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Abstract. The numerical simulation of non conservative system is a difficult challenge
for two reasons at least. The first one is that it is not possible to derive jump relations
directly from conservation principles, so that in general, if the model description is non
ambiguous for smooth solutions, this is no longer the case for discontinuous solutions.
From the numerical view point, this leads to the following situation: if a scheme is
stable, its limit for mesh convergence will depend on its dissipative structure. This is
well known since at least [1]. In this paper we are interested in the “dual” problem:
given a system in non conservative form and consistent jump relations, how can we
construct a numerical scheme that will, for mesh convergence, provide limit solutions
that are the exact solution of the problem. In order to investigate this problem, we
consider a multiphase flow model for which jump relations are known. Our scheme is
an hybridation of Glimm scheme and Roe scheme.
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Nomenclature

• αi: volume fraction of phase i;

• ρi: density of phase i; ρ=∑i αiρi: average density,

• τi=1/ρi: specific volume of phase i; τ=1/ρ: specific volume,

• Yi =
αiρi

ρ : mass fraction of phase i;

• u: average velocity;
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• p: pressure, pi pressure of phase i;

• s specific entropy, si specific entropy of phase i, s=∑iYisi;

• ε i: specific internal energy of phase i;

• ei: internal energy of phase i, ei=ρiε i;

• Ti: temperature of phase i;

• e=∑i αiei: internal energy; E= e+ 1
2 ρu2: total energy

• κi =
∂pi

∂ei
, χi =

∂pi

∂ρi
;

• a: speed of sound, ai speed of sound of phase i.

1 Introduction

In many applications, one needs to consider compressible flows where the fluid is made
of several non mixable phases. Examples can been found in the nuclear industry, the oil
industry, for engines, etc. Another class of applications can be found in the case of high
explosives. In that case, the media is made of several non mixable materials that are so
intimately mixed that their exchange surface is very large. Such a fluid can be modeled by
two compressible fluids, each having its own equation of state, thus its own pressure and
possibly its own velocity. However, in the case of a large inter-facial area, it is legitimate
to assume that the phase pressures and velocities are identical. The same situation occur
for atomized flows.

The model in this case cannot be the simple model of two mass conservation equa-
tions (one for each phase), the momentum conservation equation, a total energy equation
and a last one describing the evolution of the fluid composition written as a simple trans-
port equation. In fact, in the physical model, one may encounter smooth variations of the
volume fractions. In that case, when a shock wave is moving, this implies that the fluids
can be compressed according to their acoustic impedance. A model that describes such a
situation is the Kapila model [2] which can be derived from variants of the Baer and Nun-
ziato [3] model by means of asymptotic expansions, see [4]. Here the small parameter is
related to the inverse of the inter-facial area. The system of PDEs of the Kapila model is
given in section 2. It is written in non conservation form, hence it cannot describe the
structure of shock waves: the classical Rankine-Hugoniot relations do not hold, and the
derivation of jump relation cannot be obtained using the standard techniques.

However, in [5], R. Saurel and coauthors have derived from some heuristic argu-
ments a series of jump relations. Basically, for n phase flows, one has for each phase the
classical Hugoniot relations, supplemented by the fact one has a single pressure. These
relations satisfies all the requirements, in particular for weak shocks, the Hugoniot curves
are tangent to the isentropes. Last, these relations have been validated against numerous
experimental test cases with very severe conditions.
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From the numerical point of view, for any given Cauchy problem, it is very difficult
to construct a method that, under mesh refinement, will provide numerical solutions that
are going to converge, in the L1 norm, to the exact solution. This difficulty occurs because
the system (2.1) is written in non conservative form, so that the numerical dissipation of
the scheme dictates the limit solution, contrarily to what occurs for systems in conser-
vation form, thanks to Lax-Wendroff theorem. In general, two different discretisations
will converge to different solutions, see [6] for one explicit example. This problem is not
specific to system (2.1), but is typical of non conservative problems.

The question is the following. Given a set of PDEs, and compatible jump relations
(see [7]), how can we construct a numerical method that will provide sequence of nu-
merical solutions that are guarantied to converge to the exact solution of the problem?
This simple question appears to be quite difficult to solve. The difficulty is to encode in
some way the Hugoniot relations in the scheme. Coming back to the system (2.1), which
is one example of such a problem, we are aware of very few solutions, see e.g. [8, 9].
The purpose of the paper is to provide another solution to that problem. Our solution
is a combination of the Glimm’ scheme and a classical solver. Here we have chosen the
Roe scheme, but we believe that our technique can apply to other solvers, and other
problems. Using Glimm’s method and its hybridization with another method to remove
noise is not by itself original. For example, Glimm’ scheme has been advocated for non
conservative systems by [10]. To make it work, one needs a Riemann solver, and up to
our knowledge, it has never been demonstrated on (2.1) that Glimm and its hybridization
can actually work. We also test that this strategy is efficient on more complex problem, a
nozzle flow with shocks: before and after the internal shock the solution is not constant,
and hence one might fear some bad effects in the Riemann solution because the solution
is not locally constant.

The paper is organized as follows. We first recall the Kapila model, and its structure.
We also provide its Lagrangian form. This form enable to construct a Roe average matrix
that can reproduce exactly the Hugoniot relations around a shock, as the classical Roe
schemes does for standard compressible flows. We then describe our hybrid scheme,
and then numerical examples show the effectiveness of the method. In particular, we are
able to produce second order solutions that are oscillation free and noise free (as the pure
Glimm’ scheme would have produced), even on very strong shock waves. The last case
we consider is a nozzle flow problem with a shock in the divergent. In this way we can
check whether our procedure is robust since the solution is not constant left and right of
the discontinuity.

2 Five equations model

The five equation model, given in Kapila et al. [2] and shown in [4] to be the formal limit
of the Baer and Nunziato model when the relaxation parameters simultaneously tends to
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infinity though being proportional writes:

∂α1

∂t
+u·∇α1 =Kdiv u, K :=

ρ2a2
2−ρ1a2

1
ρ1a2

1
α1

+
ρ2a2

2
α2

, (2.1a)

∂(α1ρ1)

∂t
+ div (α1ρ1u)=0, (2.1b)

∂(α2ρ2)

∂t
+ div (α2ρ2u)=0, (2.1c)

∂(ρu)

∂t
+ div (ρu2+p)=0, (2.1d)

∂E

∂t
+ div

(

(E+p)u
)

=0. (2.1e)

As usual, the total energy E is the sum of the internal energy ρε and the kinetic energy,
ε is the specific internal energy, αi is the volume fraction of phase i, ρi is the density of
phase i and u the velocity. The mass is ρ=α1ρ1+α2ρ2. Later in the text, we need the mass
fraction of phase i defined by

αiρi =Yiρ.

As a consequence, we also have Y1+Y2 = 1. We also need τi = 1/ρi. In this model, we
assume a single pressure. If pi = pi(ρi,ei) is the equation of state of phase i, this means
that we assume the constraint p1(ρ1,e1) = p2(ρ1,e2) = p. This relation, associated to the
saturation relation α1+α2=1, closes the system.

The system (2.1) is an hyperbolic system and hence admits discontinuous solutions. It
admits three linearly degenerate fields, associated to the eigenvalue u, and two genuinely
non linear fields, associated to the eigenvalues u±a. The expression of the speed of sound
a, also known as the Wallis speed of sound, is given by:

1

ρa2
=

α1

ρ1a2
1

+
α2

ρ2a2
2

, (2.2)

where the speeds ai are given classically by

a2
i =

∂pi

∂ρi

∣

∣

∣

∣

si

.

Since the system is hyperbolic, we need to consider discontinuous solutions. In [5],
Saurel proposes jump relations that writes, where we set as usual ∆ f = fL− fR and f =
fL+ fR

2

∆Y1=0; ∆Y2=0, (2.3a)

∆ε1+p∆τ1=0, (2.3b)

∆ε2+p∆τ2=0, (2.3c)
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supplemented by

∆u2+∆p∆τ=0. (2.3d)

The relations (2.3), in particular (2.3b) and (2.3c), are the Hugoniot of the pure phase
fluids.

3 The Lagrangian form of the equations

3.1 The 5 equations model in Lagrangian coordinates

We start from its form in Eulerian coordinates (2.1). In what follows D
Dt is the Lagrangian

derivative.The combination of (2.1b) and (2.1c), combined with the mass coordinate de-
fined by dm=ρdx leads to (with τ=1/ρ)

Dτ

Dt
− ∂u

∂m
=0.

This relation combined with (2.1b) leads to

DY1

Dt
=0.

The equation on the momentum becomes

Du

Dt
+

∂p

∂m
=0.

The energy equation, defining e= ε+ u2

2 leads to

De

Dt
+

∂(pu)

∂m
=0.

Last, the equation on the volume fraction becomes

Dα2

Dt
−K

τ

∂u

∂m
=0,

with

K=

α2
Y2

C2
2− α1

Y1
C2

1

C2
1

Y1
+

C2
2

Y2

=
ρ2a2

2−ρ1a2
1

ρ1a2
1

α1
+

ρ2a2
2

α2

,

where Ci is the Lagrangian speed of sound and ai is the Eulerian one.

This relation can be obtained from (2.1a) or, as in [4], by taking the Lagrangian deriva-
tive of the equality

p= p1(ε1,τ1)= p2(ε2,τ2).
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To come back to classical notations, we replace the time derivatives by ∂
∂t and the

derivative in the mass coordinate system by ∂
∂x , so that the systems becomes (3.1)

∂α1

∂t
−K

τ

∂u

∂x
=0, (3.1a)

dY1

dt
=0, (3.1b)

∂τ

∂t
− ∂u

∂x
=0, (3.1c)

∂u

∂t
+

∂p

∂x
=0, (3.1d)

∂e

∂t
+

∂(pu)

∂x
=0. (3.1e)

Note that the pressure p depends on ε, τ, Y1 and α1.

3.2 Structure of the Jacobian matrix

The Jacobian matrix of (3.1) is

A=













0 0 0 −K/τ 0
0 0 0 0 0
0 0 0 −1 0

pα1
pY1

pτ −pεu pε

upα1
upY1

upτ p−pεu
2 upε













.

The characteristic polynomial of A is

P(λ)=−λ3

(

λ2−
(

pε p−pτ−
K

τ
pα1

)

)

.

There are 3 eigenvalues: λ=0 is triple and λ±=±C with

C2= pε p−pτ−
K

τ
pα1

. (3.2)

The eigenvectors are

• For the eigenvalue λ=C,

R1=













−K/τ
0
−1
C

p+uC













.
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• For the eigenvalue λ=−C,

R1=













−K/τ
0
−1
−C

p−uC













.

• For the eigenvalue λ=0,

R3=













−pε

0
0
0

pα1













, R4=













0
−pε

0
0

pY1













, R5=













0
0

−pε

0
pτ













.

The eigen linear forms evaluated to ∆U=(∆α1,∆Y1,∆τ,∆u,∆e)T are, setting

Θ=− pε∆e−pεu∆u+pα1
∆α1+pτ∆τ+pY∆Y

C2
,

Φ=
∆u

C
,

X=
5

∑
1

ℓi(X)Ri,

with

ℓ1=
1

2

(

Θ+Φ
)

, ℓ2=
1

2

(

Θ−Φ
)

,

ℓ3=
K
τ Θ−∆α1

pε
, ℓ4 =−∆Y1

pε
, ℓ5=−

∆p
C2 +∆τ

pε
.

3.3 Several relations on the Lagrangian sound speeds

In this section, we provide several equivalent formulas on the Lagrangian speed of sound.
They are the key to design the Roe average. We first give the values of the partial deriva-
tives of the pressure with respect to Y1, α1, τ and ǫ in function of the partial derivatives
of pi, i=1,2. Since pi = pi(ε i,τi), we write

dpi =κidε i+χidτi,

so that dε i =
1
κi

dpi− χi
κi

dτi. Since ε=Y1ε1+Y2ε2, we have

dε=Y1dε1+Y2dε2+(ε1−ε2)dY1

=

(

Y1

κ1
+

Y2

κ2

)

dp−Y1
χ1

κ1
dτ1−Y2

χ2

κ2
dτ2+(ε1−ε2)dY1.
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Then we have Yiτi=αiτ
† so that

dτi =− τi

Yi
dYi+

αi

Yi
dτ+

τ

Yi
dαi.

We replace dτi by this relation in the expression of dε, so that

dε=

(

Y1

κ1
+

Y2

κ2

)

dp+

(

χ1τ1

κ1
− χ2τ2

κ2
+ε1−ε2

)

dY1

−
(

α1χ1

κ1
+

α2χ2

κ2

)

dτ+τ

(

χ1

κ1
− χ2

κ2

)

dα1.

Since dp= pεdε+pτdτ+pYdY1+pα1
dα1, we have

1

pε
=

Y1

κ1
+

Y2

κ2
, (3.3a)

pτ = pε

(

α1χ1

κ1
+

α2χ2

κ2

)

, (3.3b)

pα1
= pετ

(

χ2

κ2
− χ1

κ1

)

, (3.3c)

pY = pε

(

χ2τ2

κ2
− χ1τ1

κ1
+ε2−ε1

)

. (3.3d)

The first result is the following:

Lemma 3.1. Defining

K=
α2

C2
2

Y2
−α1

C2
2

Y1

C2
2

Y2
+

C2
2

Y1

=
ρ2a2

2−ρ1a2
1

α1

ρ1a2
1
+ α2

ρ2a2
2

,

we have

C2
1(α1+K)=Y1C2,

C2
2(α2−K)=Y2C2.

This lemma is itself a consequence of the following algebraic relations:

Lemma 3.2. For any Ui, αi, i=1,2, we have

U1

(

α1+
U2−U1
U1
α1
+ U2

α2

)

−α1
1

U1
α1
+ U2

α2

=
α1

(

α1+α2−1
)

U1
α1
+ U2

α2

, (3.4a)

U2

(

α2−
U2−U2

U1
α1
+ U2

α2

)

−α2
1

U1
α1
+ U2

α2

=
α2

(

α1+α2−1
)

U1
α1
+ U2

α2

. (3.4b)

†Note this is a quadratic relation, this is important for the derivation of the Roe average.
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Proof of Lemma 3.2. It is a simple calculation.

Proof of Lemma 3.1. Taking U1=
C2

1
α1

, U2=
C2

2
α2

, using α1+α2=1 in (3.4), we obtain the result.

Let us recall the Lagrangian speed of sound:

C2
i = ppε i

−pτi
.

The next result show that

C2= ppε−pτ+
K

τ
pα1

.

The proof is purely algebraic, and only use Lemma 3.1.

Lemma 3.3. If

C̃2= ppε−pτ+
K

τ
pα1

,

then
C̃=C.

Proof. We first evaluate ppε−pτ using χi
κi
= p− C2

i
κi

:

p− pτ

pε
= p−α1

χ1

κ1
−α2

χ2

κ2

= p−α1

(

p−C2
1

κ1

)

−α2

(

p−C2
2

κ2

)

=α1
C2

1

κ1
+α2

C2
2

κ2
.

Hence, using again the same relation on the Lagrangian speed of sounds:

C̃2

pε
=α1

C2
1

κ1
+α2

C2
2

κ2
− χ1

κ1
K+

χ2

κ2
K

=
C2

1

κ1

(

α1+K
)

+
C2

2

κ2

(

α2−K
)

.

Using Lemma 3.1, this simplifies into

C̃2

pε
=

C2

pε
,

which ends the proof.

Note again that the proof does not depend on the form of the equation of state, once
the partial derivatives of the phase pressure are defined, thanks to (3.4).
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3.4 Linearisation

We are looking for a linearisation that provide the same shock relations. We are looking
for A

A=













0 0 0 −K/τ̄ 0
0 0 0 0 0
0 0 0 −1 0

pα1
pY1

pτ −pε u pε

ū pα ū pY1
ū pτ p̄−pε(ū)2 ū pε













, (3.5)

so that all the algebra on the eigenvalue and the eigenvectors obtained in the continuous
case can be transposed. If we are able to define coefficients such that

∆p= pα1
∆α1+pY1

∆Y1+pτ∆τ+pε∆ǫ (3.6)

hold true, then automatically, we get the right jump relations on the conservative equa-
tions:

∆u=∆u,

∆p= pα1
∆α1+pY1

∆Y1+pτ∆τ−pε ū∆u+pε∆e,

∆(pu)= ūpα1
∆α1+ūpY1

∆Y1+ūpτ∆τ
(

p̄−pε(ū)
2
)

∆u+ūpε∆e.

Here ū is the arithmetic average. The first step is to find these coefficients. Following step
by step the procedure in the continuous case, we assume to have averaged derivatives
such that

∆pi = pε i
∆ǫi+pτi

∆τi.

Since ε i =Y1ε1+Y2ε2,

∆ε=∑
i

(

Ȳi∆ε i+ ε̄ i∆Yi

)

=
∆p

pε
−∑

i

pτi

pε i

Ȳi∆τi+∑ ε̄ i∆Yi,

where we have defined
1

pε
=∑

i

Ȳi

pε i

,

and Ȳi, ε̄ i are the arithmetic averages. Then we use again the quadratic relation Yiτi=αiτ
to write

Ȳi∆τi+ τ̄i∆Yi = ᾱi∆τ+ τ̄∆αi,

and then

∆τi =
ᾱi

Ȳi
∆τ+

τ̄

Ȳi
∆αi−

τ̄i

Ȳi
∆Yi,
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so that

∆ε=
∆p

pε
−
(

∑
i

pτi

pε i

ᾱi

)

∆τ−∑
i

pτi

pε i

τ̄∆αi+∑
i

(

ε̄ i+
pτi

pε i

τ̄i

)

∆Yi.

We set

1

pε
=∑

i

Ȳi

pε i

, (3.7a)

pY1
= pε

(

ε̄1+
pτ1

pε1

τ̄1− ε̄2+
pτ2

pε2

τ̄2

)

, (3.7b)

pα = pε

(

pτ1

pε1

− pτ2

pε2

)

τ̄, (3.7c)

pτ= pε

(

∑
i

pτi

pε i

ᾱi

)

. (3.7d)

Then we can use the results of the continuous case: if we define

K=
ᾱ2

C̄2
2

Ȳ2
− ᾱ1

C̄2
2

Ȳ1

C̄2
2

Ȳ2
+

C̄2
2

Ȳ1

, (3.8a)

with

C̄2
i = p̄ pε i

−pτi
. (3.8b)

We see that the non zero eigenvalue of A, i.e the average speed of sound C̄, satisfies

1

C̄2
=

Ȳ1

C̄2
1

+
Ȳ2

C̄2
2

= p̄ pε −pτ−
K

τ̄
pα1

. (3.9)

A close look at the expression of pα1
shows that the value of τ̄ is somewhat arbitrary.

What is important is that we use the same expression in (3.7c) and (3.9).

3.5 Study of the jump relations

Let us recall the left eigenvectors hit against a state ∆U=(∆α1,∆Y1,∆τ,∆u,∆ε)T :

ℓ1(∆U)=
1

2C̄

(

∆u+
∆p

C̄

)

, ℓ2(∆U)=
1

2C̄

(

∆u−∆p

C̄

)

,

ℓ3(∆U)=− 1

pε

(

K̄

τ̄
∆p+∆α1

)

, ℓ4(∆U)=− 1

pε
∆Y1,

ℓ5(∆U)=− 1

pε

(

∆p

C̄
+∆τ

)

.
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We see that

(∆u)2−∆p∆τ= C̄2
ℓ1(∆U)ℓ2(∆U)−∆pℓ5(∆U). (3.10a)

Then, using the linearisation of ∆pi (knowing pi = p), we have

∆p= pε i
∆ǫi+pτi

∆τi

= pε i

(

∆ǫi+ p̄∆τi

)

+
(

pτi
− p̄ pε i

)

∆τi.

Using the quadratic relation αiτ=Yiτi, first with i=1, we have first

Ȳ1∆τ1+ τ̄1∆Y1= ᾱ1∆τ+ τ̄∆α1,

so that

Ȳ1∆p= Ȳ1pε1

(

∆ǫi+ p̄∆τi

)

−C̄2
i

(

ᾱ1∆τ+ τ̄∆α1− τ̄1∆y1)

= Ȳ1pε1

(

∆ǫi+ p̄∆τi

)

−C̄2
i τi∆Y1−C̄2

i ᾱi

(

∆τ+
∆p

C̄2

)

+
C̄2

i

C̄2
ᾱ1∆p

−C̄2
i τ̄
(

∆αi+
K̄

τ̄

∆p

C̄2

)

+
C̄2

i

C̄2
∆p

= Ȳ1pε1

(

∆ǫi+ p̄∆τi

)

−C̄2
i τi∆Y1−C̄2

i ᾱi

(

∆τ+
∆p

C̄2

)

−C̄2
i τ̄
(

∆αi+
K̄

τ̄

∆p

C̄2

)

+
C̄2

i

C̄2

(

ᾱ1+K̄
)

∆p.

Using again Lemma 3.1, we have

C̄2
i

C̄2

(

ᾱ1+K̄
)

∆p=∆p.

Hence

0= Ȳ1pε1

(

∆ǫi+ p̄∆τi

)

−C̄2
i τi∆Y1−C̄2

i ᾱi

(

∆τ+
∆p

C̄2

)

−C̄2
i τ̄
(

∆αi+
K̄

τ̄

∆p

C̄2

)

. (3.10b)

Similarly, starting from

∆p= κ̄∆ε+χ̄∆τ+ p̄α∆α+ p̄Y∆Y,

and using the same type of algebra, we get

∆p+C̄2∆τ= κ̄
(

∆ε+ p̄∆τ)+ p̄α

(

∆α+
K̄

τ̄

∆p

C̄2

)

+ p̄Y∆Y1− p̄α
K̄

τ̄

(∆p

C̄2
+∆τ

)

. (3.10c)

The relations (3.10) shows that the Hugoniot relations are linear combinations of the ℓj,
j=1,··· ,5.
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3.6 Example of the stiffened gas

The equation of state is

ε i =
p+γi p

i
∞

γi−1
τi,

and then

(γi−1)∆ε i = p+γi pi
∞∆τ+ τ̄∆p,

so that

pτi
=

γi−1

τ̄i
, pε i

=
p+γi pi

∞

τ̄
.

3.7 Summary

We define Ȳi=
(Yi)L+(Yi)R

2 , p̄= pL+pR

2 and ᾱi =
(αi)L+(αi)R

2 . Then we get

C̄2
i = p̄κ̄i−χ̄i,

and define

1

pε
=∑

i

Ȳi

pε i

, pY1
= pε

(

ε̄1+
pτ1

pε1

τ̄1− ε̄2+
pτ2

pε2

τ̄2

)

,

pα1
= pε

(

pτ1

pε1

− pτ2

pε2

)

τ̄, pτ= pε

(

∑
i

pτi

pε i

ᾱi

)

.

The average speed of sound is defined by

1

C̄2
=

Ȳ1

C̄2
1

+
Ȳ2

C̄2
2

= p̄ pε −pτ−
K

τ̄
pα,

and then

K=
ᾱ2

C̄2
2

Ȳ2
− ᾱ1

C̄2
2

Ȳ1

C̄2
2

Ȳ2
+

C̄2
2

Ȳ1

.

The eigenvectors are

• eigenvalue C,

R1=













−K̄/τ̄
0
−1
C̄

p̄+ū C̄













;
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• eigenvalue −C,

R2=













−K̄/τ̄
0
−1
−C̄

p̄−ū C̄













;

• eigenvalues λ=0,

R3=













−pε

0
0
0

pα1













, R4=













0
−pε

0
0

pY













, R5=













0
0

−pε

0
pτ













.

The linear forms applied to ∆U=(∆α1,∆Y1,∆τ,∆u,∆e)T are

ℓ1 =
1

2

(

∆p

C̄2
+

∆u

C̄

)

, ℓ2=
1

2

(

∆p

C̄2
−∆u

C̄

)

,

ℓ3 =− 1

pε

(

K̄

τ̄

∆p

C̄2
+∆α1

)

, ℓ4=−∆Y

pε
,

ℓ5 =− 1

pε

(

∆p

C̄2
+∆τ

)

.

3.8 From Lagrangian to Eulerian coordinates

We proceed as in [11, 12]. In order to explain the method, we begin with the continuous
case, then we switch to the discrete one. In Euler coordinates, the system writes

∂U

∂t
+

∂F

∂x
=0,

∂α1

∂t
+u

∂α1

∂x
−K

∂u

∂x
=0,

with U=(ρY1,ρ,ρu,E)T and F(U)=(ρuY1,ρu,ρu2+p,u(E+p))T . Then we set U=ρn+U0

with n=(0,1,0,0)T , U0=ρ(Y1,0,u,e)T and F=uU+G0 with G0=(0,0,p,pu)T .

In Lagrangian coordinate, the system writes

∂W

∂t
+

∂G

∂m
=0,

∂α1

∂t
=

K

τ

∂u

∂m
,

with W=τn+τU0 and G=G0−un. We follow step by step Gallice [11, 12]:

dF=udU+Udu+dG0=udU+Udu+dUG0+pα1
Jdα1,
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where dUG0 represents the differential with respect to the variable U and J is the 5×5
matrix which only non zero terms are J4,1 = 1 and J5,1 = u. We also set WU = ∂W

∂U and
UW =(WU)

−1. Then

WU

(

udU+Udu+dG0

)

=WU

(

udU+Udu+dUG0+pα1
Jdα1

)

=udW+WU Udu+WU dUG0+pα1
WU Jdα1

=

(

uId+
AL

ρ

)

dW+
pα1

ρ
Jdα1 (3.11)

because
∂W

∂U
J=

1

ρ
J.

Knowing that W does not depend on α1, we obtain

dUW=−W

ρ
dρ+

dUU0

ρ
,

and hence

WUU=−n

ρ
, WU dUG0=

dUG0

ρ
.

Then, we get

udα1−
K

ρ
d(ρu)+

K

ρ
udρ=udα1−Kdu,

where (denoting by 0p,q the p×q zero matrix, l=(0,uK/ρ,−K/ρ,0) and by abuse of lan-
guage J=(0,0,pα1

,upα1
)T)

AE=

(

u l

J u Id+ 1
ρWU AL

UUW

)

=uId+

(

1 01,4

04,1 WU

)

AL

(

1 01,4

04,1 UW

)

(3.12)

as in the conservative case. In the relation (3.12), AL
U is the 4×4 matrix that corresponds

to the components of W.
In the discrete case, we proceed along the same lines. We introduce a blending pa-

rameter a, and define the two averages

f a = a fL+(1−a) fR, fa =(1−a) fL+a fR,

so that
∆( f g)= f a∆g+ga∆ f .

We immediately get

∆













α
ρY
ρ

ρu
E













=













1 0 0 0 0

0 ρa −Ya

ρ2 0 0

0 0 − ua

ρ2 ρa 0

0 0 − ea

ρ2 0 ρa













∆













α
Y
τ
u
e













.



1252 R. Abgrall and H. Kumar / Commun. Comput. Phys., 15 (2014), pp. 1237-1265

Then, we define

UW :=













1 0 0 0 0

0 ρa −Ya

ρ2 0 0

0 0 − ua

ρ2 ρa 0

0 0 − ea

ρ2 0 ρa













, WU :=
(

UW

)−1
.

In order to simplify the algebra, we set

a=

√
ρL√

ρR+
√

ρL
,

and thus

∆F=∆
(

uU+G0

)

=u∆U+U∆u+∆G0

=u∆U+U∆u+∆U G0+pα1
J∆α1.

Here, pα1
and J are obtained via the Lagrangian averages. Some more algebra provides

UW

(

u∆U+U∆u+∆UG0+pα1
J∆α1

)

=
(

uId+
1

ρ
ALWU

)

∆W+
1

ρa
J∆α1

because: first, for any u, ρ, Y, v,















1 0 0 0 0

0 ρ − Y
ρ2 0 0

0 0 −ρ−2 0 0
0 0 − u

ρ2 ρ 0

0 0 − e
ρ2 0 ρ



























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
v 0 0 0 0













=













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ρ−1 0 0 0 0
v
ρ 0 0 0 0













;

and second,

WUU=−n

ρ
, WU∆U G0=

∆UG0

ρ
.

These relations originates from

∆ρW =∆(n+U0)=ρ∆W+W∆ρ

and then

∆W=−W

ρ
∆ρ+

∆U0

ρ
.
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Similarly, since ∆(ρu)=ρ∆u+u∆ρ, we have

∆u=
1

ρ
∆(ρu)− u

ρ
∆ρ,

and then
K

τ
∆u=

K

τ

1

ρ
∆(ρu)−K

τ

u

ρ
∆ρ,

We finally obtain an average for the Eulerian system by taking

AE=u Id+
1

ρ
UW ALWU .

The two matrices are simultaneously diagonalisable in R with real eigenvalues.

3.9 Numerical approximation

3.9.1 Roe scheme

In the conservative case, and first order in space, the Roe scheme has two equivalent
formulations,

Un+1
i =Un

i −
∆t

∆x

(

FRoe(Un
i+1,Un

i )−FRoe(Un
i ,Un

i−1)
)

with

FRoe(U,V)=
1

2

(

F(U)+F(V)−|Ā(U,V)|(V−U)
)

or the fluctuation form

Un+1
i =Un

i −
∆t

∆x

(

Φ−(U
n
i ,Un

i+1)+Φ+(U
n
i−1,Un

i )
)

(3.13a)

with

Φ−(U,V)= Ā(U,V)−(V−U), Φ+(U,V)= Ā(U,V)+(V−U). (3.13b)

We note that conservation holds true if (and only if)

Φ−(U,V)+Φ+(U,V)= Ā(U,V)(V−U).

Roe scheme is known for not being entropy satisfying. This cured by standard entropy
fix: we estimate the positive and negative part of the eigenvalues of the Roe matrix with
Harten-Yee entropy fix:

x+≈ x+ϕ(x)

2
, x−≈ x−ϕ(x)

2
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with

ϕ(x)=

{

|x| if |x|> ε,

x2+ε2

2ε else.

We take ε=0.05.
In the non conservative case, we generalize the relation (3.13). This formalism is

linked to the Roe’s fluctuation splitting form (see [13, 14]), also called residual distri-
bution schemes [15]. They also have the same form as the path conservative schemes
(see [16]), but here we do no consider any path Γ to evaluate

∫

Γ
A(U)

∂U

∂x
dx,

which is equal to Φ−(U,V)+Φ+(U,V) for path conservative schemes.
The second order extension is done following Roe’s idea (see [17]), Section 4.2, with

superbee limiter. This is not essential for our discussion, but this example is interesting
for showing the robustness of the limitation procedure.

3.9.2 A hybrid scheme

As is shown in the numerical results, the Roe scheme derived in the previous section
cannot efficiently solve any non conservative Riemann problem. This is not a particular
drawback of the Roe scheme, or that particular version, but a general drawback of any
finite difference type method.

The explanation of this known phenomena is rather simple. Assume a finite differ-
ence scheme that we put in a residual distribution form,

Un+1
i =Un

i −
∆t

∆x

(

Φi+1/2
i +Φi−1/2

i

)

. (3.14)

If the problem where in conservative form, with a numerical flux Fi+1/2, the residual
would be

Φi+1/2
i =Fi+1/2−Fi, Φi+1/2

i+1 =Fi+1−Fi+1/2.

For the Roe scheme, the residual write

Φi+1/2
i =A(Ui,Ui+1)

−(Ui+1−Ui), Φi+1/2
i+1 =A(Ui,Ui+1)

+(Ui+1−Ui).

If one evaluates the equivalent equation of the scheme (3.14), one gets

∂U

∂t
+A(U)

∂U

∂x
=D

(

U,
∂U

∂x

)

+O(∆x2),

where D
(

U, ∂U
∂x

)

is a second order (elliptic) operator of the form, in the present case,

D
(

U,
∂U

∂x

)

=









∆xθ
∂

∂x

(

d
∂α1

∂x

)

∆x
∂

∂x

(

D
∂V

∂x

)









, with V=(τ,u,e)T,
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where D is a 3×3 matrix, d and θ non zero scalars. The precise form of D, d, θ depends
on the particular scheme. If we were able to compute the traveling waves solution of the
Riemann problems for the modified equation, the form of the solution depends on the
parameters and matrices that defines the dissipative operator. Since θ 6=0, the end states
also depends on them, the shape of the traveling wave is important, contrarily to what
happens in the conservative case. In other words, the entropy created across a numerical
shock wave depends strongly on the precise form of the numerical dissipation.

One way to avoid this is to design a scheme so that the true dissipation mechanism is
imitated, but again there will be higher order terms in the expansions: if the shock waves
are strong enough, then it is easy to find examples for which the numerical solution will
not converge to the exact one. It is enough to find a strong enough shock. This approach
has been taken in Karni [1, 18] and more recently in Mishra et al. [19, 20] for single phase
of multiphase flows.

Indeed the only way to solve the problem of finding a scheme which converge for sure
to the exact solutions, at least for Riemann problem, is to avoid any numerical diffusion
across shocks.

One way of doing so is to use the Glimm scheme. We use the standard procedure [21]
after having noticed it only need the knowledge of the solution of the Riemann problem.
Since here we know the jump relations and the Riemann invariant, this is doable. As
recalled in the numerical section, this leads to solutions with an excellent resolution of
the shock and contact, but a bit noisy in the regular part of the solution.

In order to overcome this problem, we have also set up a hybrid scheme: for each
time step, we first compute a shock indicator, here

θn
i =min

(

(pn
i −pn

i+1)(u
n
i −un

i+1),(pn+1
i −pn+1

i+1 )(u
n+1
i −un+1

i+1 )
)

.

If θn
i >0 then Un+1

i is the Glimm solution, else we take the Roe solution.

4 Numerical results

We evaluate the three schemes (Roe, Glimm and hybrid scheme) on three problems. In
each case, the Roe scheme is second order with superbee limiter. The CFL is set to 0.4
because of Glimm’ scheme.

The first two problems are Riemann problems. In the first one, the initial velocities are
null, and for the second one, the initial velocities have opposite sign and large absolute
values. In both cases, all the variables are initially discontinuous, including the mass
fraction. The last case is a shocked nozzle flow problem: the solution is nowhere constant,
in particular before and after the shock wave. In the three cases, the fluids are governed
by the stiffened EOS with the parameters given in Table 1. We have chosen very strong
shock tube problems instead of less strong ones in order to show the robustness of our
approach.
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Fluid 1 fluid 2

p∞ (Pa) 0 6.108

γ 1.4 4.4

4.1 Test case #1

The initial conditions are given in Table 2. The jump in pressure is very large across the
shock. Similar cases have been considered in [5, 8, 9].

The different solutions are given in Fig. 1. The zoom of the solutions near the fan (to
see better the differences) are given in Fig. 2. The Roe scheme reproduces the fan very
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0 0.2 0.4 0.6 0.8 1
0

5e+05

1e+06

1.5e+06

2e+06

Glim
Hybrid
Roe
Exact

α1 p

0 0.2 0.4 0.6 0.8 1
1000

1500

2000

2500

3000

3500

4000

Glim
Hybrid
Roe
Exact

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

Glim
Hybrid
Roe
Exact

ρ u

0 0.2 0.4 0.6 0.8 1
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0.6

Y1

Figure 1: Solution for the data #1.100 grid points are used.
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ondition for Test 
ase #1.
α ρ1 (kg/m3) ρ2 (kg/m3) u (m/s) p (Pa)

Left 0.2954 1185 3622 0 2.1011

Right 0.7954 1185 3622 0 1.105

0.1 0.15 0.2 0.25 0.3
0.29

0.3

0.31

0.32

0.33

Glim
Hybrid
Roe
Exact

0.2 0.25

6e+05

8e+05

1e+06

1.2e+06

1.4e+06 Glim
Hybrid
Roe
Exact

α1 p
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2400

2500

Glim
Hybrid
Roe
Exact

0.2 0.25 0.3 0.35 0.4
2000

3000

4000

5000

Glim
Hybrid
Roe
Exact

ρ uFigure 2: Zoom of the solution for the data #1.
well (remember this is a second order scheme with superbee limiter), but is completely
off across the shock wave as expected. The Glimm scheme is very good for the shock
wave but provides a noisy solution, as expected, in the fan. The hybrid scheme takes the
best qualities of the Roe scheme and the Glimm scheme: the fan is very good, as well as
the shock structure. Here the mesh is uniform with 100 cells on a tube of 1 m long.

On Figs. 1 and 2, one may observe a shift between the different curves. The exact
solution is plotted with 1000 points, and the numerical ones are obtained with 100 points
only. The shift is only 1-2 ∆x. For Glimm’s scheme, it is known that the quality of the
random generator plays an important role, see [21], hence this remark holds true for the
hybrid scheme too. Here we have used the intrinsic Fortran 90 MRANDOM, with a seed that
changes at every time step. Concerning the Roe scheme in the fan parts, we can see an
effect of the numerical dissipation: the solution is a bit off by 1-2 grid points from the
exact one. They match well in the middle of the fan, remember that only 100 grid points
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are used in the simulation. We have also checked that when we increase the number of
grid points, the shift still exists, but it remains 1-2 mesh points. We have run up to 104

grid points, the results are not reported. hence, we are quite confident with these results.
The same remark applies to each of the test cases reported in this paper.

4.2 Test case #2

In this case, the thermodynamic quantities are the same as in Test case #1, as well as the
mesh, but the velocity are of opposite sign and of quite large velocity, see Table 3. These
conditions leads to a very strong shock wave (differential in velocity ≈ 2500 m/s and
9 1011 Pa) and a small but stiff fan. The results are given on Fig. 3 and some details on
Fig. 4.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Glim
Hybrid
Roe
Exact

0 0.2 0.4 0.6 0.8 1
1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

Glim
Hybrid
Roe
Exact

α1 p

0 0.2 0.4 0.6 0.8 1
1000

1500

2000

2500

3000

Glim
Hybrid
Roe
Exact

0 0.2 0.4 0.6 0.8 1
-2000

-1000

0

1000

2000

Glim
Hybrid
Roe
Exact

ρ u

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Glim
Hybrid
Roe
Exact

Y1

Figure 3: Solution for the data #2.
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ondition for Test 
ase # 2.
α ρ1 (kg/m3) ρ2 (kg/m3) u (m/s) p (Pa)

Left 0.2954 1185 3622 1000 2.1011

Right 0.7954 1185 3622 −2000 1.105
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ρ uFigure 4: Zoom of the solution for the data #2.
Again, we see that the Roe solution is different from the exact one, but here the differ-

ence is barely visible. For example, the exact volume fraction (usually the most sensitive
quantity) across the contact discontinuity is

αL,⋆
ex =0.29594268, αR,⋆

ex =0.78670510,

while the numerical ones are

αL,⋆
Roe =0.295945, αR,⋆

Roe =0.7863.

The velocities are:

uL
ex=0.13026712104 , u⋆

Roe =0.13039104 .
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4.3 Nozzle flow problem

Assuming a two dimensional flow in a smooth nozzle (along the x axis), and a solution
that depends weakly on the y component, we the flow variable satisfy the following
system

∂α1

∂t
+u

∂α1

∂x
=K

∂u

∂x
+

uα1

A

∂A

∂x
=0, (4.1a)

∂ρ1α1

∂t
+

∂ρ1α1u

∂x
=−ρ1α1u

A

∂A

∂x
, (4.1b)

∂ρ2α2

∂t
+

∂ρ2α2u

∂x
=−ρ2α2u

A

∂A

∂x
, (4.1c)

∂ρu

∂t
+

∂(ρu2+p)

∂x
=−ρu2

A

∂A

∂x
, (4.1d)

∂E

∂t
+

∂
(

u(E+p)
)

∂x
=−u(E+p)

A

∂A

∂x
, (4.1e)

where A is the area.

The boundary conditions are:

• The reservoir conditions are the volume fraction α1, the mass fraction Y1, the mass
flow and the total enthalpy.

• The outflow conditions are given by the pressure pexit because we have a subsonic
outflow.

The values are given in Table 4. The derivation of (4.1) is recalled in Appendix A.Table 4: Reservoir and 
onditions at the exit, subsoni
 
ase.
α1 ρ1 (Kg/m3) ρ2 (Kg/m3) p (Pa)

Reservoir 0.95 1.0 1000 108

Exit - - - 107

We describe our numerical strategy. Let U = (α1,α1ρ1,α2ρ2,ρu,E)T be the state vari-
ables. We consider a regular mesh x0 = xmin,··· ,xj = x0+ j∆x,··· ,xN = xmax. The vector
Un=(Un

0 ,···Un
N) represents the vector of state variables on the mesh at tn=n∆t. We start

from a scheme (Roe’s, Glimm’s, hybrid) which operator is L, i.e.

Un+1=L(Un).

We have used a splitting strategy,

Un+1/2=L(Un), Un+1=Un+1/2+∆tSn+1/2
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with Sn+1/2=(Sn+1/2

0 ,··· ,Sn+1/2
N ) with

Sn+1/2
j =

















Kn+1/2
i un+1/2

i

−(ρ1α1u)n+1/2
j

−(ρ2α2u)n+1/2
j

−(ρu2)n+1/2
j

−
(

u(E+p)
)n+1/2

i

















1

Aj

dA

dx
(xj).

The time accuracy has no importance since we are looking for a steady solution. The
boundary conditions are strongly imposed (since we know the exact solution).

It is known that Glimm’ scheme, with such a splitting strategy, has a poor behavior.
This is known since [22], and an improved discretisation, using the solution of a Riemann
problem with source does improve the solution, see [23]. Such a strategy could be imple-
mented, with a priory an improved quality of solution. However, in the present case, the
solution of this Riemann problem, though possible in principle, is quite cumbersome to
get. In order to overcome this problem, we have used a large discretisation (1000 points).

In the case of the hybrid scheme, we need to detect the shock. Our criteria is pi+1−
pi−1≥ pi/10 and ui+1−ui−1≤ui/10. The geometry of the nozzle is, with A0=0.06406:

• If x≤1/2, a(x)/A0=1+3(1/2−x)2.

• If x≥1/2, a(x)/A0=1+10(x−1/2)3+10(x−1/2)2.
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The solutions are quite comparable to the exact solution. The most sensitive variable

is the volume fraction. We see that the Roe scheme does not provide the correct solution:
the level of the volume fraction, after the shock, is not correct. For the Glimm’ scheme,
we get the right levels, the location of the shock is within one mesh cell. The hybrid
scheme provide similar answer. Note that the Roe scheme is obtained with the second
order scheme.

5 Conclusion

We have derived a Roe average for compressible multiphase flow. This system is non
conservative. Hence, our guiding principle is that the Roe matrix, which is of course
diagonalisable in R, admits a spectral decomposition which left eigenvectors provide
the Hugoniot relations without any approximation. Unfortunately, the system is non
conservative, and we show that a Glimm scheme permits to compute the exact solution of
Riemann problems. As it is the case for the Glimm’ scheme, the solution is a bit noisy, and
we show that an hybridization with the previous Roe method enable to recover nicely the
correct weak entropy solutions of the problem. We also explore what happens for nozzle
flows, a more complex situation where the states are not constant before and after the
shocks.

We have explained the procedure for one particular non conservative system equipped
with jump relations. We believe that our procedure can be generalized to other systems.
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We believe also that the front tracking method would be another candidate for such an
hybridation.

In this paper, we have consider very severe test cases. For example, the Riemann
problems have huge pressure/velocity jumps. Using this kind of test, it is easier to show
the drawbacks of finite difference methods, and to illustrate the merit of our technique.
Of course, for weak to moderate, any consistent method will do the job, as already noticed
by [1].
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Appendix A: Nozzle equations

The nozzle equations express that D=ρAu, H= E+p
ρ and the specific entropies stay con-

stant. Similarly, the mass fraction stay constant, and the mass flow is constant. Using
this, we immediately get

∂ρiαi

∂t
+

∂

∂x

(

ρiαiu
)

+
ρiαiu

A

dA

dx
, (A.1a)

∂ρu

∂t
+

∂

∂x

(

ρu2+p
)

+
ρu2

A

∂A

∂x
=0, (A.1b)

and
∂E

∂t
+

∂

∂x

(

u(E+p)
)

+
u(E+p)

A

∂A

∂x
=0. (A.1c)

The equation on the mass fraction is a bit more subtle to get. Using of the remarks in [4]
that shows that the equation on the volume fraction is a consequence of the equality of
the pressures for an isotropic flow, we evaluate the Lagrangian derivative of p1(ρ1,e1)=
p(ρ2,e2)= p. This gives, using Lagrangian derivative, and the fact that pi do not depend
on the entropy in that case:

d

dt
p1(ρ1,s1)−

d

dt
p2(ρ2,s2)=

∂p1

∂ρ1

dρ1

dt
− ∂p2

∂ρ2

dρ2

dt

= a2
1

dρ1

dt
−a2

2

dρ2

dt
. (A.1d)
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Then, using the mass conservation equations, we obtain

d(αiρi)

dt
=−ρiαi

∂u

∂x
− ρiαiu

A

dA

dx
.

Using the chain rule and (A.1d), we have

∂α1

∂t
+u

∂α1

∂x
=K

∂u

∂x
+

u

A

∂A

∂x
. (A.1e)

The boundary conditions are classical:

• Subsonic inflow. If ρ1,u1,p1 are the values of the density, velocity and pressure at
the point x1, α1 the value of the mass fraction of fluid #1, and Y1 its mass fraction at
the same location (with a slight abuse of notations here), we state

Y1=Y∞,

s1= s∞, s2= s∞
2 ,

H1=H∞,

and impose the value of the Riemann invariant associated to the eigenvalue u−c.

• Supersonic outflow: we impose the exit pressure.

Details on the computation of the exact solutions can be found in [24].
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