
Commun. Comput. Phys.
doi: 10.4208/cicp.240513.260614a

Vol. 16, No. 5, pp. 1355-1388
November 2014

An Efficient Calculation of Photonic Crystal Band

Structures Using Taylor Expansions

Dirk Klindworth∗ and Kersten Schmidt

Research Center MATHEON, TU Berlin, Department of Mathematics, Straße des
17. Juni 136, 10623 Berlin, Germany.

Received 24 May 2013; Accepted (in revised version) 26 June 2014

Available online 2 September 2014

Abstract. In this paper we present an efficient algorithm for the calculation of pho-
tonic crystal band structures and band structures of photonic crystal waveguides. Our
method relies on the fact that the dispersion curves of the band structure are smooth
functions of the quasi-momentum in the one-dimensional Brillouin zone. We show the
derivation and computation of the group velocity, the group velocity dispersion, and
any higher derivative of the dispersion curves. These derivatives are then employed
in a Taylor expansion of the dispersion curves. We control the error of the Taylor ex-
pansion with the help of a residual estimate and introduce an adaptive scheme for the
selection of nodes in the one-dimensional Brillouin zone at which we solve the under-
lying eigenvalue problem and compute the derivatives of the dispersion curves. The
proposed algorithm is not only advantageous as it decreases the computational effort
to compute the band structure but also because it allows for the identification of cross-
ings and anti-crossings of dispersion curves, respectively. This identification is not
possible with the standard approach of solving the underlying eigenvalue problem at
a discrete set of values of the quasi-momentum without taking the mode parity into
account.
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1 Introduction

Photonic crystals (PhCs) are nanostructures with a periodic refractive index, where the
periodicity is in the order of the wavelength of light [19]. In general one has to distin-
guish between 1D, 2D, and 3D PhCs, where the number of the dimension stands for the
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number of axes of periodicity. In this work we shall focus on 2D PhCs whose periodicity
is usually induced by periodically spaced holes in a dielectric material, or by periodically
spaced rods of a dielectric material. A typical approximation, the so called 2D planar PhC,
of this three dimensional structure is obtained by assuming invariance along the direc-
tion of the holes and rods. Due to their ability to tailor the propagation of light, 2D PhCs
and their band structures, i. e. eigenfrequencies in dependence of the quasi-momentum,
have been studied extensively, see for example [2–4, 6, 10, 13, 15–18, 24, 26–28] and the
references therein. Of particular interest in PhC band structure calculations is the iden-
tification of frequency intervals, so called band gaps or complete band gaps, for which no
light can propagate in the PhC. These band gaps are relevant for PhC waveguides. PhC
waveguides are PhCs with a line defect, that is usually induced by omitting one (W1
PhC waveguide), two (W2 PhC waveguide), or more rows of holes/rods [19]. Inside the
band gaps there can exist modes, so called guided modes, that propagate along the line
defect while decaying exponentially in perpendicular direction.

In the design process of devices in photonics the calculation of band structures of
PhC waveguides is a key issue. The frequently used supercell method [35, 38] is a sim-
ple procedure for the approximative computation of guided modes in PhC waveguides.
While giving good results for well-confined modes (guided modes with a large decay
rate in perpendicular direction to the line defect), the supercell methods lacks accuracy
for modes that are close to the boundaries of the band gaps, the so called band edges,
since the decay rate for these modes is significantly smaller [38]. Very recently, an ap-
proach for an exact computation of guided modes in PhC waveguides was proposed that
uses Dirichlet-to-Neumann (DtN) transparent boundary conditions at the interfaces of
periodic medium and line defect [11]. A numerical realization and comparison to the su-
percell method was shown in [22]. This DtN method does not introduce any modelling
error and hence, it is also suited for guided modes close to the band edges.

A full band structure calculation, that resolves all phenomena like crossings and anti-
crossings [30, 31] of dispersion curves in full detail, is very time-consuming with either
method and there is a need for efficient yet reliable methods that provide good approxi-
mations to both, well-confined modes and modes close to the band edge. We propose in
this work a method that is based on the fact that the dispersion curves in band structures
are smooth functions and hence, a Taylor expansion of these functions is possible. We
show how to compute the first derivative of the dispersion curves, which corresponds to
the so called group velocity [5,20], the second derivative, known as group velocity dispersion,
and any higher derivative of the dispersion curves. The computation of the derivatives
relies directly on the differentiability of the underlying operator of the eigenvalue prob-
lem with respect to the quasi-momentum. In particular, we do not employ the perturba-
tion theory as done in earlier works [9,14,37], where the vector k·p approach of electronic
band structure theory is transferred to PhC band structure calculations. Our computa-
tional procedure has two main advantages: (i) it is “exact” in the way that no additional
modelling error is introduced in comparison to the perturbation approach in [9, 14, 37]
where an infinite sum for the computation of the group velocity dispersion has to be
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truncated, and (ii) it allows for a successive computation of derivatives up to any order
with marginal extra computational costs for each additional order. We then use these
derivatives of the dispersion curves in a (piecewise) Taylor expansion of the band struc-
ture.

This Taylor expansion can be understood as eigenvalue continuation technique. The
homotopy method, see for example [7, 25], is a well established technique to follow so
called eigenpaths, i. e. dispersion curves in our context. The advantage of our approach
is, however, that the Taylor expansion can be computed up to any order, since closed for-
mulas for the derivatives of the dispersion curves up to any order are available, while the
homotopy method is, in general, a first order method, that does not take higher deriva-
tives into account.

This paper is organized as follows: In Section 2 we describe the model problem and
discuss the differentiability of dispersion curves and the associated eigenmodes with
respect to the quasi-momentum. The formulas for the group velocity and any higher
derivative of the dispersion curves are presented in Section 3. We employ these deriva-
tives in Section 4 where we propose a Taylor expansion of the dispersion curves and
present first numerical results. Then we propose an adaptive algorithm for the band
structure calculation in Section 5 and test this algorithm numerically in Section 6. In Sec-
tion 7 we give concluding remarks. The proof of the piecewise differentiability of the
eigenmodes with respect to the quasi-momentum is provided in Appendix A, and in Ap-
pendix B we present the formulas for the group velocity and higher derivatives of the
dispersion curves for the case with DtN transparent boundary conditions.

2 Model problem

Modes in PhCs and guided modes in PhC waveguides are eigensolutions of the time-
harmonic Maxwell’s equations [19]. In 2D the electric and magnetic fields of the Maxwell’s
equation decouple into a transverse magnetic (TM) and a transverse electric (TE) mode that
satisfy a 2D Helmholtz equation. In this work we shall consider both modes and choose

−∇·α(x)∇U(x)−ω2 β(x)U(x)=0, x∈R
2, (2.1)

as our governing equation. In the TM mode, U describes the electric field in x3-direction
and the coefficients α(x) and β(x) are determined through α(x)≡ 1 and β(x)= ε(x)/c2.
On the other hand, in the TE mode, U denotes the magnetic field in x3-direction and the
coefficients are defined by α(x) = 1/ε(x) and β(x)≡ 1/c2. Note that, for simplicity of
notation, the velocity of light c is incorporated in the coefficient β.

The function ε∈ L∞(R2) denotes the relative permittivity of the involved materials.
We assume that ε(x) is real, positive, and bounded from below and above, i. e. there exist
εa,εb > 0 such that 0< εa < ε(x)< εb for almost all x ∈R2. Moreover we assume that it
fulfills the periodicity condition ε(x+a1)= ε(x), and — in the case of a PhC (in contrast
to a PhC waveguide) — also ε(x+a2)= ε(x), see Fig. 1.
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Figure 1: Sketches of the computational domains C, i. e. of the unit cell of a PhC (a), a supercell of a PhC
waveguide (b), and a unit cell of the line defect of a PhC waveguide (c) with their boundaries ΓL, ΓR, ΓT and
ΓB, and periodicity vectors a1 and a2.

Considering the periodicity of the permittivity in the x1-direction, applying the Floquet-
Bloch theory [23], and introducing the quasi-momentum k∈B with the one-dimensional
Brillouin zone B = [−π/|a1|,π/|a1|] the problem (2.1) is equivalent to the problem of
finding Bloch modes U(x;k) and associated eigenvalues ω2(k)∈R that satisfy

−∇·α(x)∇U(x;k)−ω2(k)β(x)U(x;k)=0

in the computational domain C⊂R2, which is

(a) the unit cell of a PhC (see Fig. 1(a)),
(b) a supercell of a PhC waveguide (see Fig. 1(b)), or
(c) the unit cell of the line defect of a PhC waveguide (see Fig. 1(c)).

At the left and right boundaries ΓL and ΓR of C the Bloch modes satisfy the quasi-periodic
boundary conditions

U |ΓR
=eik|a1|U |ΓL

, ∂nU |ΓR
=−eik|a1|∂nU |ΓL

,
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where ∂n =∇·n denotes the normal derivative with the unit normal vector n outward to
C. On the top and bottom boundaries ΓT and ΓB of C we impose

(a) quasi-periodic boundary conditions with quasi-momentum k2 ∈ [−π/|a2 |,π/|a2|] in
the direction of a2,

(b) periodic boundary conditions, i. e. quasi-periodic with quasi-momentum k2 = 0, (as
used in the supercell method for the approximation of guided modes in PhC waveg-
uides, see for example [35]), or

(c) DtN maps (as used in [22] for the exact computation of guided modes in PhC waveg-
uides).

For simplicity, we shall focus on periodic boundary conditions in this work, but the
results can also be applied to the DtN method for which we summarize the results in the
appendix.

By substituting u(x;k)=U(x;k)e−ika1 ·x, we arrive at a periodic problem that we express
in variational sense using the Sobolev space of periodic H1-functions in C denoted by
H1

per(C). For any k∈B we seek modes u(·;k)∈H1
per(C) and eigenvalues ω2(k)∈R+ such

that ∫

C
α(∇+ika1)u·(∇−ika1)v−ω2βuv dx=0 (2.2)

for all v∈H1
per(C). For the definition of Sobolev spaces we refer to Section 2.3 in [34].

Before we shall give the main results at the end of this section, we introduce an exam-
ple that we shall refer to many times in the remainder of this paper.

Example 2.1. We consider the TM mode in a PhC unit cell of square lattice with holes
of relative radius r/|a1|= 0.46 and permittivity ε = 1 that are surrounded by dielectric
material of permittivity ε = 8, see Fig. 2. For illustration, the band structure of the TM
mode in the reduced Brillouin zone B̂=[0,π/|a1|] is presented in Fig. 3. Here and in the
sequel, we choose finite elements on curved cells using the C++ library Concepts [8,12,36].
If not stated differently, we choose a mesh of the unit square as presented in Fig. 3 with
no further refinement, i. e. with nine quadrilateral cells, and we set the polynomial degree
to five.

Now we give the main results, the proposed method relies on. We start with a well
known result on the analyticity of the dispersion curves, for which we shall give a sketch
of a proof.

Proposition 2.1. For any k∈ B, there exists an ordering of the eigenvalues ω2
m(k)∈R+ ,

m∈N, of the eigenvalue problem (2.2) such that the functions k 7→ωm(k) — the so-called
dispersion curves — are continuously differentiable to any order.

Proof. This proposition is a direct consequence of the perturbation theory for linear op-
erators [21], and in particular, of the Katō-Rellich theorem, see for example Chapter 12
in [33]. Since the sesquilinear form and the corresponding linear operator are bounded,
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Figure 2: Sketch of the PhC of Exam-
ple 2.1.
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Figure 3: Band structure of Example 2.1.

we conclude that the spectral results of the operator theory directly transfer to the eigen-
value problem (2.2). This is in analogy to Theorem 2 in [29] where the analyticity of the
eigenvalues with respect to the quasi-momentum is shown for the Schrödinger equation
with periodic potential.

In addition to the well known eigenvalue analyticity we now present a similar result
for the associated eigenmodes of ω2

m(k). The proof can be found in Appendix A.

Proposition 2.2. Let k0∈B and let ω2
m(k0) be an eigenvalue of the eigenvalue problem (2.2)

with geometric multiplicity one, i. e. the dispersion curve ωm(k) does not intersect with
any other dispersion curve at (ωm(k0),k0). Furthermore, let um(·;k0) be a corresponding
eigenmode. Then um(·;k0) is continuously differentiable with respect to k at k= k0 up to
any order.

We believe that the result also holds true at a crossing of dispersion curves. However,
we are not able to provide a proof.

Conjecture 2.1. Let k0∈B and let ω2
m(k0) be an eigenvalue of the eigenvalue problem (2.2)

with geometric multiplicity n>1, in other words n dispersion curves intersect at (ωm(k0),k0).
Furthermore, let {um,1(·;k0),··· ,um,n(·;k0)} be a set of linearly independent eigenmodes
corresponding to ω2

m(k0). Then um,1(·;k0),··· ,um,n(·;k0) are continuously differentiable
with respect to k at k= k0 up to any order.

In the following two remarks we will discuss how to transfer the above results to the
case with DtN maps.
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Remark 2.1. If we impose DtN maps [22] at the top and bottom boundaries ΓT and ΓB, we
obtain a non-linear eigenvalue problem, see Eq. (B.1) in Appendix B. If ω2(k) is an eigen-
value of (2.2) in the unit cell of the PhC, these DtN maps are not well-defined. If, however,
ω2(k) is in the band gaps of the PhC and the DtN maps are well-defined, the non-linear
problem (B.1) in the defect cell C with DtN maps on the top and bottom boundaries ΓT

and ΓB is equivalent to the linear problem (2.2) in the infinite strip S [11], see Fig. 1(c) for
a sketch of the domain S. Hence, the perturbation theory for linear operators can again
be applied. This implies that, in the case with DtN transparent boundary conditions, we
additionally need to assume that the eigenvalues ω2

m(k)∈R+ are in the band gaps of the
PhC. Note that the ordering has to account for the fact that dispersion curves of guided
modes can leave the band gap of the PhC and thus, they may not be defined in B but only
in some subinterval of B.

Remark 2.2. Proposition 2.2 also holds true for the case with DtN transparent boundary
conditions. The proof is similar and uses the fact that the DtN operators are differentiable
with respect to ω and k up to any order [22]. Furthermore, we claim that Conjecture 2.1
is valid also for the case with DtN transparent boundary conditions.

3 Derivatives of the dispersion curves

3.1 First derivative of the dispersion curves — the group velocity

Thanks to Propositions 2.1 and 2.2 and Conjecture 2.1 we can take the derivative of
Eq. (2.2) with respect to k and obtain

∫

C
α(∇+ika1)dku·(∇−ika1)v−ω2βdkuv dx= f1(v) (3.1)

for all v∈H1
per(C), with the short notations ω′(k):= ∂ω

∂k (k) and dku(·;k):= du
dk (·;k)∈H1

per(C),
and the linear form

f1(v)=
∫

C
α(∇+ika1)u·ia1v−αia1u·(∇−ika1)v+2ωω′βuv dx

=−2k|a1|2
∫

C
αuv dx−i|a1|

∫

C
αu(∂1v)−α(∂1u)v dx+2ωω′

∫

C
βuv dx.

Taking v=u as test function in Eq. (3.1) we have

∫

C
α(∇+ika1)dku·(∇−ika1)u−ω2βdkuu dx

=−2k|a1|2
∫

C
α|u|2 dx−i|a1|

∫

C
αu(∂1u)−α(∂1u)udx+2ωω′

∫

C
β|u|2 dx,

where the left hand side including all terms containing dku vanishes since (−k) is an
eigenvalue of (2.2) with associated eigenmode u, which can easily be seen by taking the
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complex conjugate of (2.2). On the other hand, — since α(x) ∈ R for all x ∈ C — the
integral

∫
C αu(∂1u)−α(∂1u)u dx on the right hand side is purely imaginary and hence,

using integration by parts and the fact that u is periodic, we can rewrite it in the form

iIm

(∫

C
αu(∂1u)−α(∂1u)u dx

)
=2iIm

(∫

C
αu(∂1u)dx

)
+i Im

(∫

C
(∂1α)|u|2 dx

)

=2iIm

(∫

C
αu(∂1u)dx

)
.

Note that the derivative of α, that appears in the above equation, has to be understood in
distributional sense and thus, it is well defined even though we assume only α∈L∞(R2).
Moreover, it is obvious, that

∫
C(∂1α)|u|2 dx is well defined since both other integrals of

the equation are well defined.
Thus, the group velocity reads

ω′(k)=
k|a1|2

∫
C α|u|2 dx−|a1|Im

(∫
C αu∂1u dx

)

ω
∫

C β|u|2 dx
(3.2)

and is real-valued.

Remark 3.1. The formula (3.2) for the group velocity contains the eigenmode u associ-
ated to the eigenvalue ω2(k). However, the eigenmode is not uniquely defined. If the
eigenvalue has multiplicity equal to one, any scalar multiple of an eigenmode is also an
eigenmode. However, such a scalar cancels out in (3.2) and the group velocity formula
is well-defined. If the eigenvalue has multiplicity larger than one, the situation is more
involved. In fact the analyticity of the eigenmodes at crossings has not been proven.
Nevertheless, we claim — in accordance to Conjecture 2.1 — that the eigenmodes in (3.2)
can be chosen as the limit of the eigenmodes associated to the eigenvalues of multiplicity
one, that lie on the dispersion curves which intersect at (ω(k),k). However, note that
from a practical perspective this case is only relevant at k=0, since we know that at k=0
dispersion curves can intersect and hence, eigenvalues may have multiplicity larger than
one. On the other hand, it is very unlikely that a numerical scheme will find the exact
location of a crossing at k 6=0.

3.2 Comparison of group velocity formula and difference quotient

Let us now discuss the benefit of the group velocity formula (3.2) in the context of a
finite element discretization. According to the Babuška-Osborn theory on eigenvalue
problems [1], we expect that — using a finite element discretization — the eigenvec-
tors converge with smaller convergence rate than the eigenvalues when increasing the
refinement of the discretization. Hence, we shall analyse the convergence of the group
velocity formula (3.2) when increasing the refinement of the discretization and compare
this rate of convergence with that one of a difference quotient of the dispersion curve,
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Figure 4: Convergence of the error of the group velocity formula (solid line) and the first order difference
quotient (markers) when increasing the grid refinement of a finite element computation with polynomial degree
one. The reference solution is computed with polynomial degree 20.

that is an approximation to the group velocity. To this end, let us do a convergence study
for the setup in Example 2.1. Fig. 4 shows the convergence of the error of the group ve-
locity formula (3.2) and the (first order) difference quotient of the first dispersion curve
at k=π/2|a1 | when increasing the mesh refinement of a finite element discretization of
polynomial degree one. The reference solution, on the other hand, is computed with the
smallest mesh refinement and with polynomial degree 20. Both, the formula (3.2) for the
group velocity as well as the difference quotient converge with the same convergence
rate when increasing the refinement of the discretization, which demonstrates that the
group velocity formula (3.2) has no disadvantages compared to a difference quotient in a
finite element discretization.

3.3 Higher derivatives of the dispersion curves

Using the formula (3.2) for the group velocity ω′, we can deduce that the linear form f1

only depends on u and is independent of dku. The solution dku∈H1
per(C) of Eq. (3.1) is not

unique since there exist eigenmodes u∈H1
per(C) that solve Eq. (2.2) with zero right hand

side and hence, any of these eigenmodes u can be added to the solution dku of Eq. (3.1)
and the equation will still be satisfied. However, applying the Fredholm–Riesz–Schauder
theory [34], we can compute a particular solution dku of Eq. (3.1) by additionally requir-
ing H1(C)-orthogonality of dku and any of the finitely many [10,11], linearly independent
eigenmodes uj, j=1,··· , J. To simplify the presentation and in accordance to Remark 3.1,
we shall assume in the sequel, that the eigenvalue ω2(k) has multiplicity one, and hence,
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we seek dku∈H1
per(C) and λ∈C such that

∫

C
α(∇+ika1)dku·(∇−ika1)v−ω2βdkuvdx+λ

∫

C
∇u·∇v+uvdx= f1(v), (3.3a)

∫

C
∇dku·∇u+dkuu dx=0, (3.3b)

for all v∈H1
per(C).

Remark 3.2. From the Fredholm–Riesz–Schauder theory we know that the mixed vari-
ational problem (3.3) has a unique solution. The Lagrangian multiplier λ of this unique
solution is zero, since, testing (3.3a) with v= u, ‖u‖H1(C)= 1, yields λ= f1(u), which is
identical to zero due to (3.1) and the fact that (−k) is an eigenvalue of (2.2) with associated
eigenmode u.

In order to determine higher derivatives of k 7→ωm(k) let us introduce the following
short notations

dn
k u(·;k) :=

dnu

dkn
(·;k) and ω(n)(k) :=

∂nω

∂kn
(k).

Taking the n-th derivative of Eq. (2.2) with respect to k yields
∫

C
α(∇+ika1)d

n
k u·(∇−ika1)v−ω2βdn

k uv dx= fn(v)

for all v∈H1
per(C), where the linear form fn, that is obtained using binomial and trinomial

expansions, reads

fn(v)=
n−1

∑
p=0

n−p

∑
q=0

n!

p!q!(n−p−q)!
ω(n−p−q)ω(q)

∫

C
βd

p
k uv dx

−in|a1|
∫

C
αdn−1

k u(∂1v)−α(∂1dn−1
k u)v dx

−2nk|a1|2
∫

C
αdn−1

k uv dx−n(n−1)|a1|2
∫

C
αdn−2

k uv dx. (3.4)

From this we deduce the n-th derivative of ω(k)

ω(n)=
1

2ω
∫

C β|u|2 dx

(
n(n−1)|a1|2

∫

C
αdn−2

k uudx+2nk|a1 |2
∫

C
αdn−1

k uu dx

+in|a1|
∫

C
αdn−1

k u(∂1u)−α(∂1dn−1
k u)u dx

−
n−1

∑
p=1

n−p

∑
q=0

n!

p!q!(n−p−q)!
ω(n−p−q)ω(q)

∫

C
βd

p
k uu dx

−
n−1

∑
q=1

n!

q!(n−q)!
ω(n−q)ω(q)

∫

C
β|u|2 dx

)
. (3.5)
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Analogously to above — using the Lagrangian multiplier λ∈C — we can then compute
the particular solution dn

k u∈H1
per(C) that satisfies

∫

C
α(∇+ika1)d

n
k u·(∇−ika1)v−ω2βdn

k uv dx+λ
∫

C
∇u·∇v+uvdx= fn(v)

∫

C
∇dn

k u·∇u+dn
k uu dx=0 (3.6)

for all v∈H1
per(C), which is, for n=1, equivalent to Eq. (3.3). Note that the terms on left

hand side of Eq. (3.6) are identical for all n∈N but the source terms fn(v) on the right
hand side differ.

In order to compute ω(n) we have to solve (2.2) for its eigenvalue ω2(k) and associ-
ated eigenmode u. Then we successively compute ω(l) from (3.5) and solve the linear
system (3.6) for dl

ku, l=1,··· ,n−1. Finally, it remains to compute ω(n) from (3.5). In total
we have to solve one eigenvalue problem (2.2), n−1 linear systems (3.6), and n algebraic
equations (3.5).

If there are multiple, linearly independent eigenmodes um,j, j= 1,··· , J, associated to
the eigenvalue ω2

m(k) of (2.2), J−1 extra orthogonality conditions and Lagrangian mul-
tipliers λ2,··· ,λJ ∈C have to be added to the linear system (3.6). Note that these eigen-
modes um,j have to be selected as described in Remark 3.1, i. e. as the limit of the eigen-
modes corresponding to the eigenvalues of multiplicity one in the vicinity of ω2

m(k). The

procedure to compute the n-th derivative ω
(n)
m,j of ωm(k) associated to ui,j remains the

same, only that we have to bear in mind that each eigenmode um,j associated to the eigen-

value ω2
m(k) yields different quantities dn

k um,j and ω
(n)
m,j .

In practise, these extra orthogonality conditions need to be added to the system (3.6)
also in a small vicinity of an eigenvalue with multiplicity larger than one, since the con-
dition number of the matrix related to the linear system (3.6) increases dramatically near
such an eigenvalue. The size of this vicinity is subject to numerical testing. We observed
that reasonably good results can be obtained if orthogonality conditions for all eigenval-
ues ω2(k) with distance to ω2

m(k) smaller than 10−2 are added to (3.6).

4 Taylor expansion of the dispersion relation

In this section we explain and demonstrate how to employ the derivatives ω(n)(k), n∈N,
in a Taylor expansion of the dispersion relation.

4.1 Taylor expansion of analytic functions

Since the dispersion curves k 7→ ωm(k) are continuously differentiable to any order we
can apply the Taylor theorem, and hence, for any k0∈B and n∈N
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ω(k)=
n

∑
i=0

(k−k0)i

i!
ω(i)(k0)+Rn(k), k∈B, (4.1)

with the remainder

Rn(k)=
1

n!

∫ k

k0

(k−κ)nω(n+1)(κ)dκ.

The formula (4.1) can be used to approximate the dispersion relation

ω(k)≈
n

∑
m=0

(k−k0)m

m!
ω(m)(k0),

where the eigenvalue problem (2.2) only has to be solved for k0 and the derivatives
ω(n)(k0) have to be computed according to the procedure described in the previous sec-
tion. Taylor expansions of analytic functions are known to converge in a vicinity of k0 but
not necessarily in the whole Brillouin zone.

4.2 Numerical results of the Taylor expansion of a photonic crystal band
structure

For illustration we will now show numerical results for Example 2.1. We study the TM
mode in the reduced Brillouin zone B̂= [0,π/|a1|] and compare the dispersion relation
ω(k) at 40 values of k with the results of the Taylor expansion around the centre k0 =
π/2|a1| of the reduced Brillouin zone B̂.

In Fig. 5 we present a comparison of the Taylor expansion of orders n = 3 and n =
20 with the “exact” sixth and seventh dispersion curve. We can see from Fig. 5(a) that
already a Taylor expansion of order n = 3 provides a good approximation of the sixth
dispersion curve (red line). For the presented level of detail, we can only see a difference
of the Taylor expansion and the exact curve near k = π/|a1|. The seventh dispersion
curve (blue line) is also well approximated in a vicinity of the centre k0 =π/2|a1| of the
expansion but the error increases towards the borders of B̂, i. e. where |k−k0| becomes
large.

However, increasing the order n of the Taylor expansion does not lead to lower error
levels near the end points as can be seen in Fig. 5(b) where the Taylor expansion of order
n= 20 is shown. While the approximation error of the sixth dispersion curve decreases,
the approximation error of the seventh dispersion curve becomes even larger near k= 0
and k=π/|a1|. This can be explained by analysing the behaviour of the remainder Rn.
But before we do so, we present the convergence of the Taylor expansion. In Fig. 6 the
maximum errors over a set of 40 equidistant values of k∈ B̂ of the Taylor expansion of the
sixth and seventh dispersion curves are plotted with respect to the order n of the Taylor
expansion. While we observe exponential convergence of the error of the sixth dispersion
curve, the error of the seventh dispersion curve diverges when increasing the order n.
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Figure 5: Sixth (red) and seventh (blue) dispersion curves of Example 2.1. Taylor expansion (solid lines) of
order n=3 (left) and n=20 (right) around k0=π/2|a1| (crosses) compared to “exact” dispersion curves (dotted
lines) evaluated at 40 equidistant values of k.
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4.3 Estimation of the remainder

Now let us study the behaviour of the remainder Rn in order to explain the behaviour
of the Taylor expansion of the seventh dispersion curve when increasing the order n. To
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this end, we first derive an estimate of the remainder Rn. Without loss of generality let

k> k0. According to the mean value theorem for integration, there exists k̂∈ [k0,k] such
that the remainder satisfies

Rn(k)=
1

n!
ω(n+1)(k̂)

∫ k

k0

(k−κ)n dκ=
(k−k0)n+1

(n+1)!
ω(n+1)(k̂), (4.2)

which is known as the Lagrange form of the remainder. Clearly,

RUB
n (k)=

(k−k0)n+1

(n+1)!
max

κ∈[k0 ,k]
ω(n+1)(κ) (4.3)

is an upper bound for Rn(k), while

RLB
n (k)=

(k−k0)n+1

(n+1)!
min

κ∈[k0,k]
ω(n+1)(κ)

is a lower bound for Rn(k). Hence, a simple, non-rigorous estimate for the remainder
Rn(k) is given by

Rest
n (k)=

(k−k0)n+1

(n+1)!
ω(n+1)(k0). (4.4)

In Fig. 7 this estimate is presented for the sixth and seventh dispersion curve of the ex-
ample introduced above. The estimate is evaluated at k=π/|a1|, i. e. the distance |k−k0|
is maximal. We can see that the estimate Rest

n (k) of the sixth dispersion curve decreases
with the order n which is in correspondence to the decrease of the actual maximum error
presented in Fig. 6. The estimate Rest

n (k) of the seventh dispersion curve, however, in-
creases with the order n which explains the increasing error of the Taylor expansion that
can be observed in Fig. 5. In other words, the derivatives ω(n) increase faster with n than
the ratio n!/|k−k0|n. This means that we have to restrict the computation of the Taylor
expansion to a vicinity of k0 such that |k−k0|n is sufficiently small and hence, the ratio
|k−k0|n+1/(n+1)! dominates the estimate Rest

n (k). For example, if we want the error of

the Taylor expansion to be (roughly) smaller than some error tolerance ε
step
tol we restrict

our expansion to the domain [k0−kh,n(k0),k0+kh,n(k0)], where the step size kh,n(k0) is
obtained from

kh,n(k0)=

(
ε

step
tol

(n+1)!

|ω(n+1)(k0)|

) 1
n+1

. (4.5)

The quality of the non-rigorous estimate Rest
n (k) of the remainder can be seen from a

comparison of Figs. 6 and 7. We can see that the maximum error in Fig. 6 behaves very
similar to the estimate of the remainder in Fig. 7. In fact the effectivity of the estimate,
i. e. the ratio of estimate and maximum error, varies between 0.21 (n=1) and 1.31 (n=6)
for the sixth dispersion curve, and between 0.02 (n=13) and 2.48 (n=17) for the seventh
dispersion curve, and is hence, reasonably close to one.
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Another estimate of the remainder, that reduces the underestimation of the actual
maximum error, can be obtained when we additionally estimate the derivative ω(n+1)(κ)
in Eq. (4.3) by its Taylor expansion of, e. g., first order. In other words, we do not estimate
the maximum of ω(n+1)(κ) in the interval [k0,k] by ω(n+1)(k0) as done in Eq. (4.4), but

max
κ∈[k0 ,k]

ω(n+1)(κ)≈ max
κ∈[k0 ,k]

(
ω(n+1)(k0)+(κ−k0)ω(n+2)(k0)

)

=max
{

ω(n+1)(k0), ω(n+1)(k0)+(k−k0)ω(n+2)(k0)
}

,

and similarly

min
κ∈[k0 ,k]

ω(n+1)(κ)≈ min
κ∈[k0 ,k]

(
ω(n+1)(k0)+(κ−k0)ω(n+2)(k0)

)

=min
{

ω(n+1)(k0), ω(n+1)(k0)+(k−k0)ω(n+2)(k0)
}

,

This new estimate

R̃est
n (k)=sign

(
ω(n+1)(k0)

) (k−k0)n+1

(n+1)!

×max
{∣∣∣ω(n+1)(k0)

∣∣∣,
∣∣∣ω(n+1)(k0)+(k−k0)ω(n+2)(k0)

∣∣∣
}

(4.6)

reduces the underestimation of the actual maximum error. In fact, the effectivity of the es-
timate R̃est

n (k) varies between 0.97 (n=2) and 12.07 (n=14) for the sixth dispersion curve,
and between 0.40 (n=12) and 68.63 (n=17) for the seventh dispersion curve. Thus, the
reduction of the underestimation comes with the price of an increasing overestimation
for certain orders.

The computation of the acceptable step size k̃h,n(k0) based on the estimate R̃est
n (k0) of

the remainder is slightly more complicated than the computation of kh,n(k0) in Eq. (4.5)
since (k−k0) appears in Eq. (4.6) not only to the power (n+1) as before, but also to the
power (n+2). Hence, we have to find the roots κh >0 of

κn+1
h

(n+1)!

∣∣∣ω(n+1)(k0)+κhω(n+2)(k0)
∣∣∣−ε

step
tol =0 (4.7)

using, e. g., Newton’s method, and then we choose

k̃h,n(k0)=min{kh,n(k0),κh}. (4.8)

5 An adaptive approximation of the dispersion relation

We first propose a simple algorithm for the computation of an approximation to a disper-

sion curve ω(k), k∈B̂=[0,π/|a1|]. We start by choosing an error tolerance ε
step
tol for the step
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size, and an order n of the Taylor expansion. Then we set k(0)=π/(2|a1|) and compute
a set of eigenvalues ω2(k(0)). In case of the supercell approximation of guided modes in
PhC waveguides we omit eigenvalues outside the band gaps, i. e. at frequencies where
propagating PhC modes exist. For each eigenvalue we proceed as follows: We determine

the acceptable step size kh,n(k
(1)
0 ) according to (4.5). If kh,n(k

(0))≥π/(2|a1|) we approx-

imate ω(k) by its Taylor expansion in the whole reduced Brillouin zone B̂. Otherwise,
we set k(−1) = k(0)−kh,n(k

(0)) and k(+1) = k(0)+kh,n(k
(0)), and compute the eigenvalues

ω2(k(−1)) and ω2(k(+1)) which are closest to their estimation that is obtained by a Taylor
expansion of order n around k(0) at k(−1) and k(+1), respectively. Then we compute the ac-
ceptable step sizes kh,n(k

(±1)). We continue with this procedure until k(−p)−kh,n(k
(−p))≤0

and k(+q)+kh,n(k
(+q))≥π/|a1|, for some p,q∈N. We take the values ω and their deriva-

tives ω(i), i=1,··· ,n, at k(j), j=−p,··· ,q and compute an approximation to the dispersion
curve using, e. g., an Hermite interpolation [32] or a weighted Taylor expansion where
we approximate

ω(k)≈ k(j+1)−k

k(j+1)−k(j)

n

∑
i=0

(k−k(j))i

i!
ω(i)(k(j))+

k−k(j)

k(j+1)−k(j)

n

∑
i=0

(k−k(j+1))i

i!
ω(i)(k(j+1)), (5.1)

if k∈ [k(j) ,k(j+1)], j=−p,··· ,q−1, and in the intervals [0,k(−p)] and [k(+q),π/|a1|] we take
the Taylor expansion directly. The former approach has the advantage that it delivers a
smooth curve while the latter approach comes with negligible additional costs.

The computational effort of this algorithm is as follows: In addition to the eigenvalue
problem (2.2) at the start value k(0), we have to solve for each dispersion curve a total
of p+q eigenvalue problems (2.2), n(p+q+1) linear systems (3.6) and (n+1)(p+q+1)
algebraic equations (3.5). For each of the p+q+1 values of k we have to compute the
acceptable step size using Eq. (4.5), which is a simple scalar equation, or using Eq. (4.8),
for which we also have to solve the non-linear equation (4.7) and require derivatives
of order n+2, i. e. we have to replace n by n+1 in the formulas for the computational
complexity given above.

Now let us introduce two additional refinement checks that will help to improve our
approximation.

Backward check An improvement of the adaptive scheme can be realized by a back-
ward check, i. e. we check if the Taylor expansion around k(j±1) recovers the original value
ω(k(j)) plus/minus some tolerance εbwd

tol . If not, it is possible that we mistakenly switched

to another dispersion curve or the acceptable step size at k(j±1) is much smaller than at
k(j). Then we refine the step size kh,n(k

(j)), i. e. we multiply it by a factor smaller than one,
e. g., 1/2. When carrying out the backward check we also have to solve the eigenvalue
problem (2.2) and compute the frequency derivatives at the borders of the reduced Bril-
louin zone at k=0 and k=π/|a1| such that the Taylor expansions around k(−p) and k(+q)

can be validated.
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Mini-stop band check A special emphasis in the band structure calculation has to
be put into the question whether two dispersion curves cross or anti-cross and form
a so called mini-stop band [31]. It is well known, that for symmetric waveguides (e. g.
W1 waveguides with square or hexagonal lattice) modes of opposite parity cross while
modes of identical parity form a mini-stop band. On the other hand, for waveguides,
whose holes/rods on top of the line defect are shifted exactly by |a1|/2 compared to the
holes/rods below the guide (e. g. W2 waveguide with hexagonal lattice) just the opposite
holds true: modes of identical parity cross while modes of opposite parity form a mini-
stop band. If the waveguide does not satisfy either of these conditions (e. g. the shift is
less than |a1|/2), all modes anti-cross and form very narrow mini-stop bands [30]. Even
though this classification allows for an identification of crossings and anti-crossings, we
will propose here a mini-stop band check that allows to identify mini-stop bands without
comparing the parities of the modes.

After two dispersion curves were approximated with the described adaptive scheme
and it turned out that the approximated dispersion curves cross at some point k0, say, we
solve the eigenvalue problem (2.2) at k0 where we will obtain two close eigenvalues near
the expected crossing. Note that, also if the expected crossing turns out to be an actual
crossing, these two eigenvalues are most likely not identical but only very close. Then
we compute the group velocities of these two eigenmodes at k0 using the formula (3.2)
and compare them with the first derivatives of the approximated dispersion curves (5.1).
If the group velocities of the two eigenmodes do not coincide, i. e. the two curves do not
cross with the same slope, and each group velocity matches well with the derivative of
one approximated dispersion curve in the sense that the magnitude of the difference does
not exceed an error tolerance of εmsb

tol , we take this as evidence that the two dispersion
curves cross.

On the other hand, if the two group velocities are very close, i. e. the two dispersion
curves have approximately the same slope at k0, we also have to compute higher deriva-
tives of the dispersion curves at k0 using the formula (3.5) and compare them with the
corresponding derivatives of the approximated dispersion curves (5.1). In fact we have
to compute derivatives of order n, if the derivatives of the two dispersion curves coincide
up to order n−1. If for all m, with 1≤m≤ n, the derivatives of order m of the two dis-
persion curves coincide with one of the derivatives of order m of the two approximated
dispersion curves, i. e. the magnitude of the difference does not exceed an error tolerance
of εmsb

tol , we shall assume that the two dispersion curves cross. Otherwise, we refine our
approximations by additionally applying the adaptive scheme to the dispersion curves
around k0, taking k0 as start value and stopping the scheme if a value of k is reached for
which we already solved the eigenvalue problem (2.2).

If we compare derivatives up to order n we shall denote this test as n-th order mini-
stop band check. If n=1, we simply call it mini-stop band check.

Note that the mini-stop band check can also be understood as a validation test for
crossings, in particular in the case when the two curves cross and have the same slope at
the crossing. To this end, we also perform the mini-stop band check if the curves come
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Figure 8: Band structure (black lines) of the TE mode in a hexagonal W1 PhC waveguide. The holes of
relative radius 0.31 have permittivity ε= 1 and are surrounded by dielectric material of permittivity ε= 11.4.
The computation was performed using the supercell method with five periodicity cells on top and bottom. The
frequencies at which propagating PhC modes exist are shaded in grey while blank areas represent the band gaps.

very close (but do not cross). For those points it is necessary to perform at least a second
order mini-stop band check, i. e. it is necessary to consider not only the group velocity
but (at least) also the second derivative.

6 Numerical experiments

In this section we want to test the proposed adaptive scheme and show numerical results.
We start with the TE mode band structure of a PhC W1 waveguide and of a perturbed
W1 waveguide, before we will return to the TM mode band structure of Example 2.1.

Band structure of a PhC W1 waveguide Let us consider a PhC W1 waveguide with
hexagonal lattice and holes of relative radius r/|a1|= 0.31 and permittivity ε = 1 in a
dielectric medium of permittivity ε=11.4 as in [35]. We fix the number of periodicity cells
that are included in the supercell on top and bottom of the guide to be nsc=5, and study
the TE mode of this configuration. We choose the periodicity cell to be the parallelogram
around a hole. This means that our supercell comprises exactly ten holes, five on top of
the guide and five below the guide. Note that this also implies that a1 and a2, see Fig. 1(b),
are not perpendicular but a1= |a1|(1,0)T and a2=(2nsc+1)|a1|(0.5,

√
0.75)T. Fig. 8 shows

an overview of the band structure where the dispersion curves are represented by black
lines and frequencies with propagating PhC modes are shaded in grey.

Let us now present the results of the adaptive scheme introduced above. We choose

a desired error tolerance of ε
step
tol =10−4 to compute the acceptable step sizes, set the order

of the expansion to n = 10, the start value of the iteration to k(0) = π/(2|a1|), and ap-
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(a) No backward check.
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(b) Backward check with εbwd
tol =10−2.

Figure 9: Adaptive Taylor scheme of order n = 10 applied to dispersion curves of the hexagonal W1 PhC

waveguide. The error tolerance of the step size computation is ε
step
tol =10−4 and the start value of the iteration

is set to k(0)=π/(2|a1|).

ply the adaptive scheme without any additional checks to the two guided modes in the
frequency interval [0.2·2πc/|a1|,0.3·2πc/|a1|] of the TE mode in the hexagonal W1 PhC
waveguide as shown in Fig. 8.

The results can be seen in Fig. 9(a) where the dots indicate the location of the values
of k for which the dispersion relation ω(k) and its derivatives ω′(k),ω(2)(k),··· ,ω(10)(k)
were computed. The lines connecting the dots result from the post-processing, where
we chose the weighted Taylor expansion (5.1). Note that the red dispersion curve leaves
the band gap at k≈0.1·2π/|a1| and enters the frequency domain for which propagating
PhC modes exist. Nevertheless, we can continue following this curve towards k=0 since
each point on this curve still represents an eigenmode of the supercell method. However,
we need to have in mind, that these supercell eigenmodes are spurious and that this
part of the dispersion curve has no physical meaning. Most noticeable is the numerical
artifact of the red line between k ≈ 0.08·2π/|a1| and k ≈ 0.14·2π/|a1|. Recall, that we
chose k(0)=π/(2|a1|) and hence, we followed the dispersion curve in this part from right
to left. For the computation of the acceptable step size the derivatives at k≈0.14·2π/|a1|
are relevant. But obviously, the derivatives at k ≈ 0.08·2π/|a1| are significantly larger
in magnitude than at k≈ 0.14·2π/|a1| yielding a smaller step size in the following step
(distance to next red dot) and hence, explain the numerical error in the post-processing.
This numerical artifact can be eliminated when performing the backward check. The
results are presented in Fig. 9(b) where we chose an error tolerance of εbwd

tol =10−2 for the
backward check.

Clearly, the computational costs of the adaptive scheme including backward check
are smaller than the costs of the standard procedure to solve the eigenvalue problem (2.2)
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for an equidistant sample of quasi-momenta k, if one aims to get the same accuracy as
the adaptive scheme. In the post-processing of the adaptive Taylor expansions in Fig. 9
we chose an equidistant sample of 100 values of the quasi-momentum k for which we
computed the weighted Taylor expansion and from which we draw the solid red and
blue curves. This shall deal as a reference for the desired accuracy. That means the stan-
dard procedure to calculate the band structure is to solve 100 eigenvalue problems (2.2).
On the other hand, the adaptive scheme including backward check for the unperturbed
waveguide accounts for 25 eigenvalue problems (2.2) and the computation of the fre-
quency derivatives (3.5) of 24 modes, where we solve the eigenvalue problem (2.2) at
k=0, k=π/|a1| and k= k(0) for two eigenvalues in order to save time. Four eigenmodes
of these 25 eigenvalue computations are rejected due to the backward check which ex-
plains that the number of nodes for which we compute the frequency derivatives (3.5) is
smaller than the number of eigenvalue problems (2.2) to be solved. Considering that the
computational costs of solving (3.5) for the frequency derivatives is significantly smaller
than solving the eigenvalue problem (2.2), we can expect clearly smaller computational
costs of the adaptive scheme compared to the standard procedure. Note that the com-
putational advantage of the adaptive scheme especially becomes obvious in the case of
a rather simple dispersion curve, e. g. the blue curve in Fig. 9. In fact, only a very small
number of eigenvalue problems and corresponding source problems have to be com-
puted in order to figure out the dispersion curve’s slope correctly.

Mini-stop band of a perturbed PhC W1 waveguide Now we want to test the proposed
mini-stop band check. Applied to the numerical example above, a W1 waveguide with
hexagonal lattice which is symmetric with respect to the line defect, we find that a re-
finement is not necessary since the approximated slopes and computed group velocities
at the projected crossing match well, which is in line with the theory [31] that says that
modes with even parity (red dispersion curve) and modes with odd parity (blue disper-
sion curve) have to cross and do not form a mini-stop band. Therefore, we shall apply
our mini-stop band check to a perturbed configuration. We shift the upper PhC by as
little as 10−4|a1| to the left. This breaks the symmetry and we can expect that the crossing
of the two guided modes becomes an anti-crossing.

In Fig. 10 we show the results of the adaptive Taylor scheme including backward
check with tolerance εbwd

tol = 10−2 applied to the perturbed W1 waveguide of hexago-
nal lattice. The results are very similar to the results of the unperturbed waveguide in
Fig. 9(b). In particular, the approximated dispersion curves cross in Fig. 10 which we
know is not true. Thus, a mini-stop band check as introduced above needs to be per-
formed in order to identify the anti-crossing correctly. The two approximated dispersion
curves in Fig. 10 cross at k0 ≈ 0.227·2π/|a1| and their slopes are approximately −0.261c
(red curve) and 0.044c (blue curve). But when solving the eigenvalue problem (2.2) at k0

we find two eigenmodes which have both negative group velocity, and hence — using a
tolerance εmsb

tol =10−2 for the mini-stop band check — a refinement at k0 is necessary. The
result can be seen in Fig. 11 where we also show a detailed view of the mini-stop band.
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Figure 10: Adaptive Taylor scheme of order n= 10 with backward check of tolerance εbwd
tol = 10−2 applied to

dispersion curves of the perturbed W1 PhC waveguide of hexagonal lattice (upper PhC shifted by 10−4|a1| to
the left). The error tolerance of the step size computation is ε

step
tol =10−4 and the start value of the iteration is

set to k(0)=π/(2|a1|).
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Figure 11: Adaptive Taylor scheme of order n = 10 with backward check of tolerance εbwd
tol = 10−2 and first

order mini-stop band check of tolerance εmsb
tol = 10−2 applied to dispersion curves of the perturbed W1 PhC

waveguide with hexagonal lattice (upper PhC shifted by 10−4|a1| to the left). The error tolerance of the step

size computation is ε
step
tol =10−4 and the start value of the iteration is set to k(0)=π/(2|a1|).

The computational advantage of the proposed adaptive Taylor expansion compared
to the standard procedure even increases when trying to identify mini-stop bands. The
adaptive scheme including backward check but without mini-stop band check, as pre-
sented in Fig. 10, accounts for 25 eigenvalue problems (2.2) and the computation of the
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frequency derivatives (3.5) for 24 modes. When additionally performing the mini-stop
band check and refining near the anti-crossing, as done in Fig. 11, we have another 13
eigenvalue problems (2.2) and a total of 26 frequency derivatives (3.5) to solve. We save
time by simultaneously refining both dispersion curves together with the same step size
and solving (3.5) for two eigenvalues, while computing the frequency derivatives (3.5) of
all 26 computed eigenmodes. This makes a total of 38 eigenvalue problems (2.2) and 50
frequency derivatives (3.5), that we have to solve in order to approximate the two dis-
persion curves of the perturbed waveguide as presented in Fig. 11. Using the standard
procedure to compute the band structure would clearly comprise the solution of more
eigenvalue problems (2.2) since a very dense grid of values of the quasi-momentum k is
needed in order to resolve the mini-stop band as accurate as in Fig. 11(b).

Dispersion curves intersecting with identical group velocity Now let us return to Ex-
ample 2.1. We want to study the behaviour of our numerical scheme when two dispersion
curves intersect at a point but do not cross. This is the case for the second and third dis-
persion curves at k=0, as can be seen from the band structure in Fig. 3. Due to symmetry
at k=0, we restricted our computations so far to the reduced Brillouin zone B̂=[0,π/|a1|].
Now let us consider the complete Brillouin zone B= [−π/|a1|,π/|a1|] having in mind
that the band structure is symmetric with respect to the frequency axis at k = 0. That
means we know in advance that the two dispersion curves, that have a common eigen-
value at k = 0, do not cross but touch only. Let us now study if our adaptive scheme
can construct this band structure correctly. We choose the start point k(0)=0.01·2π/|a1|.
Recall that we cannot choose k(0) = 0, the centre of the Brillouin zone B, since the sec-
ond and third dispersion curves intersect at this point and hence, the multiplicity of the
eigenvalue at k = 0 is two, which implies that the group velocity formula (3.2), as well
as the formula for higher derivatives, Eq. (3.5), is not well-defined without knowledge
about the eigenmodes in the vicinity of k=0, as we elaborated in Remark 3.1.

We start by setting the order of the Taylor expansion to n=1. The step size tolerance

is chosen to be ε
step
tol =10−4 and we employ the backward check with tolerance εbwd

tol =10−2

but do not use the mini-stop band check. Fig. 12(a) shows the numerical result for this
configuration. We can see that the second dispersion curve (blue) is computed incorrectly,
since from k= 0 to the left it follows the third dispersion curve (red). When choosing a
smaller backward check tolerance, as done in Fig. 12(b), where we set εbwd

tol =10−4, we do

not resolve this problem. In fact, both tolerance parameters, εbwd
tol as well as the step size

tolerance ε
step
tol , cannot be chosen small enough since an expansion of first order cannot

account for the curvature of the dispersion curve. This explains that an expansion of first
order is in general not a good choice no matter how small the tolerance parameters are
chosen.

Now we increase the order of the expansion to n= 2 and choose again εbwd
tol = 10−2.

Fig. 13(a) shows that the two dispersion curves are computed correctly. However, using
an expansion of order n = 2 does not always resolve the problem as Fig. 13(b) shows,
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(b) Backward check tolerance εbwd
tol =10−4.

Figure 12: Adaptive Taylor scheme of order n=1 with backward check applied to the second and third dispersion

curves of Example 2.1. The start value of the scheme is set to k(0)=0.01·2π/|a1|.
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Figure 13: Adaptive Taylor scheme of order n=2 with backward check of tolerance εbwd
tol =10−2 applied to the

second and third dispersion curves of Example 2.1.

where we set the start value of the scheme to k(0)=0.25·2π/|a1|. It turns out that we were
only lucky by previously setting the start value to k(0)=0.01·2π/|a1|, where the second
derivative is large enough in magnitude to account for the correct slope of the second
dispersion curve. In the case presented in Fig. 13(b), however, the tolerance parameters

ε
step
tol and εbwd

tol are chosen too large so that the adaptive scheme does not place a Taylor
node close enough to k = 0 and hence, the magnitude of the second derivative at the
smallest positive node is too small to account for the correct curvature at k=0.
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Figure 14: Adaptive Taylor scheme of order n=3 with
backward check of tolerance εbwd

tol = 10−2 applied to
the second and third dispersion curves of Example 2.1.

The start value of the scheme is set to k(0) = 0.25·
2π/|a1|.
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Figure 15: Adaptive Taylor scheme of order n=2 with
backward check of tolerance εbwd

tol =10−2 and second

order mini-stop band check of tolerance εmsb
tol = 10−2

applied to the second and third dispersion curves of
Example 2.1. The start value of the scheme is set to

k(0)=0.25·2π/|a1|.

Choosing a smaller backward check tolerance may help to resolve this problem. When
selecting a higher order we can also resolve this problem, as shown in Fig. 14, where we
set the order to n=3, keeping the start value at k(0)=0.25·2π/|a1| and leaving the back-
ward check tolerance unchanged.

Alternatively, we can do a second order mini-stop band check in order to resolve this
problem even if we keep n=2 and εbwd

tol =10−2. The two approximated dispersion curves
in Fig. 13(b) come very close near k= 0. In fact, we observe that the two approximated
curves cross at k0≈0.02·2π/|a1|. At k0 we solve the eigenvalue problem and compare the
first and second derivatives of the dispersion relation with the slopes and curvatures of
the approximated curves. It turns out that the second derivatives do not match well with
the curvatures of the approximated curves. We refine the approximation as described in
the section on the mini-stop band check and find that the left branch of the refined blue
curve does not fit to the left branch shown in Fig. 13(b), so that a full computation of the
adaptive approximation in the interval [−π/|a1|,k0] is necessary. This yields the band
structure presented in Fig. 15, which shows that the adaptive scheme with second order
mini-stop band check produces appropriate approximations of two dispersion curves
intersecting with the same slope, even if the order is as low as n=2.

To summarize, we note that an expansion of order two or larger is needed to correctly
identify the behaviour of two curves, that intersect with the same slope. An expansion
of order larger than two is preferable in order to decrease the influence of the start value
on the approximation. A second order mini-stop band check can be employed to resolve
the intersection correctly.
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7 Conclusions

We presented the derivation and computation of the group velocity and higher deriva-
tives of the dispersion relation of PhC modes and guided modes in PhC waveguides. For
the computation of guided modes in PhC waveguides we employed the supercell and
the DtN approach. These derivatives are used in a Taylor expansion of the dispersion
curves which allows for an efficient calculation of the PhC band structure. We proposed
an adaptive scheme for the efficient and reliable selection of the nodes, at which the
eigenvalue problem is solved and the derivatives are computed. We showed that with
our approach it is possible to verify crossings of dispersion curves, as well as to identify
mini-stop bands even if they are very narrow.

The computational costs are smaller compared to the standard procedure of solving
the eigenvalue problem for a fine, uniform grid of values of the quasi-momentum, for
both, rather simple dispersion curves, whose derivatives have small magnitudes, and
complicated dispersion curves, that form a mini-stop band for example.

A Proof of the piecewise differentiability of the eigenmodes

We shall assume here and in the sequel that the eigenvalue multiplicity of all dispersion
curves is one almost everywhere in B.

Let k0 ∈ B and let ω2
m(k0) be an eigenvalue of (2.2) with geometric multiplicity one.

Due to the above assumption there exists h0 > 0 such that for all h∈]−h0 ,h0[ the eigen-
value ω2

m(k0+h) of (2.2) has geometric multiplicity one. The eigenmodes um(·;k0+h)
corresponding to the eigenvalues ω2

m(k0+h) are unique up to a complex-valued multi-
plicative factor. Continuity and differentiability of these eigenmodes with respect to k at
k= k0 is hence subject to a complex scaling of um(·;k0+h) for all h∈]−h0,h0[.

Lemma A.1. Let um(·;k0+h), with h ∈]−h0,h0[, be an arbitrary eigenmode of (2.2) at k =
k0+h with H1(C)-norm 1 that corresponds to the eigenvalue ω2

m(k0+h). Then, in the limit
h→0, um(·;k0+h) is an eigenmode of (2.2) at k=k0 corresponding to the eigenvalue ω2

m(k0) and
um(·;k0+h)→ cum(·;k0) in H1

per(C) for some c∈C with |c|=1.

Proof. We know that um(·;k0) satisfies
∫

C
α(∇+ik0a1)um(·;k0)·(∇−ik0a1)v−ω2

m(k0)βum(·;k0)v dx=0

for all v∈H1
per(C) and um(·;k0+h) satisfies

∫

C
α(∇+i(k0+h)a1)um(·;k0+h)·(∇−i(k0+h)a1)v−ω2

m(k0+h)βum(·;k0+h)v dx=0

for all v∈H1
per(C). Consequently, the function em(·;h) :=um(·;k0+h)−um(·;k0) satisfies
∫

C
α(∇+ik0a1)em(·;h)·(∇−ik0a1)v−ω2

m(k0)βem(·;h)v dx= gm,h(v)
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for all v∈H1
per(C) with the linear form

gm,h(v)=
(
ω2

m(k0+h)−ω2
m(k0)

)∫

C
βum(k0+h)v dx

+h
∫

C
α(∇+ik0a1)um(k0+h)·ia1v−αia1um(k0+h)·(∇−ik0a1)v dx

−h2
∫

C
α|a1|2um(k0+h)v dx.

Since ω2
m is continuous at k= k0, we know that gm,h(v)→ 0 as h→ 0. Hence, in the limit

h→0 the function em(·;h) is either zero or it is an eigenmode of (2.2) at k= k0 with corre-
sponding eigenvalue ω2

m(k0). Since the geometric multiplicity of ω2
m(k0) is one, we can

conclude that in both cases limh→0em(·;h)= c̃um(·;k0) with some complex number c̃∈C.
This implies that limh→0um(·;k0+h)= cum(·;k0), with c= c̃+1. Now we use the fact that
‖um(·;k0+h)‖H1(C) = 1 for all h ∈]h0,h0[ and hence, — taking the norm of the previous
equation — we can conclude that |c|=1, which finishes the proof.

Now let us — in addition to the norm — also fix the phase of the eigenmode. To
this end, we define w := um(·;k0) as an arbitrary but fixed eigenmode of (2.2) at k = k0

with H1(C)-norm 1. Then we introduce the following problem: find ũm(·;k)∈ H1
per(C),

k= k0+h, and the Lagrangian multiplier λũm(k)∈C that satisfy

∫

C
α(∇+ika1)ũm(k)·(∇−ika1)v−ω2

m(k)βũm(k)v dx+λũm(k)〈w,v〉H1(C)=0, (A.1a)

〈ũm(k),w〉H1(C)=1, (A.1b)

for all v∈H1
per(C) where 〈·,·〉H1(C) denotes the usual H1(C)-inner product, i. e. 〈u,v〉H1(C)=∫

C∇u·∇v+uv dx.

Lemma A.2. If k is sufficiently close to k0, the problem (A.1) has a unique solution.

Proof. First let us prove existence. Let um(·;k) denote an arbitrary eigenmode of (2.2) with
H1(C)-norm 1 associated to ω2

m(k), and let c(h)= 〈um(k),w〉H1(C). From Lemma A.1 we
know that um(·;k)→ cw as h→ 0 for some c∈C with |c|= 1. This implies that c(h)→ c
as h → 0 and hence, c(h) 6= 0 if k is sufficiently close to k0. Then, ũm(·;k) = 1

c(h)
um(·;k)

solves (A.1) with the Lagrangian multiplier λũm(k)=0.
Now let us prove uniqueness. To this end, we assume that — apart from the eigen-

mode solution (ũm,1(·;k),λũm,1
(k))= (ũm(·;k),0)∈ H1

per(C)×C — there exists another so-

lution (ũm,2(·;k),λũm,2(k))∈H1
per(C)×C with ũm,2(·;k) 6≡ ũm,1(·;k) or λũm,2(k) 6=λũm,1

(k)=0.
Since (ũm,2(·;k),λũm,2(k)) is a solution of (A.1), we can write

∫

C
α(∇+ika1)ũm,2(k)·(∇−ika1)v−ω2

m(k)βũm,2(k)v dx+λũm,2(k)〈w,v〉H1(C)=0,

〈ũm,2(k),w〉H1(C)=1,
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for all v ∈ H1
per(C). Now we test the first equation with v = ũm(·;k). Since this is an

eigenmode of (2.2) and it satisfies the constraint condition (A.1b), we obtain λũm,2(k)=0.
However, this implies that ũm,2(k) is an eigenmode of (2.2). But from the constraint con-
dition (A.1b) and the assumption that the two solutions are not identical, it follows that
ũm,2(·;k) 6≡cũm,1(·;k) with some c∈C. Hence, ũm,2(·;k) is an eigenmode of (2.2) that is lin-
ear independent of the eigenmode ũm,1(·;k), which is a contradiction to our assumption
that the multiplicity of the eigenvalue problem (2.2) is one at k∈]k0−h0,k0+h0[.

Now we are able to state the following result.

Corollary A.1. The unique solution ũm(·;k) of (A.1) is an eigenmode of (2.2) with associated
eigenvalue ω2

m(k).

Finally, we can prove continuity of ũm(·;k) at k= k0.

Lemma A.3. For all m∈N, the eigenmode ũm(·;k) that solves (A.1) is continuous at k= k0.

Proof. Let ẽm(·;h) := ũm(·;k0+h)−ũm(·;k0), h ∈]−h0,h0[. We introduce the Lagrangian
multiplier λẽm(h)=λũm (k0+h)−λũm(k0) and hence, the function ẽm(h) satisfies

∫

C
α(∇+ik0a1)ẽm(h)·(∇−ik0a1)v−ω2

m(k0)βẽm(h)v dx+λẽm(h)〈w,v〉H1(C)

=
(
ω2

m(k0+h)−ω2
m(k0)

)∫

C
βũm(k0+h)v dx

+h
∫

C
α(∇+ik0a1)ũm(k0+h)·ia1v−αia1ũm(k0+h)·(∇−ik0a1)v dx

−h2
∫

C
α|a1|2ũm(k0+h)v dx, (A.2a)

〈ẽm(h),w〉H1(C)= 〈ũm(k0+h)−ũm(k0),w〉H1(C), (A.2b)

for all v ∈ H1
per(C). The term on the right hand side of Eq. (A.2b) vanishes since both

functions, ũm(k0+h) and ũm(k0), satisfy Eq. (A.1a). Since k 7→ ωm(k) is continuous at
k=k0 we conclude that the right hand side of Eq. (A.2a) tends to zero as h→0, and hence,
— considering that the problem (A.2) is well-posed — we have ẽm(h)→ 0 in H1

per(C) as
h→0, which finishes the proof.

In order to prove that ũm(·;k) is differentiable at k=k0 we introduce a new mixed vari-
ational problem: find ũ′

m(k)∈H1
per(C), k=k0+h, and the Lagrangian multiplier λũ′

m
(k)∈C

that satisfy

∫

C
α(∇+ika1)ũ

′
m(k)·(∇−ika1)v−ω2

mβũ′
m(k)v dx+λũ′

m
(k)〈w,v〉H1(C)= f

(1)
m (v;k), (A.3a)

〈ũ′
m(k),w〉H1(C)=0 (A.3b)
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for all v∈H1
per(C) with the linear form

f
(1)
m (v;k)=

∫

C
α(∇+ika1)ũm(k)·ia1v−αia1ũm(k)·(∇−ika1)v+

(
ω2

m(k)
)′

βũm(k)v dx.

Using the same arguments as in the proof of Lemma A.2 we can conclude that (A.3) has
a unique solution.

Remark A.1. Note that in the limit h→0, the problem (A.3) is equivalent to (3.3). In this
context, it becomes clear that in the limit h→0 the Lagrangian multiplier λũ′

m
(k) vanishes,

see Remark 3.2. Since the compatibility condition of the mixed variational problem (A.3),

i. e. taking the eigenmode ũm(·;k) as test function in (A.3a), yields f
(1)
m (ũm(·;k);k)=λũ′

m
(k),

we can conclude that in the limit h → 0 the compatibility condition of (A.3) yields the
group velocity formula (3.2) with u= ũm(·;k).
Lemma A.4. For all m ∈ N, the eigenmode ũm(·;k) that solves (A.1) is Fréchet differentiable
with respect to k at k= k0, and d

dk ũm(·;k0)= ũ′
m(·;k0).

Proof. Let ẽ′m(·;h) := 1
h (ũm(·;k0+h)−ũm(·;k0)−hũ′

m(·;k0)), h ∈]−h0,h0[. Introducing the

Lagrangian multiplier λẽ′m(h) =
1
h

(
λũm(k0+h)−λũm(k0)−hλũ′

m
(k0)

)
, the function ẽ′m(h)

satisfies
∫

C
α(∇+ik0a1)ẽ

′
m(h)·(∇−ik0a1)v−ω2

mβẽ′m(h)v dx+λẽ′m(h)〈w,v〉H1(C)

=− f
(1)
m (v;k0)+ f̃m(v;h), (A.4a)

〈ẽ′m(h),w〉H1(C)=
1

h
〈ũm(k0+h)−ũm(k0),w〉H1(C), (A.4b)

for all v∈H1
per(C) with the linear form

f̃m(v;h)=
∫

C
α(∇+ik0a1)ũm(k0+h)·ia1v−αia1ũm(k0+h)·(∇−ik0a1)v dx

+
ω2

m(k0+h)−ω2
m(k0)

h

∫

C
βũm(k0+h)v dx−h

∫

C
α|a1|2ũm(k0+h)v dx.

The term on the right hand side of Eq. (A.4b) vanishes since both functions, ũm(k0+h) and
ũm(k0), satisfy Eq. (A.1a). Finally, — using Proposition 2.1 and Lemma A.3 — we con-

clude that f̃m(·;h)→ f
(1)
m (·;k0) as h→0, and hence, — considering that the problem (A.4)

is well-posed — we have ẽ′m(h)→0 in H1
per(C) as h→0, which finishes the proof.

In order to extend the theory to higher orders we introduce ũ
(n)
m (k)∈H1

per(C), n∈N,
k= k0+h, as the unique solution of

∫

C
α(∇+ika1)ũ

(n)
m (k)·(∇−ika1)v−ω2

mβũ
(n)
m (k)v dx+λ

ũ
(n)
m
(k)〈w,v〉H1(C)= f

(n)
m (v;k),

〈ũ(n)
m (k),w〉H1(C)=0,
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for all v∈H1
per(C) with the Lagrangian multiplier λ

ũ
(n)
m
∈C and the linear form

f
(n)
m (v;k)=

n−1

∑
p=0

n−p

∑
q=0

n!

p!q!(n−p−q)!
ω

(n−p−q)
m (k)ω

(q)
m (k)

∫

C
βũ

(p)
m (k)v dx

−in|a1|
∫

C
αũ

(n−1)
m (k)(∂1v)−α(∂1ũ

(n−1)
m (k))v dx

−2nk|a1|2
∫

C
αũ

(n−1)
m (k)v dx−n(n−1)|a1|2

∫

C
αũ

(n−2)
m (k)v dx.

Using the same arguments as in the proof of Lemma A.4 we conclude the following state-
ment, which finishes the proof of the piecewise differentiability of the eigenmodes with
respect to k up to any order.

Lemma A.5. For all m ∈N, the eigenmode ũm(·;k) that solves (A.1) is Fréchet differentiable

with respect to k at k= k0 up to any order, and dn

dkn ũm(·;k0)= ũ
(n)
m (·;k0).

Now we are able to prove Proposition 2.2.

Proof of Proposition 2.2. Since w can be chosen to be any eigenmode of (2.2) at k= k0, we
showed that the eigenmodes of (2.2) associated to eigenvalues that have multiplicity one
at k= k0 are continuously differentiable with respect to k at k= k0 up to any order, which
is the desired result.

B Derivatives of dispersion curves for problems with

Dirichlet-to-Neumann transparent boundary conditions

We will now present the formulas for the group velocity and all higher derivatives of
the dispersion relation if we prescribe DtN transparent boundary conditions at the top
and bottom boundaries ΓT and ΓB. Using DtN operators as shown in [22], the computa-
tional domain can be restricted to the defect cell C, c. f. Fig. 1(c), where the DtN operators
ΛT(ω,k) : u |ΓT

7→ (∂2u) |ΓT
and ΛB(ω,k) : u |ΓB

7→ (−∂2u) |ΓB
are linear maps of the Dirich-

let traces to the Neumann traces at the top and bottom boundaries ΓT and ΓB. The DtN
operators can be computed by solving local cell problems in a unit cell of the PhC, and
solving a quadratic matrix-valued equation. Also in [22], it was shown that the DtN op-
erators are differentiable to any order with respect to ω and k inside the band gaps, i. e.

∂m+n

∂km∂ωn ΛT/B(ω,k) are well defined for any m,n∈N and can be computed using a set of
local cell problems.

Since we do not prescribe periodic boundary conditions at ΓT and ΓB, we need a
new Sobolev space for the weak formulation of the problem with DtN operators. To
this end, let H1

x1-per(C)⊂H1(C) denote the space of H1(C) functions that are periodic in
x1-direction. The corresponding variational formulation of the eigenvalue problem (2.2)
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with DtN operators then reads: for any k∈ B find guided modes u(·;k)∈ H1
x1-per(C) and

corresponding eigenvalues ω2(k)∈R+ such that
∫

C
α(∇+ika1)u·(∇−ika1)v−ω2βuv dx

−
∫

ΓT

αΛT(ω,k)uv ds(x)−
∫

ΓB

αΛB(ω,k)uv ds(x)=0 (B.1)

for all v∈H1
x1-per(C).

According to Remark 2.1 the eigenvalues ω2(k) can be ordered such that the disper-
sion curves k 7→ ωm(k) are continuously differentiable up to any order. We claim that
a similar result holds true for the corresponding eigenmodes u(k), see Remark 2.2, and
hence, we can differentiate (B.1) with respect to k up to any order. The n-th derivative of
Eq. (B.1) with respect to k splits into two terms and reads

dn

dkn

∫

C
α(∇+ika1)u·(∇−ika1)v−ω2βuv dx

− dn

dkn

(∫

ΓT

αΛT(ω,k)uv ds(x)+
∫

ΓB

αΛB(ω,k)uv ds(x)

)
=0. (B.2)

The first term is equivalent to the n-th derivative of Eq. (2.2) in Section 3, i. e.

dn

dkn

∫

C
α(∇+ika1)u·(∇−ika1)v−ω2βuv dx

=
∫

C
α(∇+ika1)d

n
k u·(∇−ika1)v−ω2βdn

k uv dx− fn(v),

with fn as given in Eq. (3.4). However, to the best of our knowledge, there does not exist
a closed formula for the second term of Eq. (B.2), but it can be computed recursively. On
the one hand, we have

dn

dkn

(
ΛT/B(ω(k),k)u

)
=

n

∑
m=0

(
n

m

)(
dm

dkm
ΛT/B(ω(k),k)

)
dn−m

k u,

and on the other hand we obtain the formula

dn

dkn
ΛT/B(ω(k),k)=

dn−1

dkn−1

(
ω′ΛT/B

ω (ω(k),k)+ΛT/B
k (ω(k),k)

)

=
n−1

∑
m=0

(
n−1

m

)
ω(1+m)dn−m−1ΛT/B

ω

dkn−m−1
(ω(k),k)+

dn−1ΛT/B
k

dkn−1
(ω(k),k), (B.3)

where we use the short notations ΛT/B
ω = ∂ΛT/B

∂ω and ΛT/B
k = ∂ΛT/B

∂k . Eq. (B.3) can be used

recursively to compute dnΛT/B

dkn up to any order. To this end, we compute the partial deriva-

tives ∂(m+m′)ΛT/B

∂ωm∂km′ for all m= 0,··· ,n and m′= 0,··· ,n, with m+m′≤ n. This can be done by
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solving a set of local cell problems as described in [22]. Then we apply Eq. (B.3) recur-

sively in order to evaluate total derivatives of partial derivatives until dnΛT/B

dkn is expressed
as a sum containing only partial derivatives.

From this we deduce that dn
k u∈H1

x1-per(C) satisfies

∫

C
α(∇+ika1)d

n
k u·(∇−ika1)v−ω2βdn

k uv dx

−
∫

ΓT

αΛT(ω,k)dn
k uvds(x)−

∫

ΓB

αΛB(ω,k)dn
k uv ds(x)= f DtN

n (v) (B.4)

for all v∈H1
x1-per(C), with the linear form

f DtN
n (v)= fn(v)+

n

∑
m=1

(
n

m

)∫

ΓT

α
dm

dkm

(
ΛT(ω(k),k)

)
dn−m

k uv ds(x)

+
n

∑
m=1

(
n

m

)∫

ΓB

α
dm

dkm

(
ΛB(ω(k),k)

)
dn−m

k uv ds(x),

where the terms dm

dkm

(
ΛT/B(ω(k),k)

)
are determined recursively using Eq. (B.3). Testing

Eq. (B.4) with v= u yields f DtN
n (u) = 0 from which we obtain the n-th derivative of the

dispersion relation

ω(n)=

(
2ω

∫

C
β|u|2 dx+

∫

ΓT

αΛT
ωuu ds(x)+

∫

ΓB

αΛB
ωuuds(x)

)−1

×
[

n(n−1)|a1|2
∫

C
αdn−2

k uu dx+2nk|a1|2
∫

C
αdn−1

k uudx

+in|a1|
∫

C
αdn−1

k u(∂1u)−α(∂1dn−1
k u)u dx

−
n−1

∑
p=1

n−p

∑
q=0

n!

p!q!(n−p−q)!
ω(n−p−q)ω(q)

∫

C
βd

p
k uu dx

−
n−1

∑
q=1

n!

q!(n−q)!
ω(n−q)ω(q)

∫

C
β|u|2 dx

−
n−1

∑
m=1

(
n

m

)(∫

ΓT

α
dmΛT

dkm
dn−m

k uuds(x)+
∫

ΓB

α
dmΛB

dkm
dn−m

k uu ds(x)

)

−
n−2

∑
m=0

(
n−1

m

)
ω(1+m)

(∫

ΓT

α
dn−1−mΛT

ω

dkn−m−1
uu ds(x)+

∫

ΓT

α
dnΛT

k

dkn
uu ds(x)

+
∫

ΓB

α
dn−1−mΛB

ω

dkn−m−1
uu ds(x)+

∫

ΓB

α
dnΛB

k

dkn
uu ds(x)

)]
. (B.5)
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Analogously to the argumentation in Section 3, we note that Eq. (B.4) does not have
a unique solution dn

k u ∈ H1
x1-per(C). However, by additionally requiring H1

x1-per(C)-or-

thogonality to any eigenmode u∈H1
x1-per(C) we can compute a particular solution dn

k u∈
H1

x1-per(C) of Eq. (B.4). Again — for simplicity — let us assume that there exists only one

linearly independent eigenmode u(·;k) corresponding to the eigenvalue ω2(k). Then we
seek dn

k u∈H1
x1-per(C) and λ∈C such that

∫

C
α(∇+ika1)d

n
k u·(∇−ika1)v−ω2βdn

k uvdx−
∫

ΓT

αΛT(ω,k)dn
k uvds(x)

−
∫

ΓB

αΛB(ω,k)dn
k uvds(x)+λ

∫

C
∇u·∇v+uv dx= f DtN

n (v),
∫

C
∇dn

k u·∇u+dn
k uu dx=0,

for all v∈H1
x1-per(C).

The formula (B.5) is very technical and looks complicated. However, recall that we

sketched above a scheme to compute the total derivatives dnΛT/B

dkn , dnΛT/B
ω

dkn and
dnΛT/B

k
dkn for all

n∈N. With these derivatives at hand, Eq. (B.5) is only slightly more complicated than
the formula (3.5) for the n-th derivative of the dispersion curves in the case without DtN
operators.
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