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Abstract. This paper concerns the electromagnetic scattering by arbitrary shaped three
dimensional imperfectly conducting objects modeled with non-constant Leontovitch
impedance boundary condition. It has two objectives. Firstly, the intrinsically well-
conditioned integral equation (noted GCSIE) proposed in [30] is described focusing
on its discretization. Secondly, we highlight the potential of this method by com-
parison with two other methods, the first being a two currents formulation in which
the impedance condition is implicitly imposed and whose the convergence is quasi-
optimal for Lipschitz polyhedron, the second being a CFIE-like formulation [14]. In
particular, we prove that the new approach is less costly in term of CPU time and
gives a more accurate solution than that obtained from the CFIE formulation. Finally,
as expected, It is demonstrated that no preconditioner is needed for this formulation.
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1 Introduction

The boundary integral methods (BIM) are commonly used for solving scattering prob-
lems of arbitrarily shaped three-dimensional obstacles and also for antenna design. Their
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popularity is due to a combination of many factors. Firstly, the solutions of BIM fulfill
causality and radiation conditions automatically. Secondly, it is only necessary to dis-
cretize the boundaries of the computational domain and the simulation requires a smaller
number of unknowns than finite element methods or finite difference methods. One of
the main drawbacks of using a BIM is that after discretization it results in a dense system
of linear equations. If a large number of unknowns is involved, the only possibility is
to use iterative solvers coupled with a fast matrix-vector multiplication. However, with
such a tool various situations can be analyzed, for instance conductor obstacles, dielectric
homogeneous obstacles and also imperfectly conductor materials. We focus our attention
on imperfectly conducting materials. This type of materials is generally taken into ac-
count by imposing an impedance boundary condition like the Leontovitch condition [22]
on the surface of the object. Such situations occur in radar applications: objects are often
partially coated by a thin dielectric layer to reduce the radar cross section of scattering
waves. Another domain of application of such boundary conditions is their use as an
absorbing boundary condition to limit the computational domain. Several boundary in-
tegral formulations can be derived to solve such impedance problems. Most representa-
tives are formulations using one current as the unknowns proposed in [1,5,14,26,29], the
system of integral equations based on the minimization of a quadratic functional in [13]
and a formulation keeping the two currents as unknowns obtained, in particular, in [21].
The equivalent currents are discretized by a boundary-element method over a triangular
mesh on the surface. Finally, we obtain a dense linear system. When the characteristic
size of the obstacle is about six times the wavelength, the solutions can be computed by
direct methods with high performance parallel codes. However, if the size of the obstacle
increases, the solutions can only be obtained by means of some iterative methods cou-
pled with the multilevel fast multipole method (noted MFMM). The convergence of the
iterative methods is directly linked to the choice of the integral formulation. So, the main
difficulty is to choose the best boundary equation in the sense that this equation gives
rise to a well-conditioned linear system and also in the sense that the solutions must be
accurate. An algebraic preconditioner [11] is generally used to improve the convergence
of the iterative solver. Unfortunately, this kind of approach loses its effectiveness when
the frequency increases or the meshes become denser with respect to the wavelength.

Recently, another alternative is emerged. It consists of constructing new integral
equations that give rise to intrinsically well-conditioned linear systems. The genesis of
these techniques are the work of D. Levadoux at ONERA. Indeed, in his thesis [23–25], he
initiated a new integral formalism known as GCSIE (Generalized Combined Source Inte-
gral Equation) in which he has combined pseudo-differential mathematical analysis and
physical characteristics of waves to obtain integral equations well-adapted to an iterative
solution. These works have led to the emergence of a general formalism of construction
which has been used, with success, for many problems in acoustics and in electromag-
netism. The new formalism depends on the choice of an operator. This one aims to be
a good approximation of the admittance in the perfectly metallic case. Several proposi-
tions have already made to achieve this goal [3, 4, 6, 7, 18, 31]. The numerical results are
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impressive in term of reducing of the number of iterations and the CPU time. We showed
in [16,30] that the impedance problems can be understood by the GCSIE formalism. This
always depends on knowing the optimal regularizing operator. In this paper, we first
want to focus on the numerical aspects of this formalism. Secondly, a comparison with
the commonly used classical BIM formulations is presented. More precisely, we focus
on the CPU time and the memory storage needed to obtain the solution as well as the
accuracy.

The paper is divided as follows. In Section 2, we present the scattering problem to
be solved. In particular, we first briefly introduce the new approach used to construct
the boundary integral equations in electromagnetism. We revise the classical integral
equations for impedance obstacles in Section 3. The discretization is presented in Section
4. The final section is devoted to numerical results.

2 Intrinsically well-conditioned integral equation

This section is divided into two parts. The first presents the scattering problem. The
second explains how to derive a well-conditioned integral equation in the context of the
Leontovitch boundary condition.

2.1 The scattering problem

Let Ω− be a Lipschitz polyhedron with a boundary Γ which is assumed to be simply
connected. The open complement of Ω− in IR3 is Ω+. The vector n denotes the unit
normal to Γ pointing into the exterior domain Ω+ of Ω−. The problem is to find the
electromagnetic fields E and H which give the solution to the Maxwell system

{

curlE−ikZ0H=0 in Ω+,

curlH+ikZ−1
0 E=0 in Ω+,

(2.1)

completed with both the Silver-Müller radiation condition at infinity

lim
|x|→∞

|x|
(

E(x)+Z0
x

|x|
×H(x)

)

=0 (2.2)

and the boundary conditions on the surface Γ

n×(E|Γ×n)−Z0η(n×H|Γ)=g, (2.3)

where k>0 is the wavenumber, Z0 is the intrinsic impedance of the vacuum and η(x) is
an impedance function. The variations of η(x) allows us to take into account the presence
of different materials on the surface Γ of the obstacle (see Fig. 1).

We have the following existence and the uniqueness results (see [19] for a proof
and [28] for details on this kind of techniques):
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Figure 1: Exact problem on left and approximate physical model on right to be solved.

Theorem 2.1. We assume that:

• Ω− is a connected Lipschitz polyhedral domain;

• g∈L2
T(Γ);

• η∈L∞(Γ) and is assumed to be a strictly-positive real-valued function.

Then the exterior mixed boundary value problem (2.1), (2.2), (2.3) has a unique solution which
belongs to the space Xloc(Ω

+,Γ) :={u∈Hloc(curl,Ω+) : n×u|Γ ∈L2
T(Γ)}, where L2

T(Γ)={u∈

[L2(Γ)]3 : u·n=0}.

Remark 2.1. In what follows, we assume that the assumptions of the Theorem 2.1 hold.
In particular, the impedance function η(x) is assumed to be piecewise constant. For sim-
plicity, we only consider in following, the scattering by an incident plane wave (Einc,Hinc)
leading to g=−n×(Einc

|Γ ×n)−Z0η(n×Hinc
|Γ ).

2.2 Derivation of the intrinsically well-conditioned integral equation

2.2.1 Principle of the method

Let W be the space of all fields verifying both the Maxwell equations in Ω+ and the Sliver-
Müller condition. Moreover, we define the trace operator Γ associated to impedance
boundary condition (2.3): let w=(E,H)∈W then we define γw=n×(E|Γ×n)−Z0η(n×
H|Γ).

The problem we plan to solve, can be written as

Find w∈W such that γw=g. (2.4)

Moreover, by using the Stratton-Chu formulae (see the next part), it can be known that
any field w = (E,H) ∈ W can be rebuilt from the knowledge of its Cauchy data γcw =
(n×E|Γ,n×H|Γ) via a Calderón potential C i.e., w=C(γcw) (see (2.10)). The main idea to
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build a new class of boundary integral equations is based on some remarks. First, as the
initial problem (2.4) to solve is well-posed, there exists an operator Yex defined by

Yex : γw 7→γcw. (2.5)

We have to keep in mind that Yex is a boundary operator which by definition verifies the
crucial relation

γCYex = Id, (2.6)

where Id is the identity operator on Γ.
Secondly, let Y be an approximation of Yex. We decide to look for the solution w of

the initial problem (2.4) under the form

w=CYg̃, (2.7)

where g̃ is a current distribution on Γ acting as a source excitation of the potential CY.
Therefore, in order to find a source g̃ radiating the field solution of our initial prob-
lem (2.4), we have to solve the resulting source (or indirect) integral equation

γCYg̃=g. (2.8)

Because of the crucial relation (2.6), if Y = Yex the new equation (2.8) becomes triv-
ial. Therefore, we suspect that when Y is a good approximation of Yex, the resulting
equation is a ”small” perturbation of identity which produces after discretization a well-
conditioned linear system.

In practice, the operator Y is constructed by using the pseudo-differential calculi with
the objective to obtain an integral operator γCY which decomposes under the form of an
”Identity operator” plus ”a compact operator”. It is well known that this type of equation
is well-adapted to an iterative solution and that if the spectral behavior of the equation
is well restored to the discrete level, then the convergence rate is independent to space
and frequency refinement [32, 33]. That is why this technique is attractive, compared to
the classical algebraic preconditioners like SPAI (SParse Approximate Inverse) where the
k and h-dependencies are not obvious to take into account. More precisely, in order to
be efficient, the filling of the SPAI must be adjusted as a function to the complexity of
the problem. To conclude, the GCSIE simplifies the work of the user by regularizing the
pathological behavior of operations at the continuous level.

2.2.2 Formal mathematical construction of the integral equation

First, let us define some functional spaces which allow us to correctly define the trace
and integral operators in the context of Lipschitz polyhedral domains [8]. The tangential
trace operator γt is defined by:

γt : H(curl,Ω) → H−1/2
× (divΓ,Γ),

u 7→ n×u,
(2.9)
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is continuous, surjective and possesses a right inverse, where

H−1/2
× (divΓ,Γ)=

{

v∈H−1/2
× (Γ) : divΓv∈H−1/2(Γ)

}

,

where H−1/2
× (Γ) is the dual space of the Hilbert space H1/2

× (Γ)=γt(H
1(Ω)) with respect

to the pairing

〈γtv,γtu〉τ,Γ =
∫

Ω
(curlv·u−v·curlu)dx

and divΓ is the adjoint operator of −∇Γ. Moreover, we define the Hilbert space H1/2
⊥ (Γ)=

n×γt(H
1(Ω)) and H−1/2

⊥ (Γ) its dual. Finally, H−1/2
× (curlΓ,Γ)= {v∈H−1/2

⊥ (Γ) : curlΓ v∈

H−1/2(Γ)} is the dual space H−1/2
× (divΓ,Γ) where curlΓ is a surface operator defined as

the adjoint of the operator n×∇Γ.

The derivation of an integral equation is based on the Stratton-Chu formulae [8,15,28].
Defining the currents J(x)=n×H|Γ(x) and M(x)=−n×E|Γ(x), we have

E(x)=Einc(x)+iZ0T̃J(x)+K̃M(x), x∈Ω+, (2.10a)

H(x)=Hinc(x)−K̃J(x)+iZ−1
0 T̃M(x), x∈Ω+, (2.10b)

where the potentials T̃ and K̃ are defined by

• T̃ : H−1/2
× (divΓ,Γ) → Hloc(curl2,Ω+∪Ω−)∩Hloc(div0,Ω+∪Ω−),

J 7→ T̃J(x)= k
∫

Γ
G(x,y)J(y)dΓ(y)

+
1

k

∫

Γ

~∇xG(x,y)divΓJ(y)dΓ(y),

(2.11)

• K̃ : H−1/2
× (divΓ,Γ) → Hloc(curl2,Ω+∪Ω−)∩Hloc(div0,Ω+∪Ω−),

J 7→ K̃J(x)=
∫

Γ

~∇yG(x,y)×J(y)dΓ(y),
(2.12)

and G(x,y) is the fundamental solution for the radiating solution of the 3-D Helmholtz
equation

G(x,y)=
exp(ik|x−y|)

4π|x−y|
(2.13)

with Hloc(P ,X ):={u∈L2
loc(X ):Pu∈L2

loc(X )} and Hloc(P0,X ):={u∈Hloc(P ,X ):Pu=0}.

Now, recall the so-called trace formulae [8, 28]:

n×(E|Γ×n)(x)= iZ0TJ(x)+KM(x)+
1

2
n×M(x), (2.14a)

n×(H|Γ×n)(x)=−KJ(x)−
1

2
n×J(x)+iZ−1

0 TM(x), (2.14b)
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where T and K are defined by

T: H−1/2
× (divΓ,Γ) → H−1/2

× (curlΓ,Γ),
J 7→ {γt(T̃J)×n}Γ,

(2.15)

K: H−1/2
× (divΓ,Γ) → H−1/2

× (curlΓ,Γ),
J 7→ {γt(K̃J)×n}Γ,

(2.16)

where {γt A×n}=(n+×(A×n+)+n−×(A×n−))/2.
The existence and the uniqueness of the solution of problem (2.1), (2.2), (2.3) (see

Theorem 2.1) induce the existence of the operator Yex=(Yex
M,Yex

J ) such that M=Yex
Mg and

J=Yex
J g. Consequently, the representation formulae can be written in this form:

E(x)= iZ0T̃◦Yex
J g(x)+K̃◦Yex

Mg(x), x∈Ω+, (2.17a)

H(x)=−K̃◦Yex
J g(x)+iZ−1

0 T̃◦Yex
Mg(x), x∈Ω+. (2.17b)

Using (2.3) and (2.14), we obtain the fundamental identity:

Z
exg=

(

1

2
Id+K◦Yex

M+iZ0T◦Yex
J +ηZ0n×K◦Yex

J −iηn×T◦Yex
M

)

g=g. (2.18)

The operator Yex is generally unknown in practice and we now assume that we have
an approximation Y=(YM,YJ) of Yex. So, we can parameterize the electromagnetic field
solution of our problem by

E(x)= iZ0T̃◦YJ g̃(x)+K̃◦YMg̃(x), x∈Ω+, (2.19a)

H(x)=−K̃◦YJ g̃(x)+iZ−1
0 T̃◦YMg̃(x), x∈Ω+, (2.19b)

where g̃ is a tangential vector field of Γ solution of the integral equation:

Z g̃=

(

1

2
Id+K◦YM+iZ0T◦YJ+ηZ0n×K◦YJ−iηn×T◦YM

)

g̃=g. (2.20)

These equations lead us to make some important comments:

• The electromagnetic field defined in (2.19) is the solution of our problem if the inte-
gral equation (2.20) is well-posed. This result is true even if Y is a bad approxima-
tion of the exact operator Yex.

• If Y is sufficiently close to Yex then we expect that the approximation of the integral
operator Z leads to a well-conditioned system.

• The unknown g̃ of (2.20) is not a physical current. That’s why this equation is
called in following the GCSIE equation for Generalized Combined Source Integral
Equation.
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2.2.3 Convenient form of the regularized operator Y

The main point in the previous formal construction is to have a ”good” approximation Y

of the operator Yex or to build two approximations of (Yex
J ,Yex

M). To do it, we first give a
more tractable expression of the exact operator:

n×M−ηZ0J=(n×Yex
M−ηZ0Yex

J )g=g on Γ. (2.21)

Eq. (2.21) leads to a new expression of the operator Yex
M

Yex
M =−n×Id−ηZ0n×Yex

J . (2.22)

Consequently, a candidate of the approximation operator YM can be chosen as:

YM =−n×Id−ηZ0n×YJ , (2.23)

where YJ is an approximation of Yex
J .

The next step is to propose an approximation YJ of Yex
J . For that, we introduce the

so-called exact exterior admittance or Stecklov-Poincaré operator Y ex associated to the
surface Γ. Recall that this operator is defined as follows: let (u,v) be the solution of the
well-posed problem:























curlu−ikZ0v=0 in Ω+,

curlv+ikZ−1
0 u=0 in Ω+,

n×u∈H−1/2
× (divΓ,Γ) fixed on Γ,

+ Radiation condition at infinity.

(2.24)

The operator Y ex corresponds to the operator which from n×v gives n×u=−Y ex(n×
v). In particular, the current (M,J) on Γ induced by the field solution of the problem (2.1),
(2.2) and (2.3) are linked by the relation:

M=Y
ex(J). (2.25)

By using (2.3) and (2.25), one obtains a new expression of Yex
J :

Yex
J =

(

n×Y
ex−ηZ0Id

)−1
. (2.26)

To sum up, if one possesses an approximation Y of the admittance Y ex, it is possible to
find a candidate YJ for the approximation of Yex

J by this way:

YJ =
(

n×Y −ηZ0Id
)−1

(2.27)

and

YM =−n×Id−ηZ0n×YJ . (2.28)
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Finally, the integral problem (2.20) becomes: find the density g̃ such that


















(1

2
Id+K◦YM+iZ0T◦YJ+ηZ0n×K◦YJ−iηn×T◦YM

)

g̃=g,

YM =−n×Id−ηZ0n×YJ ,

YJ =
(

n×Y −ηZ0Id
)−1

,

(2.29)

and one may close this system if one knows an approximation Y of the admittance op-
erator. In the next part, a such approximation will be proposed.

2.2.4 High frequency approximation of Y ex

The construction of the high frequency approximation Y of Y ex is based on a microlocal
analysis. We will firstly consider what happens on the infinite plane P and then we will
extend the result to the surface Γ.

The construction begins by noting that on an infinite plane, the trace formulae (2.14)
lead to the relation:

M=−2iZ0n×TJ. (2.30)

So, the admittance operator YP associated to the plane is directly obtained by YP =
−2iZ0n×T. Now, consider the high frequency domain and assume that the electromag-
netic phenomena are localized, one expects that the operator Y ex acts as YP where P are
the tangent planes to Γ. So, the high-frequency approximation Y could be taken by YP.
Unfortunately, this choice leads to the presence of resonance frequencies [2]. In order to
avoid this problem, one has to use a localization of YP. That can be done at least two
different ways:

• using a direct localization of YP by using an quadratic partition of the unity [2], i.e.,

Y =∑
i

ξiYPξi ; (2.31)

• using an indirect localization of YP by using the Helmholtz potentials. It is this
approach that we consider here, we will give some more details of this construction.

We first rewrite YP by using the single layer potential (convolution with the funda-
mental solution G of the Helmholtz equation):

YP =2n×T=
2

ik
n×

(

∇ΓG∇Γ ·+k2G
)

, (2.32)

where Gϕ=
∫

Γ
G(x,y)ϕ(y)dγ(y) with ϕ a scalar function and Gu=

∫

Γ
G(x,y)u(y)dγ(y)

with u a vector field on Γ.
Next, we introduce the Helmholtz or Hodge decomposition [8] of a tangent vector

field u (with the appropriate regularity) to a surface S :

u=(n×∇SΠloop+∇SΠstar)u, (2.33)
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where Πloopu and Πstaru are the classical Helmholtz potentials of u.

By introducing (2.33) in (2.32), we immediately obtain:

YPu=
2

ik
n×

(

∇PG∆PΠstaru+k2Gn×∇PΠloopu+k2G∇PΠstaru
)

=
2

ik
n×

(

∇PG(∆P+k2)Πstaru+k2n×∇PGΠloopu
)

. (2.34)

Finally, we introduce the square-root representation of the single layer potential associ-
ated to the infinite plane P:

Gϕ=
1

2i

(

√

k2+∆P

)−1
ϕ=

1

2i
F

−1((k2−‖ξ‖2)−1/2)ϕ, (2.35)

where F represents the Fourier transform and we obtain a new representation of the
admittance operator YP:

YPu=
1

k

(

−n×∇P(∆P+k2)
1
2 Πstaru+k2∇P(∆P+k2)−

1
2 Πloopu

)

. (2.36)

To obtain an approximation Y of Y ex on a surface Γ, one simply reads (2.36) on Γ by
changing the differential operators defined on P by those defined on Γ and we obtain:

Y u=
1

k

(

−n×∇Γ(∆Γ+k2)
1
2 Πstaru+k2∇Γ(∆Γ+k2)−

1
2 Πloopu

)

, (2.37)

where ∆Γ is the Laplace-Beltrami operator and u is a vector field tangent to Γ.

Finally, as for the direct approach, a localization process is needed to avoid the spu-
rious modes. This task is achieved by simply changing in (2.37) the wavenumber k into
kε = k+iε where iε is a small imaginary part. For simplicity, we again note Y this new
operator and YJ the associated operator.

The operator Y as defined in (2.37) can not be used under this form in practice. There-
fore, a more appropriate form is obtained by considering a Padé approximation of the
square-root operator. First, let us recall that on a compact Riemann manifold, the spec-
trum of −∆Γ is of the form 0≤ λ2

1 ≤ λ2
2 ≤ ··· ≤ λ2

n ≤ ··· ≤+∞. In this case the operator
(∆Γ+k2

ε )
1/2 can be defined by

(∆Γ+k2
ε )

1
2 ϕ= ∑

p≥1

αp(k
2
ε −λ2

p)
1
2 ψp, (2.38)

where ψp are the eigenfunctions associated to λp and ϕ=∑p≥0αpψp. Consequently, if one
works with the principal branch of the complex square root, then the complex number
k2

ε −λ2
p is more and more close to the branch cut when p increases. This implies a slow

convergence of the Padé approximation and a significant cost to accurately synthesize
this operator. In order to avoid this problem, we have chosen a Padé approximation
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with a rotation of branch. This approximation proposed by [27] and used by Darbas-
Antoine [18], is written:

(

1+
∆Γ

k2
ε

)1/2

p,θ

≡A0(θ)+
p

∑
j=1

Aj(θ)
∆Γ

k2
ε

(

1+Bj(θ)
∆Γ

k2
ε

)−1

. (2.39)

We say that (1+∆Γ/k2
ε )

1/2
p,θ is the Padé approximation of order p and angle of rotation of

branch θ of (1+∆Γ/k2
ε )

1/2. In order to obtain the new branch-cut, a rotation of angle θ

of IR− is made. In practice, we use the value θ=π/3, which corresponds to the optimal
value which has been determined in the context of the On Surface Radiation Conditions
for a spherical geometry [17].

Let us now come back to the approximation YJ defined in (2.27). We assume that the
impedance operator η is constant in order to derive the approximation operator but this
choice will prove to be a good candidate in the context of a non-constant impedance. So,
by using the Helmholtz decomposition, we get:

J=YJ g=(n×Y −ηZ0Id)−1g⇒ (n×Y −ηZ0Id)J=g

⇓ (Helmholtz decomposition)

∇Γ

[

1

k

(

1+
∆Γ

k2
ε

)1/2

p,θ
−ηZ0

]

ΠstarJ+n×∇Γ

[

k
((

1+
∆Γ

k2
ε

)1/2)−1

p,θ
−ηZ0

]

ΠloopJ=g.

(2.40)

This gives us the following two equations:
[

1

k

(

1+
∆Γ

k2
ε

)1/2

p,θ
−ηZ0

]

ΠstarJ=Πstarg, (2.41a)

[

k−ηZ0

(

1+
∆Γ

k2
ε

)1/2

p,θ

]

ΠloopJ=
(

1+
∆Γ

k2
ε

)1/2

p,θ
Πloopg. (2.41b)

Finally, the operator Y=(YJ ,YM) is defined by:

YJ =∇Γ

[

1

k

(

1+
∆Γ

k2
ε

)1/2

p,θ
−ηZ0

]−1

Πstar·

+n×∇Γ

[

k−ηZ0

(

1+
∆Γ

k2
ε

)1/2

p,θ

]−1
(

1+
∆Γ

k2
ε

)1/2

p,θ
Πloop·, (2.42a)

YM =−n×Id−ηZ0YJ , (2.42b)

where (1+∆Γ/k2
ε )

1/2
p,θ is given with the help of (2.39).

In the section entitled ”Finite Element Approximation”, we will see how to numeri-
cally compute this operator.

Remark 2.2. In the paper [30], we have proved, in the context of the smooth surfaces,
that the chosen regularized operator leads to a well posed problem (2.20) which is in fact
a compact perturbation of the identity.
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3 Two classical formulations for the Leontovitch condition

In this section, we briefly present two classical integral equations used to solve this kind
of problem and which will allow us to evaluate the performances of the previous GCSIE.

3.1 EFIE like formulation-formulation with two unknowns [21]

This first formulation is constructed from the trace formulae (2.14)










iZ0TJ(x)+KM(x)−
1

2
n×M(x)=0,

KJ(x)−iZ−1
0 TM(x)−

1

2
n×J(x)=0.

(3.1)

Next, we introduce, in this equation, the impedance condition in the terms n×M/2 and
n×J/2:















iZ0TJ(x)+KM(x)−
1

2
η(x)Z0J(x)=

1

2
g(x),

KJ(x)−iZ−1
0 TM(x)+

1

2η(x)Z0
M(x)=−

1

2η(x)Z0
n×g(x).

(3.2)

Reciprocally, let the currents J and M solve the system (3.2). The electromagnetic field
(E,H) is defined by

{

E(x)= iZ0T̃J(x)+K̃M(x), x∈Ω+,

H(x)=−K̃J(x)+iZ−1
0 T̃M(x), x∈Ω+,

(3.3)

verifies Eqs. (2.1), (2.2) and (2.3).
Finally by the change of unknown, M/iZ0 becomes M in order to homogenize the

equations, one obtains:














KM+TJ+
i

2
ηJ=

1

2iZ0
g,

TM+KJ+
i

2η
M=−

1

2ηZ0
n×g.

(3.4)

Now, (3.4) can be equivalently written under the following weak formulation: find (M,J)∈

X×X (X :=H−1/2
× (divΓ,Γ)∩L2

T(Γ)) such that

a((M,J);(M′ ,J′))= l(M′,J′), ∀(M′,J′)∈X×X, (3.5)

where

a((M,J);(M′,J′))=B

(

[

n×K n×T
n×T n×K

][

M

J

]

;

[

M′

J′

]

)

+
i

2

∫

Γ

{

ηJ·J′+η−1M·M′
}

dΓ, (3.6)
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where the bilinear form B is defined by

B

(

[

M

J

]

;

[

M′

J′

]

)

=−b(M,J′)+b(M′,J) (3.7)

with b as the extension of the bilinear form (µ,ν)∈L2
T(Γ)×L2

T(Γ) 7→
∫

Γ
µ·(ν×n)dΓ to the

space H−1/2
× (divΓ,Γ) [8] (with respect to b, H−1/2

× (divΓ,Γ) becomes its own dual) and

l((J′,M′))=
1

2

∫

Γ

( g

iZ0
·J′−n×g·M′

)

dΓ.

The advantages of this formulation are:

• We can prove that the weak formulation is well-posed for any frequency. This result
can be in the thesis of V. Lange [21] in the context of smooth surfaces and we can
extend it for the Lipschitz polyhedron by using the inf-sup condition for the first
term of the bilinear form a derived in [8].

• We can consider a conformal finite element approximation of (3.5) by considering
the classical lowest-order Raviart-Thomas discrete space Xh, i.e., find (Mh,Jh) ∈
Xh×Xh such that

a((Mh,Jh);(M
′
h,J′h))= l(M′

h,J′h), ∀(M′
h,J′h)∈Xh×Xh. (3.8)

In particular, we can prove that the convergence of the method is quasi-optimal [8].

Remark 3.1. These advantages make this method an efficient tool to obtain an accurate
solution. We use it to compute a reference solution.

The main drawbacks are:

• The two currents are used as unknowns, while an explicit relationship between
them exists. So upon discretization, the size of the linear system is twice as large as
in the perfect conductor case.

• The linear system is inverted by means of an iterative solver coupled with the mul-
tilevel fast multipole method noted in what follows by MFMM. The CPU time to
obtain the solution is then of order niterN logN where niter is the iteration number
and N is the unknown number. It is possible to perform the matrix-vector mul-
tiplication using the MFMM algorithm only two times by changing the definition
of unknowns, and the numerical integration formulae. Nevertheless, the iteration
number niter may be very large. Moreover, on the perfectly metallic part of the sur-
face Γ, this formulation degenerates into a well-known equation: the Electric Field
Integral Equation. It is for the reason that in following we note this formulation as
the EFIE-like formulation.
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3.2 CFIE-like formulation with one unknown

To overcome the main drawbacks of the EFIE-like equation that gives rise to ill-
conditioned systems upon discretization, we have recently proposed a new integral
method by using a Combined field Integral Equation (CFIE) approach [14]. The construc-
tion of the CFIE in the context of an impedance condition is not straightforward. Indeed,
by eliminating the magnetic current M from the impedance condition, the interior trace
formulae lead to the classical EFIE and MFIE:

−n×((Einc)|Γ×n)=−
1

2
ηZ0J−KηZ0n×J+iZ0TJ, (3.9a)

−n×(Hinc)|Γ =
1

2
J+n×KJ+Tηn×J. (3.9b)

Now, assume that the impedance operator is constant. So the natural functional space

to construct the weak formulation is Z=H−1/2
× (divΓ,Γ)∩H−1/2

× (curlΓ,Γ). The difficulty
appears when we want to approximate the problem by a finite element method. For
that we have to choose a finite dimensional space Zh for which the weak formulation is
well defined. The natural choice is to consider a conformal approximation i.e., Zh ⊂ Z.
Unfortunately, this implies that the elements of Zh are tangential vector fields of Γ with
both the flux and tangential continuity through the edges of the mesh. To our knowledge,
the kind of boundary finite element space is difficult to define for a polyhedron. So, a
direct elimination of the magnetic current via the impedance condition must not be used
to construct an integral equation for the Leontovitch condition.

Nevertheless, it seems interesting to construct a CFIE approach for the impedance
case in order to obtain good convergence behavior. As for the EFIE-like formulation, we
use a simple combination of (2.14) and (2.3) to derive our Impedance Combined Field
Integral Equation formulation. More precisely, we normalize (2.14a) by iZ0 then apply a
rotation of π/2 around the normal to (2.14b) and we make a linear combination of these
two equations

−
1

iZ0
(n×(Einc)|Γ×n)(x)+γ(Hinc)|Γ×n)(x)

=
(

TJ(x)+KM(x)−
1

2
n×M(x)

)

+γ
(

n×KJ(x)+n×TM(x)+
1

2
J(x)

)

. (3.10)

The impedance condition should be added: 0= iηJ+n×M.

If we note A
ξ
c f ie = T+ξn×K+ξ/2 the classical integral operator for the CFIE in the

metallic case, Eq. (3.10) can be written in form:







−
Einc

t

iZ0
+βn×Hinc

t =A
β
c f ieJ+βn×A

−1
β

c f ieM,

0= iηJ+n×M.

(3.11)
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This form is particularly interesting from the numerical point of view. Note that after

discretization, it is easy to compute a matrix-vector product A
β

c f ieJ and A
−β−1

c f ie M, using

two times, the FMM algorithm applied to the ”classical” CFIE equation.

The main difficulty of the integral formulation is knowing how to eliminate the mag-
netic current and more generally how to treat the rotation operator n×·? We have pro-
posed in [14] to keep the magnetic current as an intermediate variable and not to directly
evaluate the term n×CFIE(M). The system could be rewritten for instance in the form:



























−
Einc

t

iZ0
+βn×Hinc

t =
(

T+βn×K+
β

2

)

J+βn×V , (a1)

V=
(

T−
1

β
n×K−

1

2β

)

M, (b1)

n×M=−iηJ. (c1)

(3.12)

The term (T−β−1n×K−(2β)−1)M is easy to discretize because it corresponds to a clas-
sical CFIE term. We have determined an approximate of its composition with n×· by
using a discrete Helmholtz decomposition (see [14] for more details). An other solution
is possible; we can use the barycentric finite element space proposed by S. Christiansen
and A. Buffa [9] which allows an uniform inf-sup stable discretization of (3.12)-(c1). This
solution has been investigated in [29].

To sum up, we have in the previous sections, briefly outlined the construction of
three kinds of Integral equation formulations: the EFIE-like equation (see Section (3.1)),
the CFIE-like equation (see Section (3.2)) and the GCSIE equation (see Section (2.2)). The
next section describes quickly the discretization of these integral equations but also all
useful numerical tools.

4 Finite element approximations

In this section, we explain how to approximate the integral equations by using a finite
element approach. Our goal is to solve iteratively the linear system by using a GMRES
(Generalized Minimal Residual Method) solver. In this case, we have to be able to com-
pute the matrix-vector product at each iteration.

4.1 Finite element spaces

One considers a conformal triangulation Th composed of triangles of the surface Γ [12].
The approximations uh, Jh and Mh of the density g̃ and the currents J and M are searched
in the lowest order Raviart-Thomas finite element space RT0 defined by:

RT0=

{

vh∈H0(divΓ,Γ) : ∀T∈Th,vh|T◦FT =

(

a
b

)

+d

(

x̂
ŷ

)

, for a,b,c∈ IR

}

, (4.1)
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where H0(divΓ,Γ)={vh∈L2
T(Γ):divΓvh∈L2(Γ)} with L2

T(Γ) be the set of tangential vector
fields to Γ which are square integrable and FT is the mapping defined by:

FT : T̂={(x̂,ŷ) : 0≤ x̂,ŷ≤1 and ŷ≤1− x̂}→T, (4.2a)

(x̂,ŷ)→ST
1 (1− x̂− ŷ)+ST

2 x̂+ST
3 ŷ with ST

1 ,ST
2 ,ST

3 the vertices of T. (4.2b)

This space are described by the following basis functions: let A be an edge of the mesh
Th such that A=T∩T′ for T,T′∈Th and we denote by S and S′ the vertices of T and T′

respectively which don’t belong to A. One associates to each edge A the basis function
ϕA∈RT0 defined by

ϕA(M)=



















~SM

2|T|
for M∈T,

−
~S′M

2|T′|
for M∈T′,

(4.3)

where |T| is the area of the triangle T∈Th.
So, the dimension of RT0 is equal to the number of edges in the mesh. For the approx-

imation of YJ , we will need the following spaces:

P
1,c(Th)={vh ∈C0(Γ) : ∀T∈Th, vh|T◦FT = a+bx̂+cŷ for a,b,c∈ IR}, (4.4a)
◦

P
1,c(Th)=

{

vh ∈P
1,c(Th) :

∫

Γ
vhdΓ=0

}

. (4.4b)

The first space is the classical space of continuous and piecewise linear functions asso-
ciated to the nodes of the mesh and the second one is the subspace of P1,c(Th) which
contains the functions whose mean value on Γ is zero. This last space is used to com-
pute the potentials associated to the Helmholtz decomposition which are defined up to a
constant.

4.2 Approximation of the operators T and K

The discretization of the integral operators T and K is well-known and is based on vari-
ational formulations. The bilinear forms associated to the operators T and K are respec-

tively: ∀Jt(x)∈H−1/2
× (divΓ,Γ)

〈TJ, Jt〉
∫

Γ

∫

Γ
kG(x,y)(J(y)· Jt(x)−

1

k2
divΓ J(y)divΓ Jt(x))dΓ(y)dΓ(x), (4.5a)

〈KJ, Jt〉=
∫

Γ

∫

Γ
(∇yG(x,y)× J(y))· Jt(x)×n(x)dΓ(x). (4.5b)

Next, one uses conformal finite element approximation of the H−1/2
× (divΓ,Γ) by using the

Raviart-Thomas space and one constructs the matrices associated to the previous bilinear
forms by using the basis functions (4.3). The size of each system is equal to 3/2 times the
numbers of triangles in the mesh.
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4.3 Discretization of YJ

In this section, we describe an approximation of the action of the operator YJ . In other

worlds, we want to compute an approximation Yh
J uh of YJuh for uh ∈RT0. This approxi-

mation must be sought in RT0 because we want to apply it the operator T (see (2.20)). Let
uh be an element of RT0. The action of YJ on uh needs four steps. The following diagram
formally describes these four steps which are detailed just after.

• First step: Calculation of Πh
staru

h and Πh
loopuh.

For that, we note that Πstar and Πloop can be characterized by: let u=(n×∇Πloop+
∇Πstar)u be the Helmholtz decomposition of u. So, we immediately have:

curlΓu=curlΓn×∇Πloopu=−∆ΓΠloopu, (4.6a)

divΓu=divΓ∇Πstaru=∆ΓΠstaru, (4.6b)

where curlΓ is the adjoint operator of n×∇Γ, which is defined by
∫

Γ
curlΓuvdΓ =

∫

Γ
u·n×∇ΓvdΓ with u be a tangential vector field to Γ and v be a scalar function

defined on Γ.

Since the potentials Πloopu and Πstaru are defined modulo a constant, we choose to
approximate them by a finite element method by considering the following discrete
weak formulations:

– find Πh
staru

h∈
◦

P
1,c(Th) the solution of: ∀ϕh∈

◦

P
1,c(Th)

∫

Γ
∇ΓΠh

staru
h ·∇Γ ϕhdΓ=

∫

Γ
uh ·n×∇Γ ϕhdΓ, (4.7)
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– and find Πh
loopuh∈

◦

P
1,c(Th) the solution of: ∀ϕh∈

◦

P
1,c(Th)

∫

Γ
∇ΓΠh

loopuh ·∇Γ ϕhdΓ=−
∫

Γ
divΓuh ϕhdΓ. (4.8)

Eqs. (4.7) and (4.8) induce two sparse linear systems:

RUstar=Luh
star and RUloop =Luh

loop, (4.9)

where R is the stiffness matrix associated to the basis functions of the space
◦

P
1,c(Th), Ustar and Uloop are the associated degrees of freedom and Luh

star and Luh

loop

are the right hand sides corresponding to the vectors (
∫

Γ
uh ·n×∇ΓψidΓ)T

i and
(−
∫

Γ
divΓuhψidΓ)T

i respectively with ψi being the basis functions of the finite el-

ement space
◦

P
1,c(Th).

• Second step: Calculation of the action of (∆Γ/k2
ε +1)1/2

p,θ .

Let ξ be a scalar function defined on Γ. The action of the operator (∆Γ+k2)1/2
p,θ on ξ

can be decomposed in the following way:

– Calculation of ξ j=(1+B
p
j (θ)∆Γ/k2

ε )
−1ξ for j=1,··· ,p, which can be also written

in the form: find ξi be the solution of

(

1+B
p
j (θ)

∆Γ

k2
ε

)

ξ j = ξ. (4.10)

As previously, this problem can be solved by a finite element method. In
particular, we have used the discrete problem: find ξh

j ∈P1,c(Th) such that

∀ξ′∈P1,c(Th)

∫

Γ
ξh

j ξ′dΓ−
B

p
j (θ)

k2
ε

∫

Γ
∇ξh

j ·∇ξ′dΓ=
∫

Γ
ξξ′dΓ. (4.11)

Eq. (4.11) may be written as a linear system:

A
j
p,θΞj =Lξ , for j=1,··· ,p. (4.12)

– Approximation of A
p
0(θ)ξ+∑

p
j=1 A

p
j (θ)(∆Γ/k2

ε )ξ j can also be achieved by using

a finite element method: find [(1+∆Γ/k2
ε )

1/2
p,θ ]hξ ∈ P1,c(Th) such that ∀ξ′ ∈

P1,c(Th):

∫

Γ

[(

1+
∆Γ

k2
ε

)1/2

p,θ

]

h
ξξ′dΓ=A

p
0(θ)

∫

Γ
ξξ′dΓ−

p

∑
j=1

A
p
j (θ)

k2
ε

∫

γ
∇ξh

j ·∇ξ′dΓ. (4.13)
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If we note S
ξ
p,θ the degrees of freedom associated to [(1+∆Γ/k2

ε )
1/2
p,θ ]hξ, (4.13)

corresponds to the solution of the sparse linear system:

MS
ξ
p,θ =A

p
0(θ)L

ξ−
p

∑
j=1

A
p
j (θ)

k2
ε

RΞj, (4.14)

where M is the mass matrix of the space P1,c(Th).

In conclusion, the approximation of the action of (∆Γ+k2)1/2
p,θ on Πh

staru corresponds
to:

S
ξ
p,θ =A

p
0Lξ+M−1

( p

∑
j=1

A
p
j (θ)

k2
ε

R
(

A
j
p,θ

)−1
Lξ

)

. (4.15)

• Third step: Calculation of the action [k(∆Γ/k2
ε+1)1/2

p,θ −ηZ0]−1 and [k−ηZ0(∆Γ/k2
ε+

1)1/2
p,θ ]

−1.

Let ξ be a scalar function defined on Γ. The action of the operator [k(∆Γ/k2
ε+1)1/2

p,θ −

ηZ0]−1 on ξ can be decomposed in the following augmented system: find φ such
that



















(kA
p
0−ηZ0)φ+k

p

∑
j=1

A
p
j (θ)

∆Γ

k2
ε

ξ j = ξ,

(

1+B
p
j (θ)

∆Γ

k2
ε

)

ξ j−φ=0, ∀p=1,··· ,p.

(4.16)

As previously, we can write this system under a weak formulation and discretize
it by using a finite element method in P1,c(Th). We obtain an approximation of

the action of [k−ηZ0(∆Γ/k2
ε+1)1/2

p,θ ]
−1 with the same approach. In what follows, we

note [k(∆Γ/k2
ε+1)1/2

p,θ −ηZ0]
−1
h ξ∈P1,c(Th) and [k−ηZ0(∆Γ/k2

ε+1)1/2
p,θ ]

−1
h ξ∈P1,c(Th)

the results of these approximations.

• Fourth step: Calculation of L2 projection.
Finally, in order to use the classical approximations of integral operators, the action
YJ must be in RT0. For that, we simply make the L2 projection of the decomposition
n×∇ξh

1+∇ξh
2 where ξh

1 , ξh
2 ∈P1,c(Th) on RT0. This induces the two problems: let

ξh ∈P1,c(Th), find vh
loop ∈RT0 such that

∫

Γ
vh

loop ·w
hdΓ=

∫

Γ
n×∇ξh ·whdΓ, ∀wh ∈RT0, (4.17)

and find vh
star∈RT0 such that

∫

Γ
vh

star ·w
hdΓ=

∫

Γ
∇ξh ·whdΓ, ∀wh ∈RT0, (4.18)
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or in the matrix form

Vloop =M−1
RT PRT

loopΞh and Vstar=M−1
RT PRT

starΞ
h, (4.19)

where Vloop and Vstar are respectively the degrees of freedom associated to vh
loop

and vh
star, MRT is the mass matrix of RT0, PRT

loop is the matrix corresponding to the

integrals
∫

Γ
n×∇ξh ·whdΓ and PRT

star the one corresponding to
∫

Γ
∇ξh ·whdΓ.

Finally, we define the approximation Yh
J of the operator YJ as:

Yh
J : RT0→RT0

uh 7→PRT∇Γ

[

k
(∆Γ

k2
ε

+1
)

1
2

p,θ
−ηZ0

]−1

h

Πh
staru

h

+PRTn×∇Γ

[

k−ηZ0

(∆Γ

k2
ε

+1
)

1
2

p,θ

]−1

h

[

(

1+
∆Γ

k2
ε

)1/2

p,θ

]

h

Πh
loopuh, (4.20)

where PRT denotes the L2 projection on the RT0 finite element space.

5 Numerical results

To sum up, we have in the previous sections, briefly outlined the construction of three
kinds of integral formulations:

• The EFIE-like equation: The main advantage of this formulation is the accuracy
of the solution. On the contrary, the drawback is that the convergence rate is very
slow and sometimes the solution can not be obtained.

• The CFIE-like equation: This formulation is conversely opposite to the previous
one. Because, its convergence rate is normally very good but solutions are some-
times inaccurate. This CFIE-like formulation is not applicable to open surfaces.

• The GCSIE equation: This formulation is intrinsically well-conditioned and no
preconditioner is needed.

In this section, we give some numerical experiments to compare the three approaches
and to deduce the advantages from each compared to the others. We focus also on the
ability of the new integral equation (see Section 2.2) to effectively solve scattering prob-
lem specially when an impedance condition is imposed. To begin with, we will define the
accuracy of the three methods by comparing solutions with analytical results. Next, the
convergence rate is analyzed, specially the influence of the discretization on the number
of iterations is studied. At the end, we look at non academic cases.

All objects are located in free space. Let us recall that for all types of integral equa-
tions, the matrix-vector multiplication is performed by using only twice times the MFMM
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algorithm. For all numerical cases, the linear system is solved by using an GMRES solver
(see [20]). In the case of the EFIE/CFIE-like formulation, to speed up the convergence
of the iterative solver, we construct a right SParse Approximate Inverse preconditioner
(see for example [10, 11]). Let us make some remarks. The CPU time needed to obtain
the solution noted tcpu is the sum of two terms: one linked to the time needed to reach
the solution titer which is of order titer =niter2N logN plus eventually the time due to the
construction of the preconditioner tpre.

All geometries are triangulated with a mesh size of about λ/10 except when it is
indicated. The number of level FMM level Lv is fixed as the size of the small box is
equal to 1.5/k. We suppose that convergence is reached when the residue is equal to
10−4. When it is not possible to obtain such a residue, convergence is stopped after 300
iterations and we indicate the obtained residue in parenthesis.

5.1 Memory storage

For simplicity, we analyze the memory storage in the case when a impedance condition is
imposed such that η is a non zero constant. Let us analyze the memory storage due to the
close interactions. We note by α the memory storage required when the EFIE formulation
is used for the perfectly conducting case.

• In the impedance case, the number of unknowns has doubled. So the memory
requirement for EFIE-like formulation is 2α.

• For the CFIE-like formulation, we apply twice times the FMM algorithm applied to
the ”classical” CFIE equation. Hence, the memory requirement is about 4α.

• The GCSIE formulation uses exactly the same MFMM algorithm as this used by
EFIE-like formulation. So the memory is about 2α.

In conclusion, the close interactions require less memory when the EFIE/GCSIE formu-
lation is used.

The other main part of the memory storage is the storage of the preconditioner when
the latter is needed. The storage requirement is the same for the CFIE-like as in the per-
fectly conducting case. But for the EFIE-like formulation, this requirement is doubled
because the number of unknowns is doubled. Recall that for the GCSIE, no precondi-
tioner is needed. Table 1 gives an example of the memory storage in the case of the
sphere. The first line of the Table 1 indicates the memory requirement in the case of per-
fectly conducting case. Due to the fact that the number of unknowns has doubled, the
memory required for the close matrix is increased by a factor close to 2 in the case of the
EFIE-like /GCSIE integral formulation. In these two cases, only the real part of the close
matrix is needed to be stored. But for the CFIE-like formulation, the complex values of
the close matrix are stored. So we observe that the memory requirement is increased by
a factor 4. We note the same increase by a factor 4 for the storage of the preconditioner
due to the same reasons. A out-of-core version has been implemented in order to reduce
the memory.
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Table 1: Memory storage used for a perfectly conducting sphere and for a impedance sphere.

formulation close matrix preconditioner

EFIE 752Mbytes 641Mbytes

EFIE-like 1.7Gbytes 2.56Gbytes

CFIE-like 5.95Gbytes 723Mbytes

GCSIE 1.7Gbytes 0

5.2 Analytical case: sphere case

In this subsection, we will analyze the efficiency of the iterative solver. The effect of the
frequency and of the mesh size will be studied. To start with a comparison, we calculate
the electromagnetic scattering from a sphere with radius a= 1m. This sphere is illumi-
nated by a plane wave given by

Einc(x,y,z,t)=E0e−i(ωt+kz)x̂, E0=1Vm−1.

An analytical solution obtained from the Mie series may be computed.

5.2.1 Effect of the value of the frequency

Table 2 gives us the convergence rate for some values of the frequencies. We have fixed
the impedance value η to be equal 1. nddl indicates the number of degrees of freedom.
The number of points per wavelength is at the beginning fixed at 10. niter is the value of
the number of iterations to obtain a residu fixed to 10−4. If this value is not obtained after
300 iterations, the value of the residu is given. The value t1 is the value of the CPU time

Table 2: Number of iterations for various spheres versus the frequency (the value of the impedance and the
number of points per wavelength are fixed).

formulation frequency nddl niter t1 titer+tpre

EFIE-like 573Mhz 18000 17 18min+12min

CFIE-like 573Mhz 18000 10 4min+17min

GCSIE 573 Mhz 18000 6 30s 3min

EFIE-like 907Mhz 48000 19 41min+33min

CFIE-like 907Mhz 48000 11 15min+45min

GCSIE 907 Mhz 48000 6 40s 8min

EFIE-like 1.3Ghz 108000 22 60min+78min

CFIE-like 1.3Ghz 108000 12 23min+104min

GCSIE 1.3Ghz 108000 6 2min 16min

EFIE-like 2Ghz 216750 25 108min+119min

CFIE-like 2Ghz 216750 14 56min+164min

GCSIE 2Ghz 216750 6 3min 30min
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Figure 2: CPU Time versus the frequency for impedance spheres (the value of the impedance and the number
of points per wavelength are fixed).

needed to extra computations to find the operators in the case of the new formulation
GCSIE. The values of the CPU time is given in minutes. We remark that:

• The EFIE/CFIE solution requires more and more iterations when the frequency
increases. Moreover, at high frequencies, it is difficult to reach a 10−4 residue for
the EFIE formulation.

• The number of iterations needed when the EFIE/CFIE is greater by about a factor
2 than this needed for the GCSIE solution.

• On the contrary, the CGFIE solution is obtained after a small number of iterations.
This number is practically independent of the value of the frequency.

We observe the same conclusions when the impedance value η is changed and also
when it is piecewise constant.

Fig. 2 gives us the CPU time needed to obtain the solution noted tcpu versus the value
of the frequency. In the case of the GCSIE formulation, tpreis equal to zero and niter seems
to be very to be steady (see Table 2). We expect that tcpu is close to a constant. If we look at
Fig. 2, we observe a slight increase on tcpu. It is due to the increase of nddl which grows up
with the frequency. In the case of the EFIE/CFIE formulation, niter increases dramatically
when the frequency increases. Moreover, it is the same for tpre. And we observe a strong
rise of tcpu with the frequency (see Fig. 2 curves blue and green).

5.2.2 Accuracy

Fig. 3 shows the Radar Cross Sections obtained using the three formulations. The curves
are very close to each other (see Figs. 3 and 4). An analytical reference is computed and
is called the MIE solution. We evaluate the accuracy of the three methods in two ways.
First, we observe the ability of the methods to compute the strong attenuation of the
RCS at the zero angle. This behavior is very difficult to compute and its knowledge is
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Figure 3: Radar cross section for impedance spheres when the frequency is fixed equal to 2GHz.
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Figure 4: Zoom of the previous figure.

important in the furtivity domain for example. Fig. 4 shows some differences at the zero
angle and one can see the good accuracy of the GCSIE, in particular, in comparison to the
CFIE. The second way is the computation of the relative error on the RCS (without the log
scale). The Table 3 shows the percentage of the relative errors on the radar cross section
in the sphere case. Note that the obtained values of the relative errors are very small for
all the methods. We observe that the EFIE has better accuracy whereas the GCSIE seems
to be the less accurate for this kind of error measure.

Table 3: Relative errors on the radar cross section for impedance versus the value of the frequency (the value
of the impedance and the number of points per wavelength are fixed).

frequency EFIE-like CFIE-like GCSIE

1.3Ghz 0.03% 0.3% 1.2%

2Ghz 0.04% 0.3% 1.3%
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5.2.3 Effect of the mesh size

In order to study the effect of the mesh size, we have fixed the value of the frequency
to be equal to 573Mhz. and the impedance value η to be equal 1. Table 4 gives us the
convergence rate for some values of the mesh size.

Table 4: Mesh refinement study for an impedance sphere versus the refinement (the value of the impedance
and the frequency are fixed).

formulation λ
h nddl niter

EFIE-like 10 18000 17

CFIE-like 10 18000 10

GCSIE 10 18000 6

EFIE-like 16 48000 17

CFIE-like 16 48000 10

GCSIE 16 48000 6

EFIE-like 25 108000 23

CFIE-like 25 108000 21

GCSIE 25 108000 7

EFIE-like 35 216750 25

CFIE-like 35 216750 23

GCSIE 35 216750 7

We remark that for the GCSIE formulation, the number of iterations is independent
of the mesh size and only a small number of iterations is required to obtain the solution
(of order 6−10). For the other formulations, we observe a very small dependence on the
mesh size. In fact, the number of levels in the MFMM algorithm is fixed at 5. And the
number of iterations required is greater than 6−7. The effect of the mesh size is relatively
weak when the impedance is fixed to 1 (see Table 4) but it depends on the value of the
impedance. For small values, we observe a increase of the rate convergence.

5.2.4 Effect of the impedance value

The case where the sphere is a sphere covered with a fine aluminum layer is considered
now. The value of impedance is given by a formula of type:

ℜe(η)=

√

F

10−9
15.610−3. (5.1)

(This formula is given to us by an industrial company). Using an model of imperfectly
conducting obstacles, it is possible to deduce the value of the impedance by:

η=

√

F

10−9
15.610−3(1−i).
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Table 5: Number of iterations for various spheres versus the frequency (the value of the impedance is changed
and the number of points per wavelength are fixed).

formulation frequency nddl ℜe(η) niter t1 titer+tpre

EFIE-like 573Mhz 18000 0.012 17 8min+12min

CFIE-like 573Mhz 18000 0.012 10 4min+17min

GCSIE 573Mhz 18000 0.012 6 30s 3min

EFIE-like 907Mhz 48000 0.015 201 310min+33min

CFIE-like 907Mhz 48000 0.015 19 28min+45min

GCSIE 907Mhz 48000 0.015 6 1min 10min

EFIE-like 1.3Ghz 108000 0.018 300(410−3) 600min+65min

CFIE-like 1.3Ghz 108000 0.018 20 40min+105min

GCSIE 1.3Ghz 108000 0.018 6 2min18 13min

EFIE-like 2Ghz 216750 0.022 250 941min+118min

CFIE-like 2Ghz 216750 0.022 23 98min+132min

GCSIE 2Ghz 216750 0.022 6 5min 30min

Note that the value of the impedance depends now on the frequency. For each example,
the number of points per wavelength is fixed to be about 10. Table 5 gives us the number
of iterations for each case. We note that

• For the new formulation GCSIE:

• The number of iterations is almost the same. It does not depend on the value
of the frequency or on the value of the impedance (see Tables 5 and 2).

• We observe the same value of the CPU time titer in Table 5 and in Table 2. This
CPU time is independent of the value of the impedance. It is only linked to
the CPU time needed to perform a matrix-vector product.

• For the classical formulations:

• The number of iterations depends on the value of the frequency and also the
value of the impedance.

• The increase for the CPU time is completely linked to the increase of the num-
ber of iterations.

5.3 Industrial cases

5.3.1 Almond case: tip shaped problem

The NASA almond is a popular benchmark for codes computing the RCS. We consider
the case of the NASA almond with a total length of 2.5m and a surface equal to 4m2. The
incident waves illuminates the obstacle by the tip. The frequency is chosen to be fixed to
2.6Ghz. The number of triangles is 67324 and the number of nodes is 33664. The number
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Table 6: Number of iterations for the impedance almond (the value of the frequency is fixed).

formulation value of η niter

EFIE-like 0.025+i0.025 139

CFIE-like 0.025+i0.025 18

GCSIE 0.025+i0.025 13

by wavelength is about 10 with an over refined mesh near the tip. Table 6 gives us the
convergence rate for one value of η. We still show that the GCSIE formulation gives the
solution with smaller number of iterations and requires the small amount of the CPU
time to obtain the solution. Fig. 5 gives the RCS for the almond. The curves are very
close to each other. We see that the GCSIE formulation allows us to obtain the accurate
solution with the smallest value of the CPU time even if the obstacle has a tip.
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Figure 5: Radar cross section for impedance almond where the impedance is fixed to 0.025+i0.025.

5.3.2 Channel case: cavity problem

In this section, we will investigate the scattering problem of a deep and shaped open
cavity. It is well known that such a problem is often considered as a challenge in compu-
tational electromagnetics.

The frequency is fixed to be equal to 5Ghz. The exterior of the channel geometry is
supposed to be metallic and in the interior, an impedance relation is imposed. The value
of the impedance is fixed to 0.035+i0.035.

Fig. 7 gives us the residue versus the number of iterations. The convergence of the
solution is difficult to reach due to the cavity effect. But again, we note that the number
of iterations for the GCSIE formulation is smaller than those obtained for these other
integral formulations. It is of order 30 for a residue fixed to 3×10−3 and of order 40 for
a residue fixed to 10−4. For the EFIE-like formulation, as it is well known, we show a
flatness effect on the convergence curve. It is mainly due to the effect of the cavity. Fig. 7
gives the RCS for the channel. The curves are very close to each other.
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Figure 6: Geometry of the channel.
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Figure 7: Residu versus the number of iterations required for the solution (left) and radar cross section (right)
for impedance channel.

6 Conclusions

We have analyzed in this paper, different integral equations formulations for the scatter-
ing by 3-D arbitrary shaped objects. Besides the classical integral equations formulations
(EFIE-CFIE), we have proposed to study a well-conditioned integral formulation. The
foremost feature of this GCSIE is to be well-conditioned. Obtaining this integral equation
and its discretization are described in detail. Numerical experiences are given. Solutions
are obtained by using iterative solvers coupled with the multilevel fast multipole algo-
rithm. We have investigated the case where a variable impedance condition is imposed
at the boundary. Several numerical examples (academic cases and industrial cases) have
shown that, as expected, the iterative solver is always more efficient for the GCSIE for-
mulation than for the two others. Solution is obtained after a small number of iterations
(of order 10). In the majority of studied cases, this number of iterations does not depend
of the values of the frequency and of the mesh size. Moreover it is independent of the
boundary condition imposed. Let us recall that when the GCSIE formulation is used, no
preconditioning matrix is needed. Solutions obtained from the GCSIE are accurate. But
we have still noted that the EFIE formulation always has better accuracy.
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Intégrales des Problèmes de Diffraction D’ondes, PhD Thesis INSA Toulouse, 2004.

[18] M. Darbas, Generalized cfie for the iterative solution of 3-d maxwell equations, Appl. Math.
Lett., 19(8) (2006).

[19] D. Colton, F. Cakoni and P. Monk, The electromagnetic inverse-scattering problem for par-



1460 D. Levadoux, F. Millot and S. Pernet / Commun. Comput. Phys., 15 (2014), pp. 1431-1460

tially coated lipschitz domains, Proc. Royal. Soc. Edinburgh, 134A (2004), 661–682.
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