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J. Kaupužs1,2,∗, R. V. N. Melnik3 and J. Rimšāns1,2
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Abstract. Correlation functions in the O(n) models below the critical temperature are
considered. Based on Monte Carlo (MC) data, we confirm the fact stated earlier by En-
gels and Vogt, that the transverse two-plane correlation function of the O(4) model for
lattice sizes about L=120 and small external fields h is very well described by a Gaus-
sian approximation. However, we show that fits of not lower quality are provided by
certain non-Gaussian approximation. We have also tested larger lattice sizes, up to
L = 512. The Fourier-transformed transverse and longitudinal two-point correlation
functions have Goldstone mode singularities in the thermodynamic limit at k→0 and

h=+0, i.e., G⊥(k)≃ ak−λ⊥ and G‖(k)≃ bk−λ‖ , respectively. Here a and b are the am-

plitudes, k= |k| is the magnitude of the wave vector k. The exponents λ⊥, λ‖ and the

ratio bM2/a2, where M is the spontaneous magnetization, are universal according to
the GFD (grouping of Feynman diagrams) approach. Here we find that the universal-
ity follows also from the standard (Gaussian) theory, yielding bM2/a2=(n−1)/16. Our
MC estimates of this ratio are 0.06±0.01 for n=2, 0.17±0.01 for n=4 and 0.498±0.010
for n=10. According to these and our earlier MC results, the asymptotic behavior and
Goldstone mode singularities are not exactly described by the standard theory. This is
expected from the GFD theory. We have found appropriate analytic approximations
for G⊥(k) and G‖(k), well fitting the simulation data for small k. We have used them
to test the Patashinski-Pokrovski relation and have found that it holds approximately.
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rimshans@mii.lu.lv (J. Rimšāns)
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1 Introduction

The n-component vector-spin models (called also n-vector models or O(n) models), have
attracted significant interest in recent decades as the models, where the so-called Gold-
stone mode singularities are observed. The Hamiltonian of the n-vector model H is given
by

H
T
=−β

(

∑
〈ij〉

sisj+∑
i

hsi

)

, (1.1)

where T is temperature, si ≡ s(xi) is the n-component vector of unit length, i.e., the spin
variable of the i-th lattice site with coordinate xi, β is the coupling constant, and h is
the external field. The summation takes place over all nearest neighbors in the lattice.
Periodic boundary conditions are considered here.

In the thermodynamic limit below the critical temperature (at β>βc), the magnetiza-
tion M(h) (where h= |h|), the Fourier-transformed transverse (G⊥(k)) and longitudinal
(G‖(k)) two-point correlation functions exhibit Goldstone mode power-law singularities:

M(h)−M(+0)∝ hρ at h→0, (1.2a)

G⊥(k)= ak−λ⊥ at h=+0 and k→0, (1.2b)

G‖(k)=bk−λ‖ at h=+0 and k→0, (1.2c)

with certain exponents ρ, λ⊥, λ‖ and the amplitudes a, b of the Fourier-transformed two-
point correlation functions.

In a series of theoretical works (e.g., [1–11]), it has been claimed that the exponents
in (1.2a)-(1.2c) are exactly ρ= 1/2 at d= 3, λ⊥ = 2 and λ‖= 4−d, where d is the spatial
dimensionality 2< d < 4. These theoretical approaches are further referred here as the
standard theory. Several MC simulations have been performed earlier [12–15] to verify
the compatibility of MC data with standard-theoretical expressions, where the exponents
are fixed. In recent years, we have performed a series of accurate MC simulations [16–19]
for remarkably larger lattices than previously were available, with an aim to evaluate
the exponents in (1.2a)-(1.2c). Some deviations from the standard-theoretical values have
been observed, in agreement with an alternative theoretical approach, known as the GFD
(grouping of Feynman diagrams) theory [20], where the relations d/2 < λ⊥ < 2, λ‖ =
2λ⊥−d and ρ=(d/λ⊥)−1 have been found for 2<d<4.

In the GFD theory, the perturbation theory is reorganized in such a way that all Feyn-
man diagrams are summed up into certain skeleton diagrams, where the true correlation
function (instead of the Gaussian one) corresponds to the coupling lines. Further group-
ing and resummation of all these skeleton diagrams allows us to perform a qualitative
analysis without cutting the perturbation series. Possible reasons for discrepancies be-
tween the GFD theory and standard perturbative treatments are discussed in [18]. This
discussion is mainly devoted to the critical point singularities, but the same arguments
refer also to the Goldstone mode singularities. There are some difficulties in the GFD
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analysis [18], since it is not possible to sum up all skeleton diagrams and write down
precisely the complete result (only certain scaling forms can be derived). On the other
hand, a real failure of a standard perturbative treatment (ε-expansion) has been recently
detected in [21]. The reason of such a failure, likely, is the formal character of the expan-
sions commonly used in the standard perturbative approaches [18, 21].

Here we focus on the relations, which have not been tested in the previous MC stud-
ies (see Section 2). In particular, the two-plane correlation function, studied in [15], is
re-examined in Section 3. Furthermore, we have also evaluated in Section 4 the universal
ratio bM2/a2 for n=2,4,10 and have compared the MC estimates with the values calcu-
lated here from the standard theory. Finally, in Section 5 we have proposed and tested
certain analytical approximations for the two-point correlation functions, and in Section 6
have tested the Patashinski-Pokrovski relation (PP relation).

2 Correlation functions

In presence of an external field h, the longitudinal (parallel to h) and the transverse (per-
pendicular to h) spin components have to be distinguished. The Fourier-transformed
longitudinal and transverse two-point correlation functions are

Gj(k)=∑
x

G̀j(x)e
−ikx, (2.1)

where j=1 refers to the longitudinal component and j=2,··· ,n — to the transverse ones.
Here

G̀j(x)= 〈sj(0)sj(x)〉 (2.2)

are the two-point correlation functions in the coordinate space. (Note that the factor N−1

in Eqs. (1.2)-(1.3) of [19] and (28)-(29) of [18] is N−1 = 1 according to the actual defini-
tions (2.1)-(2.2).) The inverse transform of (2.1) is

G̀j(x)= L−3∑
k

Gj(k)e
ikx, (2.3)

where L is the linear lattice size. In the following, the cumulant correlation function

G̃j(x)= 〈sj(0)sj(x)〉−〈sj(0)〉〈sj(x)〉 (2.4)

will also be considered. It agrees with G̀j(x) for the transverse components, whereas a
nonzero constant contribution 〈s1〉2=M2 is subtracted in the longitudinal case.

Following [15], the two-plane correlation function is defined as

Dj(τ)= L2〈Sj(0)Sj(τ)〉, (2.5)

where

Sj(τ)= L−2
L−1

∑
x,y=0

sj(x,y,τ) (2.6)
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is the spin component sj, which is averaged over the plane z=τ, denoting x=(x,y,τ).
Using the definition of Dj(τ), as well as the relations (2.2) and (2.3), we obtain

Dj(τ)=
L−1

∑
x,y=0

G̀j(x,y,τ)

=L−3 ∑
m1,m2,m3

L−1

∑
x,y=0

Gj(km1
,km2 ,km3)exp

[2πi

L
(m1x+m2y+m3τ)

]

, (2.7)

where G̀j(x,y,τ) ≡ G̀j(x) with x = (x,y,τ) and Gj(km1
,km2 ,km3) ≡ Gj(k) with k =

(km1
,km2 ,km3), km = 2πm/L. The summation over indices mj goes from 1−L+[L/2] to

[L/2], where [L/2] denotes the integer part of L/2. According to the properties of the
wave function exp[2πiL−1(m1x+m2y+m3τ)], the summation over x and y gives vanish-
ing result unless m1=m2=0. More precisely, it leads to the result

Dj(τ)=
1

L ∑
ℓ

Gj(kℓ)cos(kℓτ), (2.8)

where Gj(k)≡Gj(0,0,k) is the Fourier-transformed two-point correlation function in the
〈100〉 crystallographic direction, and kℓ=2πℓ/L with ℓ∈ [1−L+[L/2],[L/2]].

The Gaussian approximation for Dj(τ) can be obtained from the Gaussian model,
where fluctuations of each of the transverse components ϕj(x) of the order-parameter

field ϕ(x) are described by a part of Hamiltonian 2−1 ∑x

(

aϕ2
j (x)+c(∇ϕj(x))

2
)

. Here

the sum runs over discrete lattice with the lattice constant of unit length, whereas ϕj(x)
is considered as a smooth function according to the Fourier representation ϕj(x) =

N−1/2 ∑k ϕk,je
ikx, where N is the total number of lattice sites. This part of Hamiltonian

reduces to 2−1∑k(a+ck2)|ϕk,j|2 (since ϕj(x) is real and therefore ϕ−k,j= ϕ∗
k,j holds), pro-

vided that the wave vectors k/(2π) belong to a unit cube centered at k=0. Hence, the
transverse Gaussian two-point correlation function is

GGauss
⊥ (k)=

1

a+ck2
=

χ⊥m2

m2+k2
. (2.9)

The parameter m=
√

a/c (for a≥0) in (2.10) is interpreted as mass, and the known relation
G⊥(0)=χ⊥ between the transverse correlation function G⊥(0) and the transverse suscep-
tibility χ⊥ is used here. The corresponding transverse two-plane correlation function in
the Gaussian approximation

DGauss
⊥ (τ)=

χ⊥
L ∑

ℓ

m2

m2+k2
ℓ

cos(kℓτ) (2.10)

is obtained by setting (2.10) into (2.8).



J. Kaupužs, R. Melnik and J. Rimšāns / Commun. Comput. Phys., 15 (2014), pp. 1407-1430 1411

According to the given here consideration, the approximation (2.9) is meaningful for a
discrete lattice only if the wave-vector components belong to the interval [−π,π]. There-
fore, the summation limits in (2.10) are chosen such that kℓ≤π, and they cannot be arbi-
trarily shifted.

The true correlation function (2.1) is invariant with respect to the shift of any compo-
nent of the wave vector k by 2π. Besides, G⊥(k)≡G⊥(0,0,k) is symmetric with respect
to k = π and is smooth around k = π — see, e.g., Fig. 5 in [17]. A modified Gaussian
approximation

G̃Gauss
⊥ (k)=

χ⊥m2

m2+ k̃2
(2.11)

with
k̃2=(2sin(kx/2))2+(2sin(ky/2))2+(2sin(kz/2))2, (2.12)

(here k=(kx ,ky,kz)) has these properties and reduces to (2.9) at small k. The correspond-
ing modified Gaussian approximation for D⊥(τ) is

D̃Gauss
⊥ (τ)=

χ⊥
L ∑

ℓ

m2

m2+ k̃2
ℓ

cos(kℓτ) (2.13)

with k̃2
ℓ
= (2sin(kℓ/2))2. In distinction from (2.10), the summation limits for ℓ in (2.8)

and (2.13) can be shifted by any integer number.
A different from (2.10) formula has been also proposed in [15], i.e.,

D
Eng
⊥ (τ)=χ⊥ tanh

(m

2

) e−mτ+e−m(L−τ)

1−e−mL
. (2.14)

Eq. (2.14) is obtained assuming that D⊥(τ) is proportional to e−mτ+e−m(L−τ) [15], as in
the case of the continuum limit, where the summation over wave vectors 2πℓ/L runs
from ℓ=−∞ to ℓ= ∞. Besides, the proportionality coefficient is determined from the
normalization condition

L−1

∑
τ=0

D⊥(τ)=χ⊥. (2.15)

Note that this condition is automatically satisfied in (2.8), (2.10) and (2.13) according to
G⊥(0) = χ⊥, since all terms cancel each other after the summation over τ, except only
those with k = 0. It is clear that (2.14) is not exactly consistent with (2.10), as it can be
easily checked by writing down all terms in (2.10), e.g., at L= 2 (where only terms with
ℓ=0 and ℓ=1 appear). However, the difference appears to be rather small for large L and

small m. In Fig. 1, we have shown the ratio D
Eng
⊥ (τ)/DGauss

⊥ (τ) for the lattice size L=120
simulated in [15] at a typical value of mass m = 0.02 considered there. As we can see,
the largest difference, about 0.3%, appears at τ = 0. In fact, the approximation (2.14) is

very similar to (2.13). Indeed, the ratio D
Eng
⊥ (τ)/D̃Gauss

⊥ (τ) changes monotonously from
1.0000093475··· at τ=0 to 0.9999926752··· at τ=60.
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Figure 1: The ratio D
Eng
⊥ (τ)/DGauss

⊥ (τ) calculated from (2.14) and (2.10) for m= 0.02 and L = 120 within
0≤τ≤15.

It turns out that (2.13) and (2.14) slightly better than (2.10) fit the simulation data
around τ=0, although the quality of the overall fit is practically the same.

It is interesting to mention that D
Eng
⊥ (τ) corresponds to certain approximation for

Gj(k)=G⊥(k) in (2.8), i.e., to

G∗
⊥(k)=

2

m
tanh

(m

2

) ∞

∑
j′=−∞

GGauss
⊥ (k+2πj′). (2.16)

Indeed, an infinite sum over all integer values of ℓ is obtained when inserting the approxi-
mation (2.16) for G⊥(k) into (2.8), yielding (2.14) (see [15] for treatment of such sums). The
correct normalization is ensured here by the factor 2m−1tanh(m/2) in (2.16). Like (2.11),
the approximation (2.16) has the correct periodicity, as well as the symmetry and smooth-
ness property around k=π. An obvious advantage of the approximation (2.11) as com-
pared to (2.16) is that (2.11) is valid for an arbitrary wave vector k, whereas (2.16)-only
for a vector oriented along one of the axes.

Within the interval k∈ [0,π], the approximations (2.11) and (2.16) remarkably differ
from (2.9) only at large wave vectors k ∼ π. Therefore, the most significant difference
between (2.13) and (2.10) or (2.14) and (2.10) appears at small τ values.

3 Fits of the two-plane correlation function

The two-point correlation functions Gj(k) for n = 2,4,10 have been extracted from MC
simulations by a modified Wolff cluster algorithm in our earlier works [17–19]. According
to (2.8), it allows us to evaluate also the two-plane correlation functions and compare the
results and conclusions with those of [15]. In this case, it is meaningful to determine the
G⊥(0) value from the relation

G⊥(0)=χ⊥=
M(h)

βh
, (3.1)
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which holds owing to the rotational symmetry of the model. The statistical error for
χ⊥, calculated as M(h)/(βh), is much smaller than that for χ∗

⊥=G⊥(0), calculated from
the common formulas for G⊥(k) in [17], although the agreement within the error bars is
expected according to (3.1).

Our simulations have been performed in the ordered phase not close to the critical
point β = βc. According to the estimates given in [23], the critical couplings βc of the
O(n) models are 0.2216544(3) for n = 1, 0.45419(3) for n = 2, 0.69305(4) for n = 3 and
0.93600(4) for n=4. Besides, βc(n)> const·nlnn holds [24], which means that the critical
temperature Tc=1/βc vanishes at n→∞. The listed here estimates of [23] show an almost
proportional to 1/n behavior of Tc. Hence the linear interpolation between 1/n = 0.25
and 1/n= 0 (where Tc = 0) gives a rough estimate βc ≈ 2.34 for n= 10. The latter value
of βc might be slightly larger because of a small curvature of the Tc vs 1/n plot. Our
simulations have been performed at β=0.55 for n=2; β=1.1 and β=1.2 for n=4; and β=3
for n=10. The corresponding reduced temperatures β/βc−1 range from 0.175 to 0.282.
Besides, the values of spontaneous magnetization are not small, i.e., around 0.5, giving a
clear evidence that the simulations have been performed not close to the critical point. It
allows us to avoid possible crossover effects [1,4,22], related to an interpolation between
the Goldstone-mode behavior and the critical-point behavior. For comparison, a small
reduced temperature about 0.00437, corresponding to β = 0.94 in the O(4) model, has
been considered in [15] to see the influence of the critical fluctuations. Our simulations
have been performed also at not large values of β/βc to avoid possible low-temperature
effects. Indeed, the Gaussian spin-wave theory is known to be asymptotically exact at low
temperatures T→0. According to [20], it means that some crossover from the Gaussian to
a non-Gaussian behavior is expected at a low temperature and small wave vectors, since
the asymptotic behavior at k→ 0 (at L=∞ and h=+0) is predicted to be non-Gaussian
for a finite T.

We have calculated D⊥(τ) (equal to Dj(τ) for j≥2) from (2.8) and have fit the results
to the modified Gaussian form (2.13) (the fits to (2.10) give practically the same results)
with χ⊥ being determined directly from simulations as M(h)/(βh). In this case, the only
fit parameter is m. Our fit results for m, together with the above discussed values of
χ⊥ and χ∗

⊥ for O(n) models with n = 2,4,10 are collected in Tables 1 to 3. The results
for different lattice sizes L at the smallest h values in our simulations are shown here,
providing also the χ2/d.o.f. (χ2 of the fit per degree of freedom) values, characterizing
the quality of the fits. A comparison between χ⊥ and χ∗

⊥ for the O(4) model has been
provided already in [17]. In distinction from [17], here we do not use extra runs for χ⊥,
i.e., both quantities are extracted from the same simulation runs.

We have found it convenient to split any simulation run in 110 bins, each includ-
ing about 7.7×105/L cluster algorithm steps, discarding first 10 bins for equilibra-
tion [17]. The statistical error of a quantity X is evaluated by the jackknife method [25] as
√

∑i(X−Xi)2, where Xi is the X value, obtained by omitting the i-th bin. Here the bin-
averages are considered as statistically independent (or almost independent) quantities.
It is well justified, since the number of MC steps of one bin is much larger than that of the
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Table 1: The estimates of transverse susceptibility χ⊥ and χ∗
⊥ (see text) and the fit parameter m (mass)

in (2.13) for the O(2) model at β= 0.55 and h= 0.00021875 depending on the lattice size L. The values of

χ2/d.o.f. of the fit are given in the last column.

L m χ⊥ χ∗
⊥ χ2/d.o.f.

512 0.01714(41) 5254.762(75) 4645(387) 1.24

384 0.01681(44) 5254.765(79) 5236(368) 0.67

256 0.01690(25) 5254.22(19) 5846(445) 1.27

128 0.01717(16) 5245.68(67) 5321(212) 0.91

64 0.016723(76) 5142.7(1.5) 5230(60) 0.11

Table 2: The susceptibility estimates χ⊥ and χ∗
⊥, the fit parameter m in (2.13), and the χ2/d.o.f. values of the

fit for the O(4) model at β=1.1 and h=0.0003125 vs size L.

L m χ⊥ χ∗
⊥ χ2/d.o.f.

350 0.02380(41) 1422.831(40) 1449(75) 1.01

256 0.02423(34) 1422.775(60) 1435(64) 0.28

128 0.02398(16) 1420.98(18) 1404(42) 0.36

64 0.024019(92) 1389.21(57) 1386(16) 0.074

Table 3: The susceptibility estimates χ⊥ and χ∗
⊥, the fit parameter m in (2.13), and the χ2/d.o.f. values of the

fit for the O(10) model at β=3 and h=0.00021875 vs size L.

L m χ⊥ χ∗
⊥ χ2/d.o.f.

350 0.02042(28) 719.464(24) 732(28) 4.61

256 0.02147(27) 719.468(36) 665(25) 1.28

192 0.02086(19) 719.176(58) 744(24) 0.27

128 0.02102(12) 717.47(14) 715(19) 0.18

64 0.021505(71) 690.07(36) 694.8(6.2) 0.097

autocorrelation time. We have verified it by checking that the estimated statistical errors
are practically the same when twice larger bins are used. The discarded 10 bins comprise
a remarkable fraction of a simulation. It ensures a very accurate equilibration. We have
verified it by comparing the estimates extracted from separate parts of a simulation. The
statistical errors in G⊥(k) at different k values are correlated, since G⊥(k) is measured
simultaneously for all k. Hence, the statistical errors in D⊥(τ) are correlated, as well.

The obtained values of m are almost independent of L for L≥ 128 (or even for L≥
64 in Table 2). It means that the thermodynamic limit is practically reached here. It
is understandable, since the lattice size L in these cases is remarkably larger than the
transverse correlation length, which is approximately 1/m (in fact, the approximation
G⊥(k)∝ 1/(m2+k2) for small k gives the second momentum correlation length 1/m, but
the exponential correlation length is similar — see, e.g., [15]).
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Figure 2: AD⊥(τ) vs τ plots of the transverse two-plane correlation function D⊥(τ) in the O(n) model. The
results are shown for n=2 (upper plots, A=1, β=0.55, h=0.00021875, L=128 and 384), n=4 (middle plots,
A=1.5, β=1.1, h=0.0003125, L=128 and 350), and n=10 (lower plots, A=1, β=3, h=0.00021875, L=128
and 350). The curves extend to τ ≤ L/2. The solid lines are fits to the modified Gaussian form (2.13), the
dotted lines — fits to (2.8) with the approximation (3.2) for G⊥(k), where λ⊥=1.929,1.955,1.972 for n=2,4,10,
respectively.

The D⊥(τ) fits to the ansatz (2.13) for L=128 and for a larger size, L=350 or L=384,
are plotted by solid lines in Fig. 2. The fits look perfect for L=128 (short curves). In such a
way, we confirm the results of [15], where perfect fits for a similar size L=120 have been
obtained in the case of n= 4. However, our fits are less perfect for larger sizes (longer
curves). In the cases of n=2 and n=4, the discrepancies about one standard error can be
explained by correlated statistical errors in the D⊥(τ) data. However, the deviations of
the data points from the fit curve are remarkably larger for n= 10 and L= 350, as it can
be seen from the lower plots in Fig. 2, as well as from the relatively large χ2/d.o.f. value
4.61 in this case — see Table 3.

The authors of [15] tend to interpret the very good fits of D⊥(τ) to the ansatz (2.14) for
the O(4) model at L=120 as an evidence that the model is essentially Gaussian, implying
that the exponent in (1.2b) is λ⊥= 2. Recall that (2.14) is not exactly the same as (2.10),
but the difference is insignificant, as discussed in Section 2.

A serious reason why, in our opinion, the argument of [15] cannot be regarded as a
real proof or evidence that λ⊥=2 really lies with the fact that practically the same or even
better fit is provided by a non-Gaussian approximation of the form

G⊥(k)≈χ⊥
( ã

ã+ k̃2

)λ⊥/2
(3.2)

with k̃2 =(2sin(k/2))2 for the transverse two-point correlation function in (2.8) with cer-
tain values of λ⊥< 2. This approximation will be discussed in detail in Section 5. Here
we only note that it is consistent with the modified Gaussian form at ã=m2 and λ⊥=2,
as well as with the general power-law asymptotic ak−λ⊥ at h→ 0 under an appropriate
choice of ã = ã(h). We have considered ã as the only fit parameter at a fixed exponent
λ⊥ = 1.955, consistent with the estimation for n = 4 in [17]. The χ2/d.o.f. value of the
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resulting D⊥(τ) fit for the O(4) model at L = 128 is 0.23. It is smaller than the value
0.4 of the Gaussian fit to (2.10) and even smaller than the value 0.36 of the fits to (2.14)
and (2.13) (see Table 2). We have considered also the non-Gaussian fits with λ⊥= 1.929
for n = 2 and λ⊥ = 1.972 for n = 10, as consistent with our estimation of the exponents
in [16, 19]. The non-Gaussian fits are shown by dotted lines in Fig. 2. As we can see, the
Gaussian and non-Gaussian fit curves lie almost on top of each other. It means the analy-
sis of the two-plane correlation functions hardly can give any serious evidence about the
exponent λ⊥.

It refers also to the spectral analysis of [15], where the transverse spectral function
Ā(ω) is defined as the solution of the integral equation

D⊥(τ)=
∫ ∞

0
Ā(ω)K̄(ω,τ)dω, (3.3)

with the kernel

K̄(ω,τ)= tanh
(ω

2

) e−ωτ+e−ω(L−τ)

1−e−ωL
. (3.4)

According to [15], the solution is Ā(ω)≈ χ⊥δ(ω−m). Numerically we never get the
delta function, so that practically the spectrum consists of a sharp peak at ω=m. In fact,
Ā(ω)≈χ⊥δ(ω−m) means only that D⊥(τ)≈χ⊥K̄(m,τ) holds as a good approximation.
According to the discussed here consistency of different fits, the latter is possible if the
small-k asymptotic of G⊥(k) is given either by (2.11), or by (2.16), or by (3.2) with appro-
priate value of λ⊥<2. Thus, no clear conclusion concerning λ⊥ can be drawn here.

In fact, we need a direct estimation of the exponents, as in our papers [16–19], to judge
seriously whether or not the asymptotic behavior of correlation functions and related
quantities are Gaussian. Our estimation suggests that these are non-Gaussian.

Deviations of the simulated data points from the lower fit curves in Fig. 2 are practi-
cally the same for λ⊥=2 and λ⊥=1.972 in (3.2) (solid and dotted lines). Hence, if these
deviations are not caused mainly by correlated and larger than usually statistical fluc-
tuations, then one has to conclude that corrections to the form (3.2) are relevant in this
case.

4 Universal ratios

The ratio bM2/a2, composed of the amplitudes a, b and magnetization M = M(+0)
in (1.2a)-(1.2c), is universal according to [20]. The ratio BM2/A2, where A and B are the
corresponding amplitudes of the real-space correlation functions, can be easily related to
bM2/a2. In the thermodynamic limit L→∞ for large x= |x| we have

G̃j(x)= G̃j(x)=
1

x

1

2π2

∫ ∞

0
f (k)kGas

j (k)sin(kx)dk (4.1)
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in three dimensions, where Gas
j (k) is an asymptotic approximation of Gj(k), which is

accurate for small k and decays smoothly for large k, and f (k) is the cut-off function,
which we choose as

f (k)=
1

1+(k/Λ)4
, (4.2)

where Λ is a constant. This result is obtained by subtracting the constant contribution
from (2.3), provided by k=0, and replacing the remaining sum over k by the corre-
sponding integral, taking into account that the correlation functions are asymptotically
(at x→∞ or k→0) isotropic in the thermodynamic limit. Here we use a smooth cut-off in
the k-space, which can be chosen quite arbitrary (however, ensuring the convergence of
the integral), since only the small-k contribution is relevant for the large-x behavior.

As everywhere in this paper, j = 1 can be replaced with ”‖” and j ≥ 2 — with ”⊥”.
The asymptotic of G̃⊥(x)=Axλ⊥−3 at x→∞, corresponding to G⊥(k)= ak−λ⊥ at k→0, as
well as G̃‖(x)= Bxλ‖−3 at x→∞, corresponding to G‖(k)= bk−λ‖ at k→ 0, can be easily
calculated from (4.1), using the known relation [26, 27]

∫ ∞

0
kα−1 f (k)sin(kx)dk∼ x−α f (0)Γ(α)sin

(πα

2

)

(4.3)

for α>0 (the Erdélyi Lemma [26] applied to our particular case). It yields

bM2

a2
=

BM2

A2

1

2π2

Γ2(η∗)sin2
(

π
2 η∗)

Γ(1+2η∗)sin
(

π
2 (1+2η∗)

) (4.4)

for η∗=2−λ⊥>0 and λ‖=2λ⊥−3, corresponding to the relations of the GFD theory at

d=3 [20]. The ratio bM2/a2 and, consequently, also BM2/A2 are universal in this theory.
The standard-theoretical case η∗= 0 is recovered at η∗→ 0 in (4.4), as it can be checked
by direct calculations. In this case, the usage of (4.3) at α = 0 is avoided, applying the
known relation between the 1/(k2+m2) asymptotic (at small k and m in the thermody-
namic limit) in k-space and the e−mx/(4πx) asymptotic (at large x and small m in the
thermodynamic limit) in x-space and taking the limit m→0. Thus, we obtain

(bM2

a2

)

st
=

1

8

(BM2

A2

)

st
, (4.5)

where the subscript ”st” indicates that the quantity is calculated within the standard
theory.

One of the cornerstones of the standard theory is the Patashinski-Pokrovski (PP) rela-
tion (see, e.g., [15] and references therein)

G̃‖(x)=
n−1

2M2
G̃2
⊥(x). (4.6)
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It is supposed that (4.6) holds in the ordered phase in the thermodynamic limit for large
distances, i.e., x can be replaced by x= |x| here. According to (4.6) and (4.5), we have

(BM2

A2

)

st
=

n−1

2
, (4.7a)

(bM2

a2

)

st
=

n−1

16
. (4.7b)

It turns out that these amplitude ratios can be precisely calculated in the standard theory,
and they appear to be universal, as predicted by the GFD theory. The accuracy of the
standard theory can be checked by comparing (4.7a)-(4.7b) with Monte Carlo estimates.

According to the relation λ‖= 2λ⊥−d, which holds in the GFD theory [20] and also
in the standard theory (where λ⊥=2 and λ‖=4−d), in 3D case we have

bM2

a2
= lim

k→0
R(k), (4.8)

where the quantity

R(k)=
M2G‖(k)

k3G2
⊥(k)

(4.9)

is calculated in the thermodynamic limit at h =+0. In order to estimate R(0) in this
limit, we consider appropriate range of k values, i.e., k> k∗, for small fields h and large
system sizes L, where the finite-size effects are very small or practically negligible and
the finite-h effects are also small. Then, we extrapolate the R(k) plots to k= 0 at several
h values to find the required asymptotic value of R(0)=bM2/a2. Such analysis has been
already performed in [19] for the O(4) model at β=1.1 and β=1.2, with an aim to test the
universality of bM2/a2 predicted in [20]. It has been confirmed, providing an estimate
bM2/a2 = 0.17±0.01 valid for both values of β. Now we can see from (4.7b) that this
estimate is slightly smaller than the standard-theoretical value 3/16=0.1875.

Here we consider the cases n=2 and n=10. The choice of the k-interval for the O(2)
model is illustrated in Fig. 3, where we can see that the finite-size and finite-h effects are
very small for G⊥(k) if k≥k9, and these are small also for G‖(k) if k≥k20 with kℓ=2πℓ/512.
Hence, the region k ≥ k20 is appropriate for the estimation of R(k). Similarly, we have
found that the region k≥ k15 with kℓ=2πℓ/350 is appropriate for our analysis at n=10.
The plots similar to those in Fig. 3 for n=10 are given in [19] (see Figs. 1 and 2 there).

The local slopes of plots in Fig. 3 are the effective exponents, which are meaningful in
the discussed here ranges, k>k∗⊥=k9 for G⊥(k) and k>k∗‖=k20 for G‖(k), where the curves

at small h practically merge. The effective exponents, evaluated from the fits within [k,2k],
are shown as functions of k in Fig. 4. One can judge from the behavior of the transverse
effective exponent (upper curves) within k> k∗⊥ that the asymptotic exponent λ⊥ is close
to the standard-theoretical value 2. To the contrary, plots of the longitudinal effective
exponent (lower curves) deviate below the standard-theoretical value 1. For a detailed
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Figure 3: Log-log plots of the transverse (top) and the longitudinal (bottom) Fourier-transformed two-point
correlation functions in the O(2) model (shown for k<1 at β=0.55) at h=hmin=0.00021875 and L=512 (solid
circles), h=hmin and L=384 (pluses), h=2hmin and L=512 (empty circles), h=4hmin and L=512 (diamonds),
h=8hmin and L=256 (squares). The vertical dot-dashed and dashed lines indicates the lower borders of the k
intervals where the finite-size and finite-h effects are small for G⊥(k) and G‖(k), respectively.
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Figure 4: Transverse (top) and longitudinal (bottom) effective exponents of the O(2) model at h = hmin =
0.00021875 and L = 512 (solid circles), h = hmin and L = 384 (diamonds), h = 2hmin and L = 512 (squares),
h= 4hmin and L= 512 (empty circles). The vertical dotted lines indicate the lower borders of the k intervals
(k∗⊥ in the transverse case and k∗‖ in the longitudinal case), where the plots merge for small h values.

analysis of these plots see [18], where an estimate λ‖= 0.69±0.10 is obtained, assuming
corrections to scaling of the standard theory. We cannot rule out a possibility that this
effective exponent converges to 1, if appropriately estimated at k< k20 (simulations for
smaller h and larger L values would be necessary in this case), although the current data
give no evidence for such a possible scenario. The effective transverse and longitudinal
exponents show a remarkable h-dependence and crossover effects within k<k∗⊥ and k<k∗‖ ,

respectively. These, however, are trivial crossovers, which always occur for small enough
wave vectors at any finite h value, i.e., crossovers from the power-law behavior to the
∝ 1/(a+k2) behavior. The latter one always takes place at a finite h in vicinity of k= 0,
where the correlation functions can be expanded in powers of k2. In fact, the effective
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Figure 5: The ratio R(k) (4.9) in the O(10) model at β=3. The results for h=hmin =0.00021875 and L=350
(solid circles), h= hmin and L = 256 (exes), h= 2hmin and L = 384 (empty circles), as well as for h= 4hmin
and L= 384 (diamonds) are presented. The respective linear fits are shown by solid, dashed, dot-dashed and
dot-dot-dashed lines. The fit interval is k15 ≤ k≤ k75 with kℓ=2πℓ/350 for L=350 and similar in other cases.

exponents tend to zero at k→ 0 because of this effect. Hence, this trivial behavior gives
no indication that some non-trivial crossover, probably, takes place.

We will start our estimation of R(0) with n=10, since the results are more precise and
convincing in this case. According to the corrections to scaling of the standard theory, the
correlation functions are expanded in powers of k4−d and kd−2 [1, 5], i.e., in powers of k
at small wave vectors in three dimensions. It means that the ratio R(k) is expected to be
linear function of k at k→0. We indeed observe a very good linearity for the O(10) model
within k15≤k≤k75 (kℓ=2πℓ/350), as it can be seen from Fig. 5, where the fit results for this
or very similar intervals are shown at different fields h and lattice sizes L. For the smallest
h value h=hmin =0.00021875, the linear fits give R(0)=0.4895(27),0.4920(27),0.4936(26)
and 0.5021(28) at L = 350,256,192 and 128, respectively. Hence we can judge that the
finite-size effects are practically negligible at L=350. The results for h=2hmin and h=4hmin

at L=384 are R(0)=0.4814(27) and R(0)=0.4646(28), respectively.

To control the linearity, we have evaluated the slope of the R(k) plot for the smallest-
h data at L=350 by fitting these data within the interval [k,k+k15 ] and have plotted the
result as a function of k in Fig. 6. At k=0, it corresponds to the average slope within [0,k15],
i.e., within the gap in Fig. 5, where the data are absent. It is related to the increment of
R(k) within this gap. In fact, if the standard-theoretical asymptotic value 9/16= 0.5625
is correct, then this increment has to be more than twice larger than that of the linear
extrapolation in Fig. 5. We find that the average slope within [0,k15] has to be about
−0.43 in this case. This value is indicated by the lower dot-dot-dashed line in Fig. 6.
The slopes evaluated from the data in Fig. 5 correspond to k≤ k60 in Fig. 6, where k60 is
indicated by the vertical dotted line. Although the data contain a remarkable statistical
noise (a correlated noise), one can judge that these slopes fluctuate around the average
value −0.1906(26) (the dot-dashed line) for the range [k15,k75] in Fig. 5 rather than tend to
−0.43 (the dot-dot-dashed line). It justifies the linear fit as a reasonable approximation,
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Figure 6: The slope of the R(k) plot depending on k for the O(10) model, evaluated from the fits of the
smallest-h data at L=350 within [k,k+k15]. The estimates extracted from the data within the k range in Fig. 5
correspond to k≤ k60. The value k60 is indicated by a vertical dotted line. The upper dot-dashed line indicates
the average slope −0.1906(26) in Fig. 5. The lower dot-dot-dashed line indicates the expected average slope
within [0,k15], which is about −0.43, if the standard-theoretical value R(0)=9/16 is correct. The dashed curve
is a guide to eye.
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Figure 7: The values of R(0) (solid circles), evaluated from the fits in Fig. 5 depending on the external field
h, taking the largest size L for each h. The linear fit gives an estimate R(0) = 0.4979(33) for h=+0. The
standard-theoretical value 9/16=0.5625 is indicated by dashed line.

although some nonlinearity could be present, if the slope for the interval [k,k+k15 ] is
slightly varied within k< k60, e.g., as shown by the dashed curve in Fig. 6.

In Fig. 7, the R(0) estimates for the largest sizes are shown depending on h. The
three data points almost precisely fit on a straight line, which gives the asymptotic esti-
mate R(0) = 0.4979(33) for h=+0. This fit is plausible from the point of view that the
h-dependence is, indeed, expected to be smooth (analytic) for a fixed interval of nonzero
k values, where R(k) has been calculated. Note, however, that the indicated here error
bars ±0.0033 include only the statistical error. A systematic error can arise from a weak
nonlinearity of the plot and also from finite-size effects, which seem to be smaller than
the statistical error bars in this case. Since the possible non-linearity is not well controlled
having only three data points, we have set remarkably larger error bars ±0.01 for our final
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Figure 8: The ratio R(k) (4.9) in the O(2) model at β = 0.55. The results for h = 2hmin = 0.0004375 and
L=512 (solid circles), h=2hmin and L=384 (exes), h=4hmin and L=512 (empty circles), and for h=8hmin
and L= 256 (diamonds) are presented. The respective quadratic fits are shown by solid, dashed, dot-dashed
and dot-dot-dashed lines and yield R(0)=0.0566(22),0.0587(26),0.0541(25) and 0.0544(23). The fit interval is
k20≤ k≤ k80 with kℓ=2πℓ/512 for L=512 and similar in other cases.

estimate R(0) = bM2/a2 = 0.498±0.010. This estimate shows a small, but very remark-
able as compared to the error bars, deviation from the standard-theoretical value (4.7b)
bM2/a2 =9/16=0.5625, indicated in Fig. 7 by a dashed line.

A similar estimation is performed here for the O(2) model, with an essential differ-
ence that the R(k) plots appear to be rather non-linear, well fit to a parabola instead of
a straight line. Besides, in this case we have used the data for larger fields h = 2hmin,
h=4hmin and h=8hmin, since the agreement between the results for different lattice sizes
at h= hmin was not as good (although the estimate R(0) = 0.0590(24) at the largest size
L=512 and h=hmin, probably, is good). In such a way, based on the fits shown in Fig. 8,
we have made a rough estimation R(0) = bM2/a2 = 0.06±0.01 for the O(2) model. It
agrees within the error bars with the standard-theoretical value 1/16=0.0625.

5 Analytic approximations for G⊥(k) and G‖(k)

Let us now consider the approximation (3.2) in more detail. This approximation does not
uniquely follow from the theory in [20], since the letter refers mainly to the case h=+0
in the thermodynamic limit. However, this approximation for non-zero h together with
an analogous one for the longitudinal correlation function, i.e.,

G⊥(k)≈χ⊥
( ã(h)

ã(h)+ k̃2

)λ⊥/2
, (5.1a)

G‖(k)≈χ‖
( b̃(h)

b̃(h)+ k̃2

)λ‖/2
, (5.1b)

where k̃2=(2sin(k/2))2, have the expected properties under appropriate choice of param-
eters ã= ã(h) and b̃= b̃(h). The actual choice of k̃2 ensures the periodicity G⊥(k+2π)=
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G⊥(k) and G‖(k+2π)=G‖(k) and, at the same time, k̃2→k2 at k→0. The formulas (5.1a)

and (5.1b) ensure that the correlation functions can be expanded in powers of k2 in vicin-
ity of k= 0 for any nonzero h. At the same time they ensure the power-law asymptotic
G⊥(k)=ak−λ⊥ and G‖(k)=bk−λ‖ at h→0 provided that ã(h)∼ b̃(h)∼h2/λ⊥ holds at h→0,

taking into account the relations χ⊥ = M(h)/(βh) and χ‖ ∼ h−λ‖/λ⊥ . The latter one is

true at h→ 0 according to Eq. (9.25) in [20]. This behavior of ã(h) and b̃(h) implies that
ξ⊥(h) ∼ ξ‖(h)∼ h−1/λ⊥ holds for small h, where ξ⊥ and ξ‖ are the transverse and the
longitudinal correlation lengths. Similar conclusion follows from the PP relation (4.6),
i.e., ξ⊥/ξ‖ = 2. However, according to (5.1a)-(5.1b), the ratio ξ⊥/ξ‖ is expected to be a
constant at h→0, but not necessarily two.

Apparently, Eqs. (5.1a)-(5.1b) represent the simplest possible form having the above
discussed properties. Therefore, this form might be a very reasonable first approxima-
tion for small k, at least. Recall that the simulated quantities G⊥(k) and G‖(k) are the
correlation functions in the 〈100〉 crystallographic direction. However, the expressions
in the right hand side of (5.1a) and (5.1b) might be generally meaningful approximations
for G⊥(k) and G‖(k) with k̃2 given by (2.12).

The Gaussian transverse correlation function (2.9) is interpreted as one corresponding
to a particle with mass m in the quantum field theory. The true correlation function can
be related to particles with certain mass spectrum A(ω) via

G⊥(k)=
∫

ω
A(ω)K(ω,k)dω, (5.2)

where K(ω,k) can be an appropriately modified Gaussian propagator, like (2.11)
or (2.16), with m = ω. If the true correlation function is just K(m,k), then we have
A(ω) = δ(m−ω). Our fits suggest that the approximation (5.1a) is valid with slightly
smaller than 2 value of the exponent λ⊥. In this case, the spectral function could also
exist. In particular, small deviations from the Gaussian form might imply that A(ω)
has a sharp maximum at ω=m, the maximum value being finite. The question about the
existence of such a spectral representation is not quite trivial and requires a further inves-
tigation. It refers also to possible spectral representations of the longitudinal correlation
function.

In the following, we have considered ã(h) and b̃(h), as well as the exponents λ⊥ and
λ‖ as fit parameters in (5.1a) and (5.1b). In such a way, (5.1a) is consistent also with the
standard theory if λ⊥ = 2 holds within the error bars. We have found that (5.1a) fairly
well fits our data for O(n) models at various parameters within the whole range of the
wave vector magnitude k≤π. The fit results are collected in Table 4. Those for a narrower
k interval k<0.55 are presented in Table 5. The results of fits to (5.1b) for the longitudinal
two-point correlation function are presented in Table 6. In this case, the data cannot be
well fit within k ≤ π. It is also not always possible for k < 0.55, but the fits improve
significantly (on average) for a narrower interval k< 0.28. For the intervals k< 0.55 and
k<0.28, fits to the asymptotic form, where k̃2 is replaced by k2 in (5.1a) and (5.1b), have a
similar quality than those presented in Tables 5 and 6. The results are also similar.
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Table 4: Parameters used in (5.1a), ã(h) and λ⊥ being evaluated from fits within k≤π.

n β 104h L χ⊥ 104ã(h) λ⊥ χ2/d.o.f.

2 0.55 2.1875 512 5254.762(75) 2.624(14) 1.9696(11) 1.16

2 0.55 4.375 512 2630.392(25) 5.364(33) 1.9723(15) 1.18

2 0.55 8.75 512 1317.3967(86) 10.828(62) 1.9722(15) 1.29

4 1.1 3.125 350 1422.831(40) 5.354(26) 1.9776(11) 1.10

4 1.1 4.375 350 1018.173(24) 7.527(36) 1.9783(12) 1.36

4 1.2 4.375 350 1075.028(19) 6.709(33) 1.9840(12) 1.31

10 3 2.1875 350 719.464(24) 4.331(18) 1.99225(98) 1.22

10 3 4.375 384 361.3551(75) 8.676(34) 1.9931(10) 0.91

10 3 8.75 384 181.8192(29) 17.215(57) 1.99227(95) 1.17

Table 5: Parameters used in (5.1a), ã(h) and λ⊥ being evaluated from fits within k<0.55.

n β 104h L χ⊥ 104ã(h) λ⊥ χ2/d.o.f.

2 0.55 2.1875 512 5254.762(75) 2.805(47) 1.9897(56) 0.76

2 0.55 4.375 512 2630.392(25) 5.866(84) 2.0037(53) 0.61

2 0.55 8.75 512 1317.3967(86) 11.59(20) 1.9996(72) 1.32

4 1.1 3.125 350 1422.831(40) 5.500(73) 1.9857(49) 1.24

4 1.1 4.375 350 1018.173(24) 7.90(11) 1.9959(58) 1.10

4 1.2 4.375 350 1075.028(19) 7.032(84) 2.0011(46) 1.01

10 3 2.1875 350 719.464(24) 4.333(47) 1.9918(39) 1.35

10 3 4.375 384 361.3551(75) 8.766(98) 1.9973(45) 0.61

10 3 8.75 384 181.8192(29) 17.39(20) 1.9965(54) 1.37

If we consider such fits as a method of estimation of the exponents λ⊥ and λ‖, then
it has certain advantage as compared to the estimations in [18, 19], i.e., it is not necessary
to discard the smallest k values in order to ensure the smallness of the finite-h effects.
However, a disadvantage is that no corrections to scaling are included in (5.1a)-(5.1b).
Therefore, the values reported in [16–19] are preferable as asymptotic estimates.

The λ⊥ values in Table 4 show quite negligible finite-h effects and small, but very
remarkable as compared to the statistical error bars, deviations below the standard-
theoretical value 2. These deviations, obviously, are not caused by finite-size effects, since
the results for remarkably smaller lattice sizes are practically the same. Namely, at the
smallest h values we have λ⊥=1.9719(12) for n=2 and L=256, λ⊥=1.9796(12) for n=4
and L=128, and λ⊥=1.9933(12) for n=10 and L=192. However, the estimates in Table 4
could have some systematic errors because of too large wave vectors included in the fits.
In this case, the fits over a narrower range k < 0.55 (see Table 5) are more appropriate.
The exponents λ⊥ in Table 5 slightly depend on the field h. Comparing the values at two
smallest fields in each of the cases n = 2, n = 4 and n = 10, we can see some tendency
of decreasing with decreasing of h, in such a way that the asymptotic values at h=+0
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Table 6: Parameters used in (5.1b), b̃(h) and λ‖ being evaluated from fits within k< kmax.

n β 104h L kmax χ‖ 102b̃(h) λ‖ χ2/d.o.f.

2 0.55 2.1875 512 0.28 7.62(25) 0.110(16) 0.737(12) 1.84

2 0.55 2.1875 512 0.55 7.62(25) 0.126(14) 0.7659(47) 1.81

2 0.55 4.375 512 0.28 5.29(15) 0.230(38) 0.690(19) 1.41

2 0.55 4.375 512 0.55 5.29(15) 0.297(35) 0.7545(81) 2.48

2 0.55 8.75 512 0.28 3.764(95) 0.71(13) 0.756(36) 0.88

2 0.55 8.75 512 0.55 3.764(95) 0.717(85) 0.758(12) 0.82

4 1.1 3.125 350 0.28 7.41(20) 0.277(36) 0.872(22) 1.51

4 1.1 3.125 350 0.55 7.41(20) 0.378(33) 0.9799(94) 3.27

4 1.1 4.375 350 0.28 6.36(17) 0.403(59) 0.892(29) 1.18

4 1.1 4.375 350 0.55 6.36(17) 0.512(48) 0.983(12) 1.86

4 1.2 4.375 350 0.28 4.27(14) 0.356(57) 0.878(28) 0.82

4 1.2 4.375 350 0.55 4.27(14) 0.431(48) 0.945(12) 1.58

10 3 2.1875 350 0.28 4.18(20) 0.212(44) 0.947(34) 1.61

10 3 2.1875 350 0.55 4.18(20) 0.289(40) 1.061(14) 2.24

10 3 4.375 384 0.28 2.624(98) 0.68(14) 1.043(62) 0.90

10 3 4.375 384 0.55 2.624(98) 0.79(10) 1.115(22) 0.86

10 3 8.75 384 0.28 1.920(72) 1.16(32) 1.026(96) 0.72

10 3 8.75 384 0.55 1.920(72) 1.43(22) 1.144(35) 0.74

could be quite similar to our earlier estimates, at least for n=4 and n=10. Recall that the
values 1.955±0.020 and 1.960(10) for n=4 and 1.9723(90) for n=10 have been reported
in [17,19]. The longitudinal exponent λ‖=2λ⊥−d, calculated from these asymptotic esti-
mates, is consistent with λ‖ for relatively small k values (kmax=0.28) at the smallest fields
h in Table 6.

For the O(2) model, the agreement between λ⊥ = 1.929(21), obtained in [16]
from (1.2a) via scaling relation ρ = (d/λ⊥)−1 [20], and the smallest-h estimate λ⊥ =
1.9897(56) in Table 5 is remarkably worse. The exponent λ‖ = 0.737(12) in Table 6 (at
minimal h and kmax=0.28) is somewhat smaller than the value 0.858(42), calculated from
the scaling relation λ‖ = 2λ⊥−d [20] with λ⊥ = 1.929(21), although it agrees well with
the direct estimation λ‖=0.69±0.10 in [18]. The discrepancies indicate that corrections to
scaling, including non-trivial ones of the GFD theory (discussed in [18, 19]), which have
not been taken into account in the fitting procedures, are larger for the O(2) model as
compared to the O(4) and O(10) models.

In Figs. 9 and 10, some of our fit curves at h = 0.0004375 are shown, which are rel-
atively good, especially for n = 4 and n = 10. These are fits to the asymptotic form
of (5.1a) and (5.1b) for small k values, where k̃2 is replaced by k2. The fit curves for
k̃2=(2sin(k/2))2 look practically the same. The asymptotic case is shown here, since just
these fits are used in our further analysis in Section 6.
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Figure 9: The transverse two-point correlation function G⊥(k) at the value of external field h=0.0004375. The
results for the O(2) model at β= 0.55 and L= 512 (top), O(4) model at β= 1.2 and L= 350 (middle), and
O(10) model at β= 3 and L= 384 (bottom) are presented. The simulated data points are shown by circles.
The error bars are indicated, where these are larger than the symbol size. Curves represent the asymptotic form
of (5.1a) with k̃2 = k2, parameters ã(h) and λ⊥ being evaluated from the fits within k<0.55.

0 0.2 0.4 0.6 k
0

1

2

3

4

5

G
||(k

)

Figure 10: The longitudinal two-point correlation function G‖(k) for the O(2) model (top), O(4) model

(middle), and O(10) model (bottom) at the same parameters as G⊥(k) in Fig. 9. The simulated data points
are shown by circles, the error bars being indicated, where these exceed the symbol size. The fits to the
asymptotic form of (5.1b) with k̃2 = k2 are shown by solid and dashed curves for the fit ranges k< 0.28 and
k<0.55, respectively. The upper values of the fit intervals are indicated by vertical dashed lines.

6 Test of the Patashinski-Pokrovski relation

The fit curves for the O(4) and O(10) models in Figs. 9 and 10 provide good approxima-
tions in the thermodynamic limit at the given parameters and small k values, and these
approximation functions decay smoothly for large k. Therefore we have used them for
Gas

j (k) in Eq. (4.1). It allowed us to test the PP relation (4.6) for large distances x via (4.1)

and (4.2). In the case of a finite lattice, the wave vectors belong to a cube with −π≤kx≤π,
−π≤ky≤π, −π≤kz≤π. Therefore a reasonable choice of the cut-off parameter is Λ=π.
The precise value of Λ, however, is not important, since the result for G̃j(x) is insensitive
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Figure 11: The functions f⊥(x) (6.1a) and f‖(x) (6.1b) for the O(4) (upper curves) and O(10) (lower curves)

models, evaluated from (4.1) (replacing i with ⊥ or ‖) and (4.2) with Λ=π, using the fit functions G⊥(k) and
G‖(k) in Figs. 9 and 10. The solid circles correspond to f⊥(x), the error bars being smaller than the symbol

size. The empty circles with error bars represent f‖(x), evaluated using the fit interval k<0.28 in Fig. 10, the

results for k<0.55 being indicated by dashed curves. The PP relation (4.6) implies f⊥(x)= f‖(x).

to the variation of Λ at large enough x. We calculate functions f⊥(x) and f‖(x) given by

f⊥(x)=2ln(xG̃⊥(x))+ln
(n−1

2M2

)

, (6.1a)

f‖(x)= ln(x2G̃‖(x)
)

, (6.1b)

which have to be equal if the PP relation holds. In the Gaussian approximation (2.9), we
have G̃⊥(x)∝ e−mx/x at x→∞, implying the linearity of these functions at large x.

The magnetization M for the actual parameters are taken from [17, 19]. We have con-
sidered the distances x ≥ 6, as in this case the f‖(x) curves at Λ = π and Λ = π/2 lie
practically on top of each other. The function f⊥(x) is even much less influenced by the
change of Λ. The used here fits in Fig. 9 are perfect, whereas those in Fig. 10 show some
systematic variations depending on the fit interval. The fits over k< 0.28 are better for
small k, therefore they could provide a better approximation of f‖(x) for large x, although
the fits over a wider interval k<0.55 look better on average. We have compared the results
in both cases to judge about the magnitude of systematic errors. The resulting curves of
f⊥(x) and f‖(x) within 6≤ x≤ 50 are shown in Fig. 11. The errors due to statistical and
systematic uncertainties in the fit parameters increase significantly for x > 50, therefore
no larger distances are considered here. As we can judge from Fig. 11, the PP relation
holds approximately (within 10% or 15% accuracy) in these examples at a finite external
field h=0.0004375.

Another case, where the PP relation can be tested, is the large-x behavior in the ther-
modynamic limit at h=+0. It is closely related to the universal ratio test in Section 4. The
PP relation states that (4.7a) must hold for the ratio BM2/A2. As it is shown in Section 4,
this requirement is equivalent to (4.7b) for the ratio bM2/a2, if the transverse exponent is
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λ⊥=2, as predicted by the standard theory. Tests in Section 4 show certain inconsisten-
cies with (4.7b) (see Fig. 7) and, consequently, with the PP relation if λ⊥= 2. Assuming
that λ⊥=2 holds at n=10, the ratio BM2/A2=8bM2/a2=3.984±0.080 (see Eq. (4.5)) ap-
pears to be somewhat smaller than the value 4.5 expected from the PP relation. One can
use (4.4) to calculate BM2/A2 from bM2/a2 at our numerically estimated values of the
exponent λ⊥<2. It leads to slightly (by ∼1%) smaller values of BM2/A2. Thus, we find
that the PP relation holds approximately (within about 12% accuracy in our examples) in
the thermodynamic limit for large x→∞ at h=+0.

7 Conclusions

In the current paper, we have considered the behavior of the longitudinal and transverse
correlation functions and Goldstone mode singularities in O(n) models from different
aspects compared to our earlier Monte Carlo studies [16–19]. Apart from the two-point
correlation functions, here we have calculated the two-plane correlation functions, which
are very important for the provided here discussions related to the recent work by Engels
and Vogt [15]. We confirm the stated in [15] fact that the transverse two-plane correlation
function of the O(4) model for lattice sizes about L = 120 and small external fields h
is very well described by a Gaussian approximation with λ⊥ = 2 in (1.2b). However,
we have shown in Section 3 that fits of not lower quality are provided by certain non-
Gaussian approximation, where λ⊥<2. Thus, the behavior of the two-plane correlation
functions does not imply that the O(4) model is essentially Gaussian with λ⊥ = 2. We
have also tested the cases n = 2,4,10 for larger lattice sizes (e.g., L = 350 and L = 512),
where not as good agreement with the Gaussian model has been observed.

The ratio bM2/a2 has been considered in Section 4, showing that its universality fol-
lows not only from the GFD theory [20], but also from the standard theory, yielding
bM2/a2 =(n−1)/16. Our MC estimates of this ratio are 0.06±0.01 for n= 2, 0.17±0.01
for n = 4 and 0.498±0.010 for n = 10. The latter estimate shows a very remarkable, as
compared to the error bars, deviation from the standard-theoretical value 9/16=0.5625.
Our MC estimation in [16,17,19] points to small deviations from the standard-theoretical
predictions in favor of the GFD theory. A clear evidence that the standard theory is not
asymptotically exact (as one often claims) at large length scales has been provided in [18],
showing that a self consistent (within the standard theory) estimation of the longitudinal
exponent λ‖ from MC data of the three-dimensional O(2) model at β= 0.55> βc yields
λ‖ = 0.69±0.10 in disagreement with the expected value λ‖ = 1. The current MC esti-

mation of the ratio bM2/a2 provides one more such evidence. One has to note that the
standard-theoretical exponent ρ=1/2 in (1.2a) is apparently confirmed by the experimen-
tal data of [28]. However, in our opinion, the low quality of fits (i.e., evident systematic
deviations of the data points from the fit curves) in Fig. 1 of [28] rises a question whether
this exponent is just 1/2 or, perhaps, slightly different from 1/2.

In Section 5, we have proposed and tested certain analytic approximations for the
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two-point correlation functions G⊥(k) and G‖(k) in 〈100〉 direction and also for G⊥(k)
and G‖(k) at small k = |k|, which are consistent with the expected behavior at h =+0
and are valid also at a finite external field h. We have found that these approximations
(Eqs. (5.1a) and (5.1b)) fit reasonably well the simulation data for small k. Moreover, (5.1a)
quite well tits the G⊥(k) data within the whole range k∈ [0,π]. The exponents λ⊥ and λ‖
in (5.1a)-(5.1b) have been discussed as fit parameters, showing that these are comparable
with our earlier estimates. In Section 6, we have used our analytic approximations to
test the Patashinski-Pokrovski relation (4.6), and have found that it holds approximately
within the accuracy of about 10% or 15% in the examples considered.
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[17] J. Kaupužs, R. V. N. Melnik and J. Rimšāns, Monte Carlo estimation of transverse and longi-
tudinal correlation functions in the O(4) model, Phys. Lett. A, 374 (2010), 1943–1950.
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