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Abstract. In this paper, a numerical method is presented for simulating the 3D interfa-
cial flows with insoluble surfactant. The numerical scheme consists of a 3D immersed
interface method (IIM) for solving Stokes equations with jumps across the interface
and a 3D level-set method for solving the surfactant convection-diffusion equation
along a moving and deforming interface. The 3D IIM Poisson solver modifies the one
in the literature by assuming that the jump conditions of the solution and the flux
are implicitly given at the grid points in a small neighborhood of the interface. This
assumption is convenient in conjunction with the level-set techniques. It allows stan-
dard Lagrangian interpolation for quantities at the projection points on the interface.
The interface jump relations are re-derived accordingly. A novel rotational procedure
is given to generate smooth local coordinate systems and make effective interpolation.
Numerical examples demonstrate that the IIM Poisson solver and the Stokes solver
achieve second-order accuracy. A 3D drop with insoluble surfactant under shear flow
is investigated numerically by studying the influences of different physical parameters

on the drop deformation.
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1 Introduction

Surfactant is an organic amphiphilic compound which consists of a hydrophilic head and
a hydrophobic tail. It tends to adhere to the fluid interface and reduces the surface ten-
sion. Surfactant plays an important role in many applications in the industries of food,
cosmetics, oil, etc. Due to many important applications and the associated computa-
tional challenges for surfactant dynamics, several new numerical methods have been pro-
posed recently based on different interface tracking/capturing techniques, including the
arbitrary Lagrangian-Eulerian method [5,32], the front-tracking or immersed boundary
method [10,12-14,19], the volume of fluid (VOF) method [8], the level-set method [28,31],
and the diffusive interface method [27], just to name a few.

The traditional (still popular) approach to deal with the jump conditions of flow
variables and fluxes across the interface is the continuum surface force (CSF) approach.
In the CSF approach, a smooth discrete ¢ function is used to regularize the Navier-
Stokes/Stokes equations by distributing the singular forces into a small neighborhood of
the interface. The CSF approach is based on Peskin’s immersed boundary (IB) method,
see e.g., [23]. The IB method was originally developed in [22] for computing the blood
flow in humans’ heart. Most of the previously mentioned methods belong to the CSF
approach. In this approach, however, the physical jumps of the pressure, and the gra-
dient of the velocity are smeared out in the numerical solution. Generally the CSF type
methods can only achieve first order accuracy.

Motivated by improving the accuracy of the IB method, LeVeque and Li [15] proposed
the immersed interface method (IIM), in which the numerical schemes at the grid points
adjacent to the interface are redesigned to incorporate the jump conditions. Consequently
the IIM captures the jumps in a sharp fashion. Numerical evidence and theoretical anal-
ysis have shown that the IIM can achieve second order accuracy, see e.g., [2,4,6,17].

As for interfacial flows with surfactant, an approach was proposed in [28], which
coupled the IIM as the flow solver and an Eulerian level-set method as the surfactant
solver. This approach was applied to the simulation of surface phase separations in [18],
and the surfactant-laden drop-drop interactions in [29]. All these works were in 2D.

Despite many works of 2D IIM in the literature(see e.g., [17]), there have been few
works of 3D. In [4] a 3D solver of IIM for elliptic interface problems was developed. The
formulation of [4] assumes that the jumps for the solution and the flux are explicitly given
on the interface, though the interface is implicitly represented by a level-set function. This
explicit jump assumption may be inconvenient when in conjunction with the level-set
techniques. Some local interface reconstruction is needed when a non-standard surface
least square interpolation is used to calculating the surface derivatives of the jumps. In [4]
this 3D solver was applied to an inverse problem of shape identification, however, it has
not been utilized to simulate a moving and deforming interface in a complex fluid yet.

Geared toward fully 3D simulation of two-phase flows with surfactant, a different
version of the 3D IIM Poisson solver is presented in this paper. In this solver we assume
that the jumps of the solution are implicitly given by functions defined at the grid points
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in a small neighborhood of the interface. The interface jump relations and the correc-
tion terms in the finite difference scheme in the original 3D IIM Poisson solver in [4] are
modified accordingly to make the present 3D Poisson solver second-order accurate.

This 3D Poisson solver is then exploited in the Stokes flow solver. The global surfac-
tant flow solver forms by coupling the Stokes flow solver and the 3D level-set surfactant
solver in [30,31].

The rest of this paper is organized as follows. The mathematical formulation is given
in Section 2. The numerical method is described in Section 3. Numerical results including
accuracy check and simulations of single drop deformation are presented in Section 4.
Some concluding remarks are given in Section 5.

2 Mathematical formulation

We consider a neutrally buoyant and contaminated (with insoluble surfactant) liquid
drop of radius a suspended in an immiscible fluid where the drop/fluid interface is de-
noted by X. For simplicity, we consider that the density p and the viscosity p of the
drop equal to those of the ambient fluid. In the far-field, we assume that the fluid is
under a steady flow u = u in the case of shear flow with a shear rate . The non-
dimensionalization procedure is the same as in [31], thus omitted here. We further as-
sume that the Reynolds number Re is small, so that the inertia term can be neglected.
Thus, the resulting equations of motion can be described as the dimensionless Stokes
equations in a fluid domain () as follows.

Vp=Au, (2.1)
V-u=0. (2.2)

Across the interface X, the velocity u must be continuous (no-slip boundary condition),
and the normal component of stress must be balanced by the Laplace-Young condition

[—pI+(Vu+Vul)n= é(mm—vsa), (2.3)
where the jump [-] is defined as the difference of the limit of quantity from the outside
of the drop and that of the inside. Here, Ca is the capillary number which measures the
ratio of the viscous force to surface tension force. ¢ is the surface tension varied by the
surfactant concentration, « is the mean curvature of the interface, and n is the interface
outward normal vector pointing into the ambient fluid.

Along the interface X, the insoluble surfactant is distributed and governed by the
surface convection-diffusion equation as

ft—l-u-Vf—n-(Vu-n)f:%fo, (2.4)

where Pe is the surfactant Peclet number which measures the ratio of the effect of the
surface convection to the surface diffusion, and Vg =V;-V; is the surface Laplacian with
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the surface gradient V= (I—n®n)V. Larger Pe leads to less uniform surfactant concen-
tration, higher f around drop tips, and larger drop deformations. The relation between
the surface tension and surfactant concentration is described by Langmuir equation of
state (EOS) as

o(f)=14+EIn(1—xf), (2.5)

where E is the surfactant elasticity measuring the sensitivity of the surface tension to the
surfactant concentration, and x is the initial surfactant coverage. An increase in E in-
creases the drop deformation. Also larger x means more reduction of the surface tension,
and so larger drop deformation. For small surfactant coverage, Eq. (2.5) can be approxi-
mated by a linear EOS,

o(f)=1—Exf. (2.6)

Note that if the initial surfactant is uniformly distributed, then in dimensionless form
f(X,0)=1 on X.
A level-set function ¢ is used to capture the motion of the interface:

D
P —piru-vp=o (2.7)

One advantage of the level-set method [21,24] is that geometrical quantities can be easily
calculated. Assuming that ¢ <0 inside the drop, then

_ V9 v
n-,v¢|, k=V-n. (2.8)

2.1 Jump conditions of the Stokes equations

In order to apply the immersed interface method in the solution of Stokes equations, we
need to know the jump conditions for the pressure p, the velocity u, and their normal
derivatives. Let us denote the righthand side of normal component of stress jump in (2.3)
by F, then the equation becomes

[—pI+(Vu+Vu')|n=F. (2.9)

Suppose # and T are two orthogonal tangential directions of the interface . Then jump
conditions derived in the literature (see, e.g., [7,11]) can be rewritten as following;:

[p]=F-n, [g—ﬂ - a(g}-;,) n a(g-:), 2.10)

0
[u]=0, [g—z] =—(n,7,7) ( TTT )F. (2.11)
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The 3D Stokes equations can be rewritten as a system of four Poisson equations for the
pressure and velocity. By taking the divergence on Eq. (2.1) and using the incompress-
ibility constraint (2.2), we first obtain the pressure Poisson equation as

Ap=0, (2.12)

with the interface jump conditions [p] and [g—ﬁ] given in Eq. (2.10). The external boundary
condition is chosen as

| Au-n. (2.13)
Once the pressure is found, the velocity can be solved by following Poisson equations
Au=Vp, (2.14)

with the interface jump conditions [u] and [3%] given in Eq. (2.11). The external boundary
condition of u is given by u|yn = Uc.
The righthand side of Eq. (2.14) also has a finite jump across the interface X. Notice

that, [Vp] n= [Bn] [Vp]-Tt= [ap] —%[.’Z_], (Vp]-n= [g,’;] —ag,’;],so we have

op
on
0
[Vp]=(n,7,9) M : (2.15)
ot
olp]
o
For the Stokes flow with surfactant, the interfacial force F is given by Eq. (2.3), i.e., F=

(cxn—V,0)/Ca. Using (2.10) and (2.11), the jump conditions for the pressure and the
velocity can be written as

ok [dp] Vo B ou] Vo

3 Numerical method

3.1 A 3D IIM Poisson solver

The four Poisson equations for u and p together with jump conditions are solved by a
new version of the 3D IIM Poisson solver originally developed in [4]. The IIM is second
order accurate in maximum norm and is briefly described below.

We consider the following Poisson equation

Au=f, in Q-Z%, (3.1)
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=l e |=anals =gl 62

where in the discrete level, the jump functions w,q,¢ are in a small neighborhood (namely,
I') of the interface X. The implicit jump assumption (3.2) is convenient in conjunction
with the level-set techniques. In our Eulerian level-set approach for surfactant flows, the
surfactant concentration is extended onto grid points in a small neighborhood I of the
interface, so does the surface tension. Accordingly, the jumps for the velocity and the
pressure in (2.16) are available on these grid points, since they depend on the surface
tension and the level-set function.

For simplicity we assume that the grid lengths in all coordinate directions are the
same, namely /. Let ¢ be a level-set function whose zero level set is the interface X.
Assume ¢ <0 inside the interface. Then we can divide grid points x;jx (= (x;,yj,2¢)) into
two groups as follows.

Denote

fr=max{; jk, Pit1,jkPi1,j ks Pijr 1k Pij1hoPij k1 Pijk—1}
fo=min{@; ko, Pit1j o Pim1,j ke Pijr 1k Pij— 1o Pijkr 1, Pijk—1 )

If fi>0and f1f> <0, then x;j is an irregular grid point. Otherwise it is a regular grid
point.

If xjx is regular, then the standard 7-point discrete Laplacian difference scheme is
used, and the local truncation error is O(h?). If Xij is irregular, a correction term c;j is
added,

Uit j et Ui1j et Ui jp1 e+ Ui j—1 Ui j 1 Ui je—1—OUij
2 = fijk +Cijk- (3.3)

cijx will be constructed so that the local truncation error is O(h). Roughly speaking, all
irregular grids points form a set of co-dimension 1, global second-order accuracy of the
numerical solution can be achieved in maximum norm, see e.g., [2,17]. The construction
of cjjx consists of the following steps:

e Find the approximate orthogonal projection point x* =X;jx+an on ¥ by solving the following
quadratic equation for «:

2
«
0=¢(xjjx+an) w¢(xijk)+tx\v¢|+7nTHe((p)n, (3.4)
where n is the normal of the level set at X;j, and He(¢) is the Hessian matrix at x;j:

Prx (ny Pz
He(¢p)= | ¢yx Py ¢yz
Pzx 47zy ¢z
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e Select a local coordinate system ¢ —# —T with the origin at x*.

e Derive the interface jump relations at x* for [u],[ug], [uy], [uc], [uge], [ugy) [ug], [uyel,
[y [ee].

e Carry out the Taylor expansions for u(xjx), u(Xip1k), w(Xi—1jk), 4(Xijr1h), w(xij-1k),
u(xi,j,k-s—l): u(xi,j,k—l) at x* up to second order derivatives in the local coordinates

e Use those interface jump relations to determine ¢;j so that the local truncation error of (3.3) is

O(h).

Below we briefly describe the above steps, which follow the lines in [4] with some
modifications.

1) The selection of the local coordinate systems at the projection points of the irregular
grid points is crucial for the success of the IIM. Denote the set of all the grid points in I’
as I';. The idea is to select coordinate directions ¢,#,T at each grid point in I'j, then use
standard Lagrange quadratic interpolation to get the coordinate directions ¢*,#*,* at
each projection point x* on the interface ~. In principle, ¢,5,T as grid functions in I,
should be smooth in order for the interpolation to be effective.

The normal directions can be easily computed via the level-set function as { =n=
V¢ /|V¢| atall grid points in T,

The selection of two orthogonal tangential directions #, T is a little more complicated.
Arbitrarily choose xo €', let d1 = | /¢%(x0) +¢7(x0), and do = /% (x0) +$2(xo). Then the
first tangential direction at xp is obtained as following:

(¢y(x0), —¢x(x0), 0)"

7 , if dy>do,
1
o= (3.5)
U] @0, 0 —pxl)”
5 , else.

The second tangential direction at xg is simply 7o = ¢, X7, where “x” is the cross
product operator.

For any other grid points x; € I';, the normal direction ¢, is available already. Let 6
be the angle between &, and ;. Form v= (v1,v2,03) = (§y %X &) /|8y % &1]- Then the first
tangential direction #; at x; can be obtained by rotating #, with angle 6 about v-axis.
Denote 7, = (u1,Uz,u3), we have the following formula for the first tangential direction #,
at x; (e.g., [20]):

w1 011y V(1 —cosb) 411 cosO+ (vau3 —v3ur)sind
m=| w2 |=| vargy-v(1—cos)+uzcosf+(vau; —viuz)sing | . (3.6)
w3 031y V(1 —cosb)+uzcosf+ (viur —vouq)sind

Again the second tangential direction is obtained by the cross product: 71 =¢; x#,. The
resulting directions &,#,T as grid functions in I';, are smooth due to the rigid rotations,
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which is good for interpolation. Notice that in [4], the coordinate direction vectors at
the involved grid points were all calculated by using formula (3.5). In that way some
discontinuity occurs when d; =d;, which could lead to inaccurate interpolation.

2) Assume that under the local coordinate system ¢ —# — T (with origin at the projec-
tion point x*), the interface has a local parametric representation ¢ = x(#,7), then we can
derive the following interface jump relations according to (3.2):

u=w, [ug]=q, [uy]=w, [u]=ws, (3.7a)
[tyn] ==Xy +w0eXyy+wyy,  [Ure] = —qX e+ WeX o+ Wer, (3.7b)
[”’ﬂ] ==Xyt T We Xyt + Wy, (3.7¢)
[ugy] =wyxgy+wexye+ay,  [uge] =WeXee+wy Xy +qe, (3.7d)
[uéf] =q(Xyy+Xr0) +8— (WeXyy +Wyy) — (WeXrr+Wer), (3.7e)

where X, Xy, Xvc are the principal curvatures of the interface. Since ¢(x(7,7),17,7) =0,
these principal curvatures can be written via the level-set function as following:

N N
476, Xyt 476, Xtt 476.

3) The correction term c;j in [4] is also modified according to (3.7). The details are
quite tedious and omitted here.

All the interface quantities involved in c¢;j, such as the surface derivatives of jumps
and the principal curvatures in (3.7), are obtained by using standard Lagrange quadratic
interpolation from the corresponding grid functions in I'; to the projection point x*s. The
corresponding grid functions are computed using the standard central finite difference
schemes.

Xy =— (3.8)

3.2 Sketch of the global algorithm

In this subsection, we describe the algorithm for computing the global system of the
Stokes flow with surfactant.

Given u”",u"~1,p",¢",¢" "1, f",f*~1, our algorithm to compute the quantities at the
(n+1)-th time level consists of the following steps:

Step 1. The four Poisson equations for the pressure and velocity with known jump
conditions are solved using the modified IIM Poisson solver described in previous sub-
section. For the pressure, we have

Ap"tt=0, (3.9)

with the jump conditions:

1 " op" 1 1 "
n+17 _ P — 2
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and the Neumann boundary conditions on 0(2:

ophtl
"gn = (Au-n)". (3.11)
The velocity u"*! is then obtained by solving
A" =Vvp'T, (3.12)
together with jump conditions:
Ju"t1! 1 n
n+17 _ R
[u""]=0, { o }— (Cavsa) , (3.13)
and ;
)
on
[vp"“] oyt | |, (3.14)
alpl
o

and the Dirichlet boundary condition on 9Q2:
u"'=u,, on Q. (3.15)

Caution needs to be taken in calculating Vp at an irregular grid point x;j due to the
jump discontinuity. If x;jx and x; 1 (0r X;41,jx) are on the same side of the interface, the
standard one-sided first order forward (or backward) finite difference scheme is used.
Otherwise the jump conditions at the projection point x* = (x*,y*,z*) is used to construct
a first order approximation of p, as follows.

We choose iy such that

|x* — x| =min{|x* —x;_1 |, |x" —xi41]}, (3.16)
and then use the following formula to compute py,

Pijk — Piojk [p]+[px] (xiy —x*) +[pyl (y; —y*) + [p] (2 —27)

y lf 17 SO/
(Px)ijk= Xi—Xj, i = Xio i
x)ijk = * * *
! Pijk—Pisje_ [PI[Px] (i =2") + [Pyl =y ) Hlpl (e —zt)
Xi—Xj, Xi— Xij , .

(3.17)
The p,,p. are approximated using the similar approach.

Step 2. After the velocity u"*! is computed, it is used to evolve the level-set func-
tion ¢ according to (2.7). The level-set function is re-initialized by solving the following
Hamilton-Jacobi equation:

{ $=+5(¢o) (|VP| -1)=0, (3.18)

$(x,0) =¢o(x),
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where ¢y is the level-set function before the re-initialization, 7 is a pseudo-time and S(x)
is the sign function of x defined as

-1, if x<0,
S(x)=1< 0, if x=0, (3.19)
1, if x>0.

Step 3. The surfactant concentration is evolved by a level-set Eulerian approach in
[30,31].

-, <V2fn+1_|_v2fn)

At 2Pe
—1-2 [—% <K%+%) —u'Vf-i-n'(V“n)f]n

The quantity f"*! is extended to a small neighborhood of the interface by solving the
following Hamilton-Jacobi equation:

{ fet+S(@)n-Vf=0,
F(x0)= " (x),

where S(¢) is the same sign function of ¢ as in the re-initialization process. The extended
f is reset to be f"*1, which is then used for updating c.

We use the standard third-order upwinding WENO [25] and TVD RK [9] schemes for
the space and time discretizations for the level-set convection equation, its re-initialization
process, and the extension of the surfactant concentration, respectively. We use the stan-
dard central finite difference schemes to discretize the diffusion term and the WENO
scheme for the convection term for (3.20). Also the local level-set technique is used, that
is, the evolutions of ¢, f are done in small tubes around the interface. A stability analysis
of (3.20) is given in [30].

In the discrete level, the velocity obtained by the IIM is only approximately diver-
gence free. This causes a small error in the volume conservation in each time step. The
error can be accumulated and can lead to inaccurate results for long time computation.
As done in 2D case in [28], a small correction an is added to the velocity of the interface
at each time step. a is chosen such that

(3.21)

V-(u-l-ocn)dﬂz/ (u+an)-nds=0, (3.22)

o)) )

where (), is the droplet domain, u is the discrete velocity field obtained by the IIM. Thus

e — [su-nds _ —fQu-n(S(q))dx. (3.23)

[sds Jo6(¢)dx
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The modified velocity &t =u+an is then used in the evolution of the level-set function.
We also need to re-scale the surfactant concentration at each time step by multiplying a
factor B to enforce the surfactant conservation. Suppose initially total surfactant mass is
mp. Then B is determined by the following equation:

jgﬁfds:nnm (3.24)

thus
mo

B= =
fzfds fo(S(cp)dx'

The above integrals are computed by using the trapezoidal rule and a discrete é-function.
The modified surfactant concentration is f = ff, and it is used for the evolution in next
time step. These correction techniques are also frequently used in the other methods such
as the boundary integral method.

(3.25)

4 Numerical results

4.1 Accuracy check of the 3D IIM Poisson solver

We consider the Poisson equation (3.1), Q)= [—1,1]3, 2 is the zero level-set of ¢ =r—0.5,
r=+/x?>+y?>+z%. Consider two different expressions of the jump functions.

Case 1. The jump functions are given as
w=e " —12+1, qg= —21f(e”2 +1), g= (—6—|-él1f2)e”2 —6.

Case 2. The jump functions are given by the formulas in case 1 but with fixed r=0.5.

Notice that the jump functions are only needed in a small tube around the interface
with a width of a few grid steps required by the Lagrangian interpolation. The corre-
sponding jump functions in two cases are equal only at the interface. This illustrates the
flexibility in obtaining such jump functions, following the spirit of the level-set extension
technique.

The exact solution is given by

. e, if $>0,
-1, if ¢$<0,

The right hand side f is determined accordingly. A mesh refinement result is shown in
Table 1. In both cases, the second order accuracy is achieved.
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Table 1: A mesh refinement study for the 3D Poisson solver, where u;, is the numerical solution.
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Casel Case 2
h lu—up|lo | rate | ||u—up|le | rate
0.05 7.02E—4 547E—4
0.025 | 1.72E—4 | 229 | 140E—4 | 1.95
0.0125 | 427E-5 | 2.01 | 349E—-5 | 1.88

4.2 Accuracy check of the 3D IIM Stokes solver

We consider the Stokes system (2.1)-(2.2) with an interface in which the velocity and
pressure are exactly given by

u:y3—|—z3, v=x34253, w:x3—|—y3, it <0, 1)
u=2(y*+z23), v=2(x*+2%), w=2(x*+y%), otherwise, '
and
6(xy+yz+xz), if <0,
p= . (4.2)
12(xy+yz+xz), otherwise,

where ¢ = \/x2+y?+22—0.5. Thus, the interface is a spherical surface with radius 0.5.
The computational domain is a unit cube Q= (—1,1)3 with a uniform mesh / is used in
all three coordinates. The surface force F and the jump functions for [p], [g—ﬁ] ,[34] can be
derived analytically from the exact solution. The exact Dirichlet and Neumann boundary
conditions are used for the velocity and pressure at (), respectively.

In Table 2, we show a grid refinement analysis in maximum norm. The results indi-
cate second-order accuracy for both the pressure and the velocity components. The CSF
methods, such as the immersed boundary method (e.g., [3]), can only achieve first-order
accuracy.

Table 2: A mesh refinement study for the 3D Stokes solver.

h | llpn—plleo | rate | lu—upllotllo—opllo+[w—wp|l | rate
1/15 | 6.67E—4 327E—-3
1/30 | 144E—4 | 2.21 8.35E—4 1.97
1/60 | 3.36E—5 | 2.10 2.04E—4 2.03

4.3 Influences of parameters on drop deformation

In the rest of the simulations, we exam the influences of parameters on a single drop
deformation. The surfactant elasticity E and the surfactant coverage x have similar effects
on surface tension, the effect of E is omitted here. We consider a simple shear with ue =
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(y,0,0)T. The computational domain is Q =[—1.5,1.5] x [-1.2,1.2] x [-1.2,1.2], the mesh
size is 150x 120 x 120. Initially the spherical drop is centered at the origin with radius
being 0.5. The initial surfactant concentration is f =1. The nonlinear EOS is used. The
deformation of the drop can be characterized by the quantity D(¢t)=(L(t)—B(t))/(L(t)+
B(t)), where t is time, L(t),B(t) are respectively the longest and the shortest axes of the
evolutionary drop.

4.3.1 Influence of the capillary number

We study the surfactant laden drop with varying capillary numbers, Ca = 0.15,0.3,0.5,
with other parameters fixed as x =0.3, Pe =10, E =0.2. An increase in Ca reduces the
surface tension force, and thus increases the drop deformation, as shown in Fig. 1. There
is a critical capillary number Ca beyond which the drop keeps stretching and eventually
breaks up [26]. The drop reaches a steady state when Ca =0.15,0.3. There is no steady
state when Ca = 0.5, in which case the computation stops when a drop tip reaches the
boundary of the computational domain.

0.8 ;
——Ca=0.15
0.71 Ca=03 i
06—~ Ca=05 PPt
0.5¢
Soar
03
!
0.2t /
0.1/
0 ‘ ‘ ‘
0 2 4 6 8

t

Figure 1: Plot of D(t) versus time . D(t) is increasing in Ca. The steady state is reached for small Ca(=
0.15,0.3), but there is no steady state for large Ca(=0.5).

The correction parameters « and 8 for the conservations of the volume and surfactant
mass together with the relative volume loss are plotted in Fig. 2 for the case Ca=0.3. The
results are quite acceptable.

The jumps of the flow variables are captured sharply in our method. For example,
Fig. 3 shows the pressure distribution on the cross section of the xy—plane at t=8. There
is a clear jump in the pressure across the interface.

4.3.2 Influence of the surfactant coverage

Now we study the effect of the surfacant coverage x with varying values 0,0.3,0.7,0.9.
Note that x =0 corresponds to clean case. We consider two cases Ca=0.15, in which the
drop reaches the steady state, and Ca = 0.5 in which there is no steady state. The other
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Figure 2: Relative volume loss during the time evolution is less than 5x 1073, so is the absolute value of
the parameter x for the velocity correction. The absolute value of the parameter B for the surfactant mass
conservations is within a distance of 5x 107> from 1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 06 0.8 1

Figure 3: The pressure distributions on xy-plane (top), and along the y-axis (bottom) at time t=8. The jump
[p] is enforced sharply in our method. The parameters in the simulation are Ca=0.3, x=0.3, E=0.2, Pe=10.

parameters are fixed as E=0.2 and Pe=10. An increase in x reduces the surface tension,
and thus increases the drop deformation, as shown in Fig. 4.

The drop morphologies together with surfactant concentrations at the steady states
are plotted in Fig. 5, when Ca=0.15. Clean case is also included for comparison purpose.
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Figure 4: Plots of D(t) versus time t for different values of x. D(f) is increasing in x, as shown
with Ca=0.15, and in the right plot with Ca=0.5.
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Figure 5: Drop morphologies together with the contour plots for surfactant concentration at the steady states
(t=38) for different values of x, Ca=0.15.

The transient states of the drop morphologies together with surfactant concentration
are plotted in Fig. 6, when Ca=0.5. Clean case is included for comparison purpose. It
is observed that surfactant is swept to the drop tips, and as the drop deforms its concen-
tration gets diluted. With high surfactant coverage, the drop deformation is much faster

than the clean case.

4.4 Influence of the Peclet number

Lastly we study the surfactant-laden drop with varying Peclet numbers Pe=0.1,10,100.
The other parameters are fixed as Ca=0.3, E=0.2, x=0.3. Larger Pe leads to less diffusion,
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Figure 6: Transient states of drop morphologies and contour plots for surfactant concentration (left two columns,
Ca=0.5, x=0.9) and the morphologies of clean drop (right column, Ca=0.5) at different times.

so more surfactant is accumulated at the drop tips, leading to larger drop deformation as
shown in Fig. 7.
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Figure 7: Plot of D(t) versus time . D(#) is increasing in Pe.
These simulation results are qualitatively in good agreement the previous results in
the literature, see e.g., [16,26].
5 Conclusions

A method has been presented for computing interfacial flows with insoluble surfactant
in 3D. The method couples a 3D IIM Stokes flow solver and a 3D level-set method for
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surfactant convection-diffusion equation along an evolving surface. The IIM maintains
the jump conditions of flow variables in a sharp fashion, which in principle is more ac-
curate than the CSF type methods. The IIM Poisson solver modifies the original one
in [4] under the assumption that the jumps are implicitly captured by grid functions in a
small neighborhood of the interface. This assumption is well-suited to the level set tech-
niques. It allows standard Lagrange quadratic interpolation in calculating surface quan-
tities, instead of the surface least square interpolation in [4], leading to relatively easier
implementation. A novel rotational procedure was proposed in selecting smooth local
coordinate systems, which is good for the interpolation. Numerical examples show that
the modified 3D IIM Poisson solver and Stokes solver are indeed second-order accurate.
Numerical simulations on single drop deformation are qualitatively in agreement with
the previous studies in the literature. Our current method is restricted to Stokes interfa-
cial flow with the same viscosity inside and outside the drop. For Stokes or Navier-Stokes
flows with discontinuous viscosity and/or density, explicit jumps of flow variables are
not available. The augmented approach in 2D in the literature (e.g., [17]) can be extended
to 3D, which is currently under investigation. Due to the limit of computer storage, our
current simulations are limited to single drop deformation. Adaptive mesh refinement
and/or parallel method in 3D should be developed in order to simulate more compli-
cated flows with surfactant, for example, multi-drop interactions and drop break-up.
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