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Abstract. Quantum Monte Carlo data are often afflicted with distributions that re-
semble lognormal probability distributions and consequently their statistical analysis
cannot be based on simple Gaussian assumptions. To this extent a method is intro-
duced to estimate these distributions and thus give better estimates to errors associ-
ated with them. This method entails reconstructing the probability distribution of a
set of data, with given mean and variance, that has been assumed to be lognormal
prior to undergoing a blocking or renormalization transformation. In doing so, we
perform a numerical evaluation of the renormalized sum of lognormal random vari-
ables. This technique is applied to a simple quantum model utilizing the single-thread
Monte Carlo algorithm to estimate the ground state energy or dominant eigenvalue of
a Hamiltonian matrix.
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1 Introduction

Quantum Monte Carlo simulations utilizing the technique of multiplying weights to-
gether often give spurious results when one calculates expectation values of operators.
Often, one is faced with a dilemma when having to choose a final estimate together with
its corresponding error estimate from a set of estimators converging to the exact result.
This may arise as a consequence of the estimators developing a distribution that is some-
what different from the Gaussian distribution. Correct statistical inference is based on
the assumption that data under consideration adheres to a specific distribution. If this
distribution is incorrect, the results obtained after statistical analysis may be invalid [1].
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With respect to quantum Monte Carlo applications where one is interested in the
statistical iteration of some operator, Hetherington [2] observed that the probability dis-
tribution of the estimators depends on the number of Monte Carlo iterations. In fact, as
shown in this paper, the estimators exhibit a lognormal distribution that has been block-
transformed a number of times. This attribute is inherited from the distribution of the
product of weights associated with importance sampling. By the central limit theorem,
the lognormal distribution should approach the Gaussian limit for a sufficiently large
number of block transformations. The estimators however are sometimes not blocked
sufficiently often to have reached the Gaussian limit but they do resemble the Gaussian
distribution with slight deviations. It would therefore be incorrect to assume that stan-
dard statistical analysis, giving the average plus or minus one standard error to be within
a 68% confidence interval, is appropriate here.

In the context of statistical and probability theory, a block or renormalization trans-
formation as described in this work, corresponds to the renormalized sum of identically
independent random variables. In this paper we consider the sum of lognormal random
variables. Sums of lognormal random variables appear in many branches of science [3,4]
and finance [5] but most prominently in the field of communications [6, 7]. For a historic
perspective of finding the distribution of sums of lognormally distributed random vari-
ables, see [8]. The difficulty in evaluating these sums of distributions analytically is due
to the fact that the characteristic function of the lognormal distribution is not know in
closed form and as a result approximation methods are used. Many of these approxi-
mations are based on approximating the sum of lognormal variables by another lognor-
mal variable [6, 7, 9–11]. Other methods of approximation have also been introduced by
Beaulieu et al. [12,13]. In the results presented in this work, the sums of lognormal distri-
butions were evaluated simply by using the trapezoidal rule which produced excellent
results without resorting to more elaborate numerical integration techniques [14].

The paper is organized as follows. In Section 2 we recall the standard statistical meth-
ods applied to a set of data if normality is assumed. In Section 3, we describe a method
of calculating the number of times a set of data has undergone a block transformation
by relating the cumulants of the blocked data to that of the original data. From this, a
recursion relation results which relates successive blocked cumulants. Section 4 focuses
on the lognormal distribution and here we construct the block transformed lognormal
distribution numerically by first calculating the characteristic function and then Fourier
transforming to obtain the probability distribution. A recipe is given in Section 5 to con-
struct the probability distribution of a set of data, with given mean and variance, that has
been assumed to be lognormal prior to blocking. By constructing this distribution we
are able to give better estimates of the standard errors corresponding to a desired confi-
dence interval. As an application of these methods we consider data obtained from using
the single-thread Monte Carlo technique to estimate the groundstate energy (dominant
eigenvalue) of a 3×3 symmetric Hamiltonian matrix. This is described in Section 6. Here
we consider data with small ensemble sizes that do not ideally converge to an expected
value. By constructing the probability distributions of these data, we show that the er-
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rorbars are actually asymmetric as compared to those obtained by standard statistical
methods.

2 Standard statistical methods

Let x1,x2,··· ,xN be possible realizations of the stochastic variable X. The most common
method of estimating the mean of this set of independent identically distributed data,
{xi}, is

〈x〉= 1

N

N

∑
i=1

xi. (2.1)

The spread or uncertainty of the data points from the mean is the standard error, given
by the estimate of the standard deviation of the mean,

σ〈x〉=

√√√√ 1

N(N−1)

N

∑
i=1

(xi−〈x〉)2. (2.2)

Under the assumption that for a large enough value of N, the distribution of the {xi}
approach the normal distribution (by the central limit theorem), the previous definitions
have precise meanings. Here one can write down an estimate of the data together with
an uncertainty or error bar given by x= 〈x〉±kσ〈x〉, such that

Prob
(

x∈ [〈x〉−kσ〈x〉 ,〈x〉+kσ〈x〉]
)

=
∫ 〈x〉+kσ〈x〉

〈x〉−kσ〈x〉

1√
2πσ〈x〉

e
− (x−〈x〉)2

2σ〈x〉 dx

=erf
( k√

2

)
, (2.3)

where for k=1 and k=2, the corresponding probabilities are 68% and 95% respectively.
If the data do not conform to the central limit theorem in the sense that they are

not numerous enough, are correlated or lack normality, the previous probabilities for
the uncertainties cannot be assumed. In this case, one needs to know explicitly what
form the distributions take on in order to make any intelligent guess in estimating the
uncertainties. This problem is addressed in the following sections where a method is
developed to obtain error estimates corresponding to the probabilities mentioned above.

3 The blocking coefficient

Let {x1,x2,··· ,x2N} be a set of independent, identically distributed random data of a
stochastic variable X with probability distribution PX(x). We block transform this set
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of data into a new set {x′1,x′2,··· ,x′
2N−1}, corresponding to the stochastic variable X′, such

that

x′i =
1

21/α
(x2i−1+x2i), (3.1)

where the characteristic exponent α is chosen to be 2 so that the {x′i} will have the same
variance as the {xi}. The characteristic function for the transformed data are related to
the one for the original data by

fX′(k)= 〈eıkx′〉= 〈e
ıkx√

2 〉2=
[

fX

( k√
2

)]2
. (3.2)

Now expanding in terms of the cumulants, we have,

fX′(k)=exp
{ ∞

∑
n=1

(ık)n

n!
Cn(X

′)
}
=exp

{
2

∞

∑
n=1

( ık√
2
)n

n!
Cn(X)

}
, (3.3)

by Eq. (3.2), and by comparing terms one can relate the cumulants of the original data to
the cumulants of the blocked data:

Cn(X
′)=

Cn(X)

2(n/2−1)
. (3.4)

Now if the {x′i} are blocked further, say, b times from the {xi}, then the cumulants of the

bth blocked data, {x(b)}, are related to the cumulants of the original data by

Cn(X
(b))=

Cn(X)

2b(n/2−1)
. (3.5)

So, if the cumulants are known, one can calculate the number of times the {xi} have been
block transformed from

b=
log

∣∣ Cn(X)

Cn(X(b))

∣∣

log2(n/2−1)
. (3.6)

It can also be shown that there exists a recursion relation between successive blocks given
by

Cn(X
(b))=

Cn(X(b−1))

2(n/2−1)
. (3.7)

It should be noted that by choosing α=2, the mean, given by the first cumulant, grows by
a factor of

√
2 for successive blocks. It is therefore more convenient to initially transform

the data such that C1(X)=0 and C2(X)=1. This transformation also leaves b invariant.
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4 Constructing the block transformed lognormal distributions

If {y1,y2,··· ,y2N} is normally distributed with µ= 0 and σ2 = 1, then {ey1 ,ey2 ,··· ,ey
2N }=

{x1,x2,··· ,x2N} is lognormally distributed with distribution given by

PX(x)=
1

x
√

2π
e−

1
2 (lnx)2

. (4.1)

If the {xi} are block transformed into a new set {x
(b′)
i } such that

x
(b′)
i =

1√
b′
(xb′(i−1)+1+xb′(i−1)+2+···+xb′i), (4.2)

then the characteristic function for the new set is given by

fX(b′)(k)= 〈e
ıkx√

b′ 〉b′ =
[

fX

( k√
b′

)]b′

, (4.3)

where b′=2b. Now the probability distribution for x(b
′) can be reconstructed from Eq. (4.3)

by taking the Fourier transform such that,

PX(b′)(x(b
′))=

1

2π

∫ ∞

−∞
e
− ıkx√

b′ fX(b′)(k)dk=
1

2π

∫ ∞

−∞
e
− ıkx√

b′
[

fX

( k√
b′

)]b′

dk, (4.4)

which is a function of the original data {xi}. There is however no closed form expression
for this probability distribution since the characteristic function of a lognormal variable is
not known in closed form. It should be noted, that the lognormal distribution is not sta-
ble, in the sense that a sum of lognormal random variables is not lognormally distributed.
The lognormal distribution under a transformation, as given above, with increasing b′

approaches the stable normal distribution. The lognormal distribution is guaranteed to
belong to the domain of attraction of the normal distribution since the former distribution
has a finite variance given by the blocking transformation having a characteristic expo-
nent of 2 [15]. This corresponds to the renormalization group proof of the central limit
theorem [16, 17]. Another important property of the lognormal distribution is that the
product and ratio of independent lognormal variables are also lognormally distributed.

We now proceed to show how the blocked probabilities are calculated numerically.
Without loss of generality we consider the case of b′=2. From Eq. (4.4) above we have

PX(2) =
1

2π

∫ ∞

−∞
e
− ıkx√

2

[
fX

( k√
2

)]2
dk=

1

π

∫ ∞

0
e
− ıkx√

2

[
fX

( k√
2

)]2
dk, (4.5)

since the characteristic function has the property that fX(−k)= f ∗X(k). Our only consider-
ation here is the real part of the probability distribution since the imaginary part vanishes
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exactly. PX(2) is calculated as follows:

PX(2) =
1

π

∫ ∞

0
ℜ
[

e
− ıkx√

2

[
fX

( k√
2

)]2
]

dk

=
1

π

∫ ∞

0

{
ℜ[e−

ıkx√
2 ]ℜ

[
fX

( k√
2

)]2
−ℑ[e−

ıkx√
2 ]ℑ

[
fX

( k√
2

)]2
}

dk

=
1

π

∫ ∞

0

{
cos(kx/

√
2)
[[
ℜ
[

fX

( k√
2

)]]2
−
[
ℑ
[

fX

( k√
2

)]]2]

+2sin(kx/
√

2)ℜ
[

fX

( k√
2

)]
ℑ
[

fX

( k√
2

)]}
dk, (4.6)

where

ℜ fX

( k√
2

)
=

1√
2π

∫ ∞

0

cos(kx/
√

2)

x
e−

1
2 (lnx)2

dx (4.7)

and

ℑ fX

( k√
2

)
=

1√
2π

∫ ∞

0

sin(kx/
√

2)

x
e−

1
2 (lnx)2

dx. (4.8)

PX(2) therefore gives the probability distribution of the lognormal distribution blocked
twice, which is the distribution of a sum of two lognormal variables. The above integrals
were estimated by using the extended trapezoidal rule. Fig. 1 shows a plot of different
blocked probability distributions with the means of the blocked variables, x(b

′), centered
at zero for b=2 to b=12. Here it is clearly seen that the blocked probability distributions
with increasing values of b converge to the normal distribution.

Figure 1: (Color online) Plots of the blocked probabilities for b′ = 2b with b = 2,3,4,5,6,7,8,9,10,11,12 (with
means centered at zero) and the normal distribution.
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Figure 2: (Color online) Plots of the blocked cumulative distribution functions for b′=2b with b=2,4,8,12 and
the normal distribution. Note that the b=12 cumulative distribution function coincides almost exactly with the
normal cumulative distribution.

Figure 3: (Color online) Errorbars for the blocked probabilities for the different blocking coefficients b, corre-
sponding to a confidence interval of 68%.

Once these distributions are established, one can construct the blocked cumulative
distribution functions, SX(b′) , as shown in Fig. 2. By appropriately summing the proba-
bilities in SX(b′) to the left and right of the mean, one can obtain the standard error corre-
sponding to a desired confidence interval. The errorbars corresponding to a confidence
interval of 68% are shown in Fig. 3 for the probability distributions corresponding to dif-
ferent values of b. Note that these errorbars start off asymmetric and converge to the
symmetric standard deviation of σ=1 for the normal distribution.

The cumulative distributions can also be used as the theoretical or reference distri-
bution in the Kolmogorov-Smirnov test. Here one calculates the Kolmogorov-Smirnov
statistic,

D=max|SN(x)−S(x)|, (4.9)

which is the maximum absolute difference between a theoretical cumulative distribution
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Figure 4: (Color online) The blocking coefficient b versus the Kolmogorov-Smirnov statistic D for lognormal
distributions blocked 7 times.

Figure 5: (Color online) The blocking coefficient b versus the significance level of D for lognormal distributions
blocked 7 times.

S(x) and an estimator SN(x) of the cumulative distribution of a set of N data points
sampled from the same probability distribution. For a sample size of N, the N data
points are arranged in ascending order x1,x2,··· ,xN and one calculates the cumulative
proportions SN(x1)=1/N, SN(x2)=2/N and so on. D is a random variable and as such
has some probability distribution. The significance level of D is given by [18],

Prob(D>observed value)=2
∞

∑
i=1

(−1)i−1e−2i2λ2
, (4.10)

where λ = D[
√

N+0.12+0.11/
√

N]. To see how accurately the previously developed
blocked probability distributions would represent a blocked sample, we considered a
sample size of 214 random lognormal variables, blocked them and then applied the
Kolmogorov-Smirnov test with the appropriate SX(b′) as the reference distribution. For
all values of the blocking coefficient we obtained Kolmogorov-Smirnov statistics corre-
sponding to significance levels of about 95%. As an illustration, Fig. 4 and Fig. 5 show
respectively a plot of the blocking parameter b versus the Kolmogorov-Smirnov statis-
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tic and significance level for lognormal samples blocked 7 times. As can be seen from
both figures, their is no doubt that the data do indeed correspond to data with blocking
coefficient b= 7. The Kolmogorov-Smirnov statistic is one of many statistics that can be
used to measure the difference between two distributions. See [18] for other statistics and
references.

The previous discussion can be generalized to the case where µ is finite and σ2 is not
necessarily unity. Here the probability distribution of the lognormal data, in its most
general form, is given by

PX(x)=
1

σx
√

2π
e
− (lnx−µ)2

2σ2 (4.11)

with moments

〈xn〉=
∫ ∞

0
xnPX(x)dx= enµ+ 1

2 n2σ2
, (4.12)

where n labels the order of the moments. In this form the numerical integration for
the characteristic function is more difficult since the integrands become more rapidly
oscillating and have slowly converging envelopes. These integrals however need not
be calculated, since one can always transform a given set of data to another with zero
mean and variance equal to one. Note also that, given a set of data with distribution
PX(x) one can obtain an approximation for µ and σ2 from the first and second cumu-

lants, C1(X)=m= eµ+σ2/2 and C2(X)= s2= e2µ+σ2
(eσ2 −1). Solving, one obtains,

µ= lnm2− 1

2
ln[m2+s2] (4.13)

and

σ2 = ln
[m2+s2

m2

]
. (4.14)

From these values one can also obtain the true errorbars corresponding to a 68% confi-
dence interval from noting that,

Prob
(

X∈
[ eµ

eσ
,eµeσ

])
=
∫ eµ+σ

eµ−σ

1

σx
√

2π
e
− (lnx−µ)2

2σ2 dx

=
1

2

[
erf

( 1√
2

)
−erf

(−1√
2

)]
=68%. (4.15)

5 Constructing the probability distribution of blocked data

that were originally lognormal

In the previous section, we showed how the lognormal distribution was block trans-
formed to give new distributions which represented the sum of lognormal variables. In
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this section we address the problem on how to construct the probability distribution of
a set of data {xi}, with mean µx and variance σ2

x , that we assume was originally lognor-
mally distributed prior to undergoing some blocking transformation. Using the methods
developed previously we write down the following recipe:

1. Transform the data into new data {x̃i} with mean equal to zero and variance equal
to one via the transformation: x̃=(x−µx)/σx.

2. Apply the Kolmogorov-Smirnov test to this data with each of the blocked cumu-
lative distributions, SX(b′) , as the reference distributions. The SX(b′) which gives the
largest significance level probability, infers the number of times the data has been
blocked, i.e., the blocking coefficient b. This also infers the probability distribution
PX(b′) , as constructed in the previous section.

3. Obtain the probability distribution of the data {xi} by the following transforma-
tion: x=µx+ x̃σx. This gives the probability distribution of {xi}, with mean µx and
variance σ2

x , to be

PX(x)=PX(b′)

( x−µx

σx

) 1

|σx|
. (5.1)

One can also apply the recursion relation given by Eq. (3.7), with the above value of
b, to the data set {xi} to get the cumulants of the original lognormal distribution. From
this, Eq. (4.13) and Eq. (4.14) can be used to obtain the mean (µ) and variance (σ2) of
the original Gaussian distribution. One can then write down an expression for the orig-
inal lognormal distribution as given by Eq. (4.11). Block transforming this distribution
according to b also gives the probability distribution of the data {xi}.

6 Application: Single-thread Monte Carlo

As an application of the above methods we consider data, in the form of ground state
energies, as obtained from the implementation of the single-thread [19, 20] algorithm to
a system defined by a 3×3 symmetric Hamiltonian matrix, H, with elements distributed
uniformly in the interval (−1,0). For more details on the single-thread Monte Carlo al-
gorithm, see [20].

Defining the evolution matrix operator, G=e−τH, and since [H,G]=0 we can estimate
the ground state energy (dominant eigenvalue) by

E (p)
TT =

〈ψT|GpH|ψT〉
〈ψT|Gp|ψT〉

, (6.1)

where p is the power of the G matrix or the projection time and ψT is a trial wave function.
Our estimation in Eq. (6.1) is based on the fact that for sufficiently large p, ETT approaches
the ground state, E0. Define the trial wave function in a state S as ψT(S)=φα(S), where



1362 M. Moodley / Commun. Comput. Phys., 15 (2014), pp. 1352-1367

φ(S) are the eigenvectors of H and 0≤ α ≤ 1. The choice of α = 1 corresponds to ideal
importance sampling while that of α=0 corresponds to total ignorance of the trial wave
function. Performing an importance sampling transformation on G,

Ĝ(S′|S)=φα(S′)G(S′|S)φ−α(S), (6.2)

we can write Ĝ(S′|S) in a factorizable form given by,

Ĝ(S′|S)= ĝ(S)P̂(S′|S). (6.3)

Here ĝ(S)=∑S′ Ĝ(S′|S) is the weight matrix and from this the transition matrix is defined
by

P̂(S′|S)= Ĝ(S′|S)
∑S′ Ĝ(S′|S)

. (6.4)

Since G(S′|S) is symmetric in our system, it can be shown that P̂(S′|S) has a known
stationary distribution: ∑S ψT(S)G(S′|S)ψT(S

′)≡ψ2
G.

Now by defining the configuration energy as,

ET(S)=
∑S′〈S|H|S′〉ψT(S

′)
ψT(S)

(6.5)

and by repeated insertion of the resolution of the identity in Eq. (6.1), we obtain,

E (p)
TT =

∑Sp,···,S0
ψT(Sp)ET(Sp)

[
∏

p−1
i=0 G(Si+1|Si)

]
ψT(S0)

∑Sp,···,S0
ψT(Sp)

[
∏

p−1
i=0 G(Si+1|Si)

]
ψT(S0)

. (6.6)

Eq. (6.6) can be converted into a time average by defining the hatted trial wave function
ψ̂T(S)=ψT(S)/ψG(S) and noting that

Prob(St,St+1,··· ,St+p)∝
[ p−1

∏
i=0

P̂(St+i+1|St+i)
]
ψG(St)

2, (6.7)

we have

E (p)
TT = lim

M→∞

∑
M
t=1 ψ̂T(St+p)ET(St+p)Ŵt(p)ψ̂T(St)

∑
M
t=1 ψ̂T(St+p)Ŵt(p)ψ̂T(St)

, (6.8)

where

Ŵt(p)=
p−1

∏
i=0

ĝ(St+i+1|St+i). (6.9)
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Figure 6: (Color online) A log-log histogram plot of the distribution of Ŵt(p) for p=20.

Eq. (6.8) gives a Monte Carlo estimate of the ground state energy. In order to ob-

tain a statistical estimate, one calculates an ensemble of E (p)
TT ’s for different seeds of the

random number generator and then performs standard statistical analysis on this ensem-

ble. These standard statistical techniques are based on the assumption that the E (p)
TT ’s are

Gaussian in nature. From Eq. (6.8) it can be inferred that the distribution of E (p)
TT must

depend on the distribution of the product of weights, Ŵt(p). Fig. 6 shows a log-log
histogram plot of the distribution of Ŵt(p) for p = 20 and it is clear that this distribu-
tion is lognormal in nature. Due to the time average, the denominator and numerator
of Eq. (6.8) are sums of the lognormally distributed variable Ŵt(p) which corresponds
to a block transformation. Now, since the distribution of the ratio of two lognormally

distributed variables retains the lognormality it can be assumed that the E (p)
TT ’s are block

transformed lognormal variables. Therefore the methods described in the previous sec-
tions can be appropriately applied here.

Fig. 7 shows E (p)
TT for different projections for 213 and 28 time steps, where the dashed

line represents the exact ground state. These values and their corresponding errorbars
were calculated using standard statistical methods. With 213 time steps one observes a
rapid convergence to the exact value and as expected the corresponding blocking co-
efficients for all projections were found to be very close to that which gives a normal
distribution. With 28 time steps on the other hand, due to the number of time steps being

small, E (p)
TT does not converge to the exact ground state. In this case the corresponding

blocking coefficients for each projection varies. For small values of projections ranging
from p=1 to p=3 the distribution does not vary significantly from the normal distribu-
tion. For larger values of p, the blocking coefficients range from b=7 to b=9.

To illustrate the techniques developed previously we now show the construction of
the probability distribution together with its errorbars for the case of p=5 for which b=7.
Fig. 8 shows the transformed probability distributions (mean zero and variance one) for



1364 M. Moodley / Commun. Comput. Phys., 15 (2014), pp. 1352-1367

Figure 7: (Color online) Plot of the ground state energy estimate E (p)
TT for different projections for 213 and 28

time steps with an ensemble size of 28. The horizontal dashed line indicates the exact ground state energy.

Figure 8: (Color online) The transformed probability distributions for p=5. The solid curve shows the original
lognormal distribution and the dashed curve shows this distribution blocked 7 times.

the original lognormal distribution together with this distribution blocked seven times.
Here, as expected, the blocked distribution approaches the normal distribution but does
not exactly overlap the latter (cf. Fig. 1). We can now transform this blocked distribution
into the true distribution described by the set of original data points obtained from the

ensemble of E (p)
TT for p= 7. This distribution as obtained by using Eq. (5.1) is shown in

Fig. 9. From this distribution one can easily obtain the errorbars corresponding to a con-
fidence interval of 68%. This method was also applied to data corresponding to the other
projections. Fig. 10 shows a comparison between the errorbars obtained from the stan-
dard method to the ones obtained from the constructed probability distributions. Note
that, the errorbars obtained from the constructed probability distributions are asymmet-
ric, which is due to the fact that the probability distributions are not Gaussian.
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Figure 9: (Color online) Plot of the probability distribution corresponding to data obtained for p=5.

Figure 10: (Color online) Plot of the ground state energy estimate E (p)
TT for different projections with 28 time

steps and an ensemble size of 28. The left errorbars were obtained by using standard statistical methods while
the right ones were obtained from the constructed probability distributions. The errorbars shown correspond to
a 68% confidence interval.

7 Conclusions

In this paper, we demonstrated a method of obtaining the probability distribution to-
gether with estimates of the errorbars for a given set of data. The probability distribution
was obtained by assuming that the given data was block transformed from the lognormal
distribution. For simplicity, we only considered blocking transformations done in pow-
ers of 2. More accurate results could be obtained if a continuous spectrum of blocking
coefficients were considered. In this case one could ideally obtain Kolmogorov-Smirnov
statistics with significance levels of close to 100%.

The errorbars which were computed from the reconstructed probability distributions,
to give a 68% confidence interval, indicated that the ones obtained by standard statistical
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methods incorrectly represented the relative uncertainties. Unlike the latter, the errorbars
obtained using the above method were asymmetric, indicating that the probability dis-
tributions were not Gaussian. It was evident from this study that our model employing
a 3×3 symmetric Hamiltonian matrix did not give data that were significantly similar to
the lognormal distribution. That is, large contrasts in the errorbars obtained by the two
different methods would be evident if our data corresponded to data having small block-
ing coefficients. Even though this is the case, the results have some credibility since many
quantum Monte Carlo techniques are becoming more and more refined and the number
of significant figures quoted for estimates are ever increasing. As a consequence, more ac-
curate statistical methods need to be employed in order to account for the non-Gaussian
nature of these estimates.
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