob-
lem over t∈ [0,25]. We take the spatial step length small enough so that error from spatial
discretization is negligible, such as h = π

1000 . Moreover, we compare its computational
efficiency with the general MI for the problem

(un+1
j− 1

2

+un+1
j+ 1

2

)−(un
j− 1

2

+un
j+ 1

2

)

τ
+2δ2

xu
n+ 1

2
j −Vj− 1

2
u

n+ 1
2

j− 1
2

−Vj+ 1
2
u

n+ 1
2

j+ 1
2

=

∣

∣

∣

∣

u
n+ 1

2

j− 1
2

∣

∣

∣

∣

2

u
n+ 1

2

j− 1
2

+

∣

∣

∣

∣

u
n+ 1

2

j+ 1
2

∣

∣

∣

∣

2

u
n+ 1

2

j+ 1
2

. (6.2)

The time step lengths are τ= 0.025, τ= 0.05 and τ = 0.1. We simulate the problem with
both LOD-MS II and (6.2). Fig. 1 reports the numerical error and temporal convergence
rate against time of LOD-MS II. Data in Table 2 show the computational efficiency of the

Table 2: The comparison of the efficiency of different schemes at t=100.

LOD-MS II (6.2)
τ\ scheme e2 e∞ CPU(sec) e2 e∞ CPU(sec)

0.1 5.31e−5 1.70e−1 2.7 2.46e−4 5.23e−3 35
0.05 1.34e−5 4.29e−2 5.4 6.27e−5 7.14e−4 55

0.025 3.36e−6 1.07e−2 11 1.42e−5 1.93e−4 84
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Figure 1: The time error and order test: left for error and right for order.

two methods. Numerical results indicate that the LOD-MS II is of second-order in time
and is much more efficient than method (6.2).

We shall not compare the efficiency of LOD-MS with the completely implicit MI for
multidimensional problems resembling (6.2) any more due to the performance restriction
of personal computer.

Example 6.2. Next, we consider the following two-dimensional nonlinear initial-boundary
value problem with a periodic potential







i
∂u(x,y,t)

∂t
=−

1

2
(uxx+uyy)+V(x,y)u+|u|2u,

u(x,y,0)=sinxsiny, (x,y)∈ [0,2π]×[0,2π],

(6.3)

with V(x,y)=1−sin2 xsin2y. The exact solution of Eq. (6.3) is

u(x,y,t)= e−2it sinxsiny.

We choose τ=0.02,h=π/20 to investigate the performance of the LOD-MS II, including
the conservative properties and wave shape. Fig. 2 presents the real part and imaginary
part of the numerical solution at t = 50. Fig. 3 shows the residuals of mass and global
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Figure 2: The numerical solutions, left for real part, right for imaginary part.
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Figure 3: The residuals of mass and global energy, left for mass, right for global energy.

energy against time. From the figures, it is observed that the LOD-MS II can simulate
the continuous problem very well over a long period, and it preserves the conservative
quantities accurately.

Example 6.3. In the example, we consider a 3D problem with exact solution to check
the theoretical analysis and to illustrate the capability of LOD-MS II in simulating 3D
problems. The periodic problem is







i
∂u

∂t
=−

1

2
(uxx+uyy+uzz)+V(x,y,z)u+|u|2u,

u(x,y,0)=sinxsinysinz, (x,y,z)∈ [0,2π]3 ,

(6.4)

where V(x,y,z) = 1−sin2 xsin2 ysin2 z is a periodic potential. The exact solution of the
problem is

u(x,y,z,t)= e−5it/2 sinxsinysinz,

which is variable separable. In the case, the Theorems 5.1 and 5.2 are valid.
We choose τ = 0.01,h= 2π

25 to execute the experiment with LOD-MS II, and focus on
the numerical error en

2 of the wave function and the conservation laws. Fig. 4 presents
the former and the residual of mass against time, and Fig. 5 shows the residuals of global
and local energy conservation laws against time. As the results of Theorems 5.1 and 5.2
is predicted, the LOD-MS II preserves the mass, global energy and local energy exactly
in that their residuals are within the roundoff error.

Example 6.4. In the example, we investigate the 3d anisotropic condensate problem with
changing trapped frequency











iψt=−
1

2
∇2u+V(x,y,z)u+

1

10
|ψ|2ψ,

ψ(x,y,z,0)= 21/4

(π/4)3/8 exp(−2(x2+2y2+4z2)),
(6.5)
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Figure 4: The numerical error of wave function and residual of mass. Left for numerical error; Right for residual
of mass.
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Figure 5: The residuals of global and local energy, left for global, right for local.

where V3(x,y,z) = 1
2(x2+4y2+16z2). We also adopt the LOD-MS II to solve the model

under the mesh step size h=0.16,τ=0.01. The profiles of the real part and imaginary part
of the wave function at z= 3.2,t= 3 are shown in Fig. 6, and the residuals of mass and
local energy are presented in Fig. 7.
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Figure 6: The real and imaginary parts of the wave function. Left: real; Right: imaginary.
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Figure 7: The residuals of mass and local energy. Left: mass; Right: local energy.

7 Conclusions and remarks

Combing the LOD thought with the MI, a novel and practical kind of MIs are developed
for multidimensional Hamiltonian system. We call it LOD-MS. The method conserves
the LOD MCLs and total symplectic structure. Under certain conditions, it also preserves
global energy and local energy. Theoretical results are supported by numerical tests.
Moreover, we can extend the method to other multidimensional Hamiltonian systems.
We can also construct explicit or semi-explicit schemes for the systems. For example, we
can apply partitioned RK to the LOD Hamiltonian system. These are our future work on
the subject.

Acknowledgments

We would express our gratitude to the anonymous referees for their useful suggestion.

Linghua Kong is supported by the National Natural Science Foundation of China
(Nos. 10901074, 11271171), the Provincial Natural Science Foundation of Jiangxi (No.
20114BAB201011), the Foundation of Department of Education Jiangxi Province (No.
GJJ12174), and the State Key Laboratory of Scientific and Engineering Computing, CAS.
Jialin Hong was supported by the Director Innovation Foundation of ICMSEC and
AMSS, the Foundation of CAS, the NNSFC (No. 91130003, 11021101) and the Special
Funds for Major State Basic Research Projects of China 2005CB321701. Jingjing Zhang is
supported by the National Natural Science Foundation of China (No.11126118).

References
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