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Abstract. We have developed efficient numerical algorithms for solving 3D steady-
state Poisson-Nernst-Planck (PNP) equations with excess chemical potentials described
by the classical density functional theory (cDFT). The coupled PNP equations are dis-
cretized by a finite difference scheme and solved iteratively using the Gummel method
with relaxation. The Nernst-Planck equations are transformed into Laplace equa-
tions through the Slotboom transformation. Then, the algebraic multigrid method is
applied to efficiently solve the Poisson equation and the transformed Nernst-Planck
equations. A novel strategy for calculating excess chemical potentials through fast
Fourier transforms is proposed, which reduces computational complexity fromO(N2)
to O(N logN), where N is the number of grid points. Integrals involving the Dirac
delta function are evaluated directly by coordinate transformation, which yields more
accurate results compared to applying numerical quadrature to an approximated delta
function. Numerical results for ion and electron transport in solid electrolyte for lithium-
ion (Li-ion) batteries are shown to be in good agreement with the experimental data
and the results from previous studies.
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1 Introduction

Poisson-Nernst-Planck (PNP) equations are widely used to describe the macroscopic
properties of ion transport in electrochemical systems [1–5] (e.g., lithium-ion (Li-ion)
batteries, fuel cells) and biological membrane channels [6–13]. PNP equations are also
known as the drift-diffusion equations for the description of currents in semiconductor
devices [14–17]. In these models, excess chemical potential of mobile ions drives their dif-
fusion. However, a highly simplified description of the interactions limited to Coulomb
interactions between all charged species, is often used. To overcome this oversimplifi-
cation in the representation of collective interactions, classical density functional theory
(cDFT) can be used. cDFT is a powerful analytical tool to describe mesoscopic interac-
tions, such as excluded volume effects and electrostatic correlation interactions, and ther-
modynamic properties of inhomogeneous systems from first principles [18]. The PNP-
cDFT model is a generalization of the PNP model often used to describe fluids of charged
hard spheres in a confined environment. It has been applied to study the selectivity and
ionic flux in biological ion channels [19–22] and shown to provide computational results
in good agreement with experimental data and/or theoretical analysis.

In solid state ion and electron diffusion is also affected by the barriers for elementary
transport processes: ion hopping between the adjacent equilibrium sites and electron
hopping between the cations in the lattice. Similarly, in biological ion channels, short-
range dispersion interactions between the ions and functional groups in the channel pro-
teins would also affect their diffusion. These short-range interactions have a quantum
mechanical nature, which makes it challenging to evaluate them analytically. To include
these short-range interactions in cDFT model, quantum mechanical simulations can be
used to evaluate the barriers for the elementary transport processes and represent the in-
teractions with a square-well potential, featuring depth equal to the barrier and the width
comparable to ionic diameters [23, 24].

To summarize, in our approach — apart from Coulomb interactions — electrostatic
correlation and excluded volume effects are treated using cDFT with short-range interac-
tions quantum mechanically evaluated. This approach is equally applicable to study ion
and electron transport in nanostructured materials, ion transport through biological ion
channels, and small molecule diffusion in mesoporous materials.

In this work, we use the solid electrolyte, lithium phosphorus oxynitride (LiPON), for
Li-ion batteries as a test system and study temperature dependence of Li+ conductivity in
LiPON films. This material has a complex Li+ diffusion pathway [25,26], which requires a
full 3D model for ion and electron transport. Our previous work showed the PNP-cDFT
model’s unique capability to capture the physics of nanostructured electrode materials
for Li-ion batteries, providing insights into the origin of size effects of conductivity and
temperature dependence. The model can be used to guide synthesis of new nanocom-
posite materials with significantly improved electrochemical properties [23, 26–30]. This
research also revealed limitations in modeling realistic nanocomposites with complex
structures, calling for optimization of the efficiency of the PNP-cDFT solvers.
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The PNP-cDFT model is governed by nonlinear integro-differential equations. The
mathematical analysis and numerical simulation generate interesting and challenging
problems [19–22,26,31–33]. Numerical methods for solving the PNP system of equations
have been studied extensively, including the finite difference [7, 8], finite volume [12, 34,
35], and finite element methods [9,11,36,37]. In [38], a second-order convergent numerical
method is constructed to handle discontinuous dielectric constants and singular sources
in the context of biological ion channel applications.

In the current study, a standard finite difference scheme is sufficient because the dif-
fusion coefficients for PNP equations are assumed to be constant, and, for our applied
interests, the computational domain is regular. The main computational challenges for
the PNP-cDFT simulations include the solution of large sparse linear systems resulting
from the discretizations of PNP equations, and a significant amount of 3D integrals to
be calculated for cDFT. In particular, the computation of chemical potentials of charged
species requiresO(N2) operations, where N is the number of computational grid points.
This makes application of the model to realistic systems computationally very expensive.
Hence, most of the existing studies are restricted to the 1D case [19–22, 31–33, 39]. Nu-
merical simulations of a 3D PNP-cDFT model have been reported in [7, 26], using coarse
grid to reduce computational complexity. In this work, we apply a state-of-the-art fast
Poisson solver — algebraic multigrid (AMG) method that has computational complexity
of O(N logN). To speed up numerical integrations, we reformulate them as convolution
sums and then employ the fast Fourier transform (FFT) method to reduce the computa-
tional complexity toO(N logN). Some integrals in cDFT calculations involve Dirac delta
function. A usual approach is to approximate the Dirac delta function by a smooth func-
tion (e.g., Gaussian) and then apply a standard quadrature rule. The additional error
introduced by the approximation of the delta function is one drawback to this approach.
Here, we use the definition of Dirac delta function and change of variables to transform
these 3D integrals into 2D integrals on spheres and remove the singularity in the inte-
grands. Finally, 3D large scale numerical simulations of the PNP-cDFT system are made
feasible using the packages BoomerAMG [40, 41] and F3DFFT [42].

The rest of the paper is organized as follows: the multiscale model for nanostruc-
tured material and its description through PNP equations and cDFT are presented in
Section 2. Section 3 describes the numerical methods used in this study, including the
finite difference discretization, Gummel iteration with relaxation, AMG solver for sparse
linear systems of equations, FFT for calculating excess chemical potential, and the special
treatment of integrals involving delta function. The validity, accuracy, and computational
complexity of the proposed numerical algorithms are demonstrated in Section 4 via a real
application, LiPON film simulation. Finally, Section 5 presents some concluding remarks.

2 PNP-cDFT model

In this section, we offer a detailed description of the PNP model coupled with the cDFT,
or PNP-cDFT, and its application to Li-ion batteries simulation.
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PNP equations provide a mean-field continuum model for the flows of charged par-
ticles in terms of the average density distributions ρi and the electrostatic potential φ.
The chemical potentials of the charged particles are evaluated by cDFT, which models
discrete ion interactions and accounts for particle size effects. In PNP-cDFT theory, the
above two models are combined to describe the flow of interacting ion species driven by
the excess chemical potentials µex

i .

Li ions diffuse in solids either through hopping between the interstitial sites or va-
cancy migration mechanisms. There are certain barriers for ion and electron diffusion be-
tween equilibrium interstitial sites, which are calculated using quantum mechanical ap-
proaches for the corresponding bulk materials [25]. The presence of barriers for Li+/e−

diffusion can be represented by the attraction potential between Li+ ions or electrons and
the corresponding equilibrium sites. The simplest form for such potential is a square-well
potential with the well depth equal to the barrier for Li+/e− hopping between these sites.

In particular, we focus on the LiPON model, one of the most widely used solid-state
electrolytes for thin film batteries developed at Oak Ridge National Laboratory. Fig. 1
illustrates a 3D model for the description of Li+ transport in LiPON. The I0 sites are
the equilibrium interstitial sites for Li+ diffusion (Fig. 1). However, direct Li+ hopping
between I0 sites is energetically unfavorable due to a relatively high energy barrier (0.21
eV) and the large distance between these sites (0.41 nm), which decrease the probability of
ion hopping. According to quantum mechanical DFT simulations, the most energetically
favorable path for Li+ diffusion is a zigzag path via the I I0 and I I∗ sites [25]. Therefore,
in our model — except for site I0 — intermediate sites I I0 and I I∗ also are introduced
(Fig. 1). In our cDFT calculations, these lattice sites I0, I I0, I I∗ are modeled by stationary
particles.

Figure 1: Diffusion channel of Li+ in LiPON. Blue spheres are interstitial equilibriums (I0). Yellow spheres (I I0)
and gray spheres (I I∗) are metastable sites. a, 2b, and 2c are the sizes along three crystallographic directions.
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2.1 The 3D steady-state Poisson-Nernst-Planck equations

PNP theory is a continuum electrodiffusion model that represents ion fluxes in terms of
density distribution of ion species and potential gradients. It has been widely used in
modeling ion transport in biological ion channels or nanocomposites with broad appli-
cations in biology and material sciences [11, 12, 23, 26].

Within the PNP formalism, the ion flux J i (for the ions of type i, i.e., Li+ or electrons) in
the stationary condition can be calculated in terms of density (or concentration) gradient
and potential gradient as follows:

− J i=Di(r)

[

∇ρi+
1

kBT
ρi

(

qie∇φ+∇µid
i (r)+∇µex

i (r)
)

]

, (2.1)

∇· J i =0, (2.2)

−∇·(ǫ(r)∇φ)=4π

(

ρ f (r)+e∑
i

qiρi

)

, (2.3)

where r=(x,y,z) is the location at which the functions are defined, Di(r) is the diffusion
coefficient of the i-th ion species, ρi(r) is the particle number density, kB is the Boltz-
mann’s constant, T is the absolute temperature (kBT is thermal energy), e is the elemen-
tary charge, qi is the valence of species i (with sign), φ(r) is the electrostatic potential, ǫ(r)
is the electric permittivity (or dielectric function), µex

i (r) is the excess chemical potential of
charged particles at position r (determined within the cDFT framework by (2.13)), µid

i (r)
is the ideal chemical potential defined in (2.10), and ρ f (r) is the fixed charge density in
the system. Eqs. (2.1), (2.2) may be written in the following form:

−∇·
[

Di(r)

(

∇ρi+
1

kBT
ρi

(

qie∇φ+∇µid
i (r)+∇µex

i (r)
)

)]

=0. (2.4)

Eq. (2.4) often is referred to as the drift-diffusion or electrodiffusion equation.
By introducing the effective densities (also referred to as Slotboom variables in semi-

conductor literature)

ρ̄i =ρi e
(qieφ+µid

i +µex
i )/kBT, (2.5)

the set of steady-state Nernst-Planck equations (one for each species) can be simplified
as:

−∇·(D̄i∇ρ̄i)=0, (2.6)

where
D̄i=Di e

−(qieφ+µid
i +µex

i )/kBT.

The Slotboom transformation (2.5) removes the convection term in Eq. (2.4) and results
in self-adjoint Laplace equations which can be solved efficiently by multigrid method.
However, possible large variation of the transformed diffusion coefficient D̄i could re-
sult in large condition number of the stiffness matrix [37]. Furthermore, the Slotboom
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transformation may cause overflow problem in its numerical implementation due to the
exponential term. Fortunately, this overflow problem does not happen in the applications
discussed in this paper.

2.2 Boundary conditions

Usually, the PNP equations are accompanied by Dirichlet- and/or Neumann-type bound-
ary conditions [43].

Let the computational domain be given by Ω=(0,Lx)×(0,Ly)×(0,Lz). The external
electrostatic potential φ is influenced by applied potential, which can be modeled by
prescribing Dirichlet boundary condition in y-direction as:

φ(r)=φ0(r), r∈ΓD⊂∂Ω, (2.7)

where ΓD={(x,y,z)∈Ω |y=0 or y=Ly}. For the remaining part of the boundary ∂Ω\ΓD

(i.e., in x and z directions), a no-flux boundary condition is applied:

ǫ(r)∇φ(r)·n=0, r∈∂Ω\ΓD .

The same types of boundary conditions are imposed for variables ρ̄i in the transformed
Nernst-Planck equations, i.e.,

ρ̄(r)= ρ̄0(r), r∈ΓD, (2.8)

and

J i(r)·n=0, r∈∂Ω\ΓD .

The existence and uniqueness of the solution for the nonlinear PNP boundary value
problems have been studied in [32, 44, 45] for the 1D case and in [43, 46] for multidimen-
sions.

2.3 Classical density functional theory

cDFT is an analytical tool to evaluate the chemical potentials of charged species modeled
by hard-sphere mixtures [24, 47, 48]. For a given cDFT, an analytical expression for the
Helmholtz free energy F is formulated as a functional of the set of particle density dis-
tributions for all ion species {ρi(r)}. The Helmholtz free energy separates naturally into
two terms, the ideal-gas term (Fid) that is obtained from classical statistical mechanics

Fid[{ρi}]= kBT∑
i

∫

Ω
ρi(r)

(

ln(ρi(r)Λ
3
i )−1

)

dr, (2.9)

where Λi is the thermal wavelength of component i, and the excess free energy (Fex),
which has contributions from the internal interactions in the system. Accordingly, the
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chemical potential can be expressed as the sum of µid and µex. In general, the excess
chemical potential is a non-local functional of the ion densities.

The ideal chemical potential is expressed as [49, 50]:

µid
i (r)=−ln

[

γiρi(r)/ρbulk
i

]

, (2.10)

where the activity coefficient γi is described by the extended Debye-Hückel theory [51,
52]:

lnγi=−Aq2
i

√
I

1+Ba
√

I
. (2.11)

In the preceding formula, I= 1
2 ∑i ρiq

2
i is the ionic strength, A=1.82×106(εT)−3/2 (ε is the

dielectric constant), and B=50.3(εT)−1/2.
For a system of charged hard spheres, the excess free energy usually includes contri-

butions from the free energies of Coulomb interactions Fex
C , electrostatic correlations Fex

el ,
and hard-sphere repulsion Fex

hs [53,54]. In [28], an additional term corresponding to short-
range attraction interactions Fex

sh was included, resulting in the following decomposition:

Fex=Fex
C +Fex

el +Fex
hs +Fex

sh . (2.12)

The excess chemical potential can be calculated from the functional derivative of the
excess free energy with respect to particle density:

µex
i (r)=

δFex[{ρk}]
δρi

=
δFex(ρ(r))

δρi(r)
, (2.13)

where ρ=[ρ1,··· ,ρs], and s is the number of ion types.

2.3.1 Hard-sphere component

The hard-sphere model is often used in statistical mechanics to represent the short-range
repulsion between two particles, known as the excluded-volume effect. The fundamental
measure theory (FMT) [47] and modified fundamental measure theory (MFMT) [55, 56]
are among the most accurate formulations for the description of the structure and ther-
modynamic properties of inhomogeneous hard-sphere fluids. In this model, the excess
Helmholtz free energy functional due to the hard-core repulsion Fex

hs can be expressed as
an integral of the functional of weighted densities, i.e.,

Fex
hs [{ρi}]= kBT

∫

Ω
Φhs(r)dr, (2.14)

where Φhs is a function of weighted densities nα and nβ given by FMT:

Φhs(r)=−n0 ln(1−n3)+
n1n2

1−n3
+

n3
2

24π(1−n3)2
− n1 ·n2

1−n3
− n2n2 ·n2

8π(1−n3)2
(2.15)
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or MFMT:

Φhs(r)=−n0 ln(1−n3)+
n1n2

1−n3
+

[

1

36πn2
3

ln(1−n3)+
1

36πn3(1−n3)2

]

n3
2

− n1 ·n2

1−n3
−
[

1

12πn2
3

ln(1−n3)+
1

12πn3(1−n3)2

]

n2(n2 ·n2). (2.16)

nα and nβ are the weighted average of the density distribution functions ρi(r) and are
defined by:

nα(r)=∑
i

∫

Ω
ρi(r

′)ω(α)
i (r′−r)dr′, α=0,1,2,3,

nβ(r)=∑
i

∫

Ω
ρi(r

′)ω(β)
i (r′−r)dr′, β=1,2,

where the “weight functions” ω
(α)
i and ω

(β)
i characterizing the geometry of particles

(hard sphere with radius Ri for ion species i) are given by:

ω
(3)
i (r)= θ(|r|−Ri), (2.17)

ω
(2)
i (r)= |∇θ(|r|−Ri)|=δ(|r|−Ri), (2.18)

ω
(2)
i (r)=∇θ(|r|−Ri)=

r

r
δ(|r|−Ri), (2.19)

ω
(0)
i (r)=ω

(2)
i (r)/(4πR2

i ), (2.20)

ω
(1)
i (r)=ω

(2)
i (r)/(4πRi), (2.21)

ω
(1)
i (r)=ω

(2)
i (r)/(4πRi). (2.22)

In the preceding formulae, θ is the Heaviside step function with θ(x) = 0 for x > 0 and
θ(x)=1 for x≤0, and δ denotes the Dirac delta function.

From Eq. (2.13) and Eq. (2.14), it follows that the hard-sphere chemical potential is
given by:

µhs
i (r)= kBT

(

∑
α

∫

Ω

∂Φhs

∂nα
(r′)ω(α)

i (r−r′)dr′
)

+kBT

(

∑
β

∫

Ω

∂Φhs

∂nβ
(r′)ω(β)

i (r−r′)dr′
)

.

By taking partial derivatives of Eq. (2.15) with respect to n0, n1, n2, n3, n1,x, n1,y, n1,z, n2,x,
n2,y, or n2,z, we can get

∂Φhs

n0
=−ln(1−n3),

∂Φhs

n1
=

n2

1−n3
,

∂Φhs

n2
=

n1

1−n3
+

n2
2−n2 ·n2

8π(1−n3)2
,
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∂Φhs

n3
=

n0

1−n3
+

n1n2−n1 ·n2

(1−n3)2
+

n3
2−3n2n2 ·n2

12π(1−n3)3
,

∂Φhs

∂n1,x
=

n2,x

n3−1
,

∂Φhs

∂n1,y
=

n2,y

n3−1
,

∂Φhs

∂n1,z
=

n2,z

n3−1
,

∂Φhs

∂n2,x
=

n1,x

n3−1
− n2n2,x

4π(1−n3)2
,

∂Φhs

∂n2,y
=

n1,y

n3−1
− n2n2,y

4π(1−n3)2
,

∂Φhs

∂n2,z
=

n1,z

n3−1
− n2n2,z

4π(1−n3)2
.

2.3.2 Short-range interactions

In addition to the hard-core repulsion, the short-range attractive particle-particle interac-
tions may be modeled by the following square-well potential:

Φαβ(r)=











∞, 0≤ r<σαβ ,

−ǫαβ, σαβ≤ r≤γσαβ,

0, r>γσαβ,

where r is the distance between the centers of the spherical particles, σαβ=(σα+σβ)/2 (σα

is the particle hard-core diameter, and r< σαβ characterizes a hard-core repulsion), γσαβ

is the square-well width, (γ−1)σαβ indicates the range of attraction, ǫαβ is the well depth
(positive value represents attractive interaction, while negative value corresponds to re-
pulsive interaction), and the attractive width γ= 1.2 as in Ref. [24]. The corresponding
mean-field approximation of the free energy is given by:

Fex
sh =

1

2

∫

Ω

∫

Ω
drdr′ ∑

α,β=+,s

ρα(r)ρβ(r
′)Φαβ(|r−r′|), (2.23)

where “s” denotes the stationary points corresponding to the lattice sites I0, I I0, I I∗ shown
in Fig. 1.

It follows from (2.23) that the short-range chemical potential is given by:

µsh
α (r)=

1

2

∫

Ω
∑
β

ρβ(r
′)Φαβ(|r−r′|)dr′.

Short-range interactions between mobile species (Li+ ions and electrons) are not
present in the current study [26, 27]. The density profiles of the stationary points ρs are
given based on the structure of electrode materials. The depth of the potential well is
reasonably equal to the barrier height for Li+ hopping between two adjacent stationary
points and was set according to the quantum mechanical and molecular dynamics data
for the barrier heights [25].
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The density distributions of the stationary points are reasonably represented by the
sum of normalized Gaussian ansatz placed at each corresponding lattice site Rk:

ρs(r)=
( α

π

)3/2

∑
k

e−α|r−Rk |2 .

2.3.3 Coulomb interactions

The free energy of long-range Coulomb interactions is given by:

Fex
C =

kBTlB

2 ∑
i,j

∫

Ω

∫

Ω

qiqjρi(r)ρj(r
′)

|r−r′| drdr′, (2.24)

where qi, qj are the valences of the charged species and the Bjerrum length is defined
as lB = e2/(4πε0εkBT). ε0 is the vacuum permittivity, ε is the relative dielectric constant
of the media, and the sum is over all ion species i, j. From (2.24), we can derive the
corresponding Coulomb chemical potential:

µC
i (r)=qikBTlB∑

j

∫

Ω

qjρj(r
′)

|r−r′| dr′.

2.3.4 Electrostatic correlations

In most cDFT methods, the excess Helmholtz energy due to the electrostatic correlations
Fex

el is given by an analytical expression based on the perturbation of a suitably chosen,
position-dependent reference bulk fluid [57, 58]. Often, it is described by a second-order
functional Taylor expansion in terms of powers of the density fluctuations ∆ρi(r)=ρi(r)−
ρbulk

i (r) around a reference system with given bulk density profiles {ρbulk
i (r)} [48]:

Fex
el [{ρi}]=Fex

el [{ρbulk
i }]−kBT ∑

i=+,−

∫

Ω
C(1), el

i (r)∆ρi(r)dr

− kBT

2 ∑
i,j=+,−

∫

Ω

∫

Ω
C(2), el

ij (|r−r′|)∆ρi(r)∆ρj(r
′)drdr′+O((∆ρ(r))3), (2.25)

where the first- and second-order electrostatic direct correlation functions are defined as:

C(1), el
i (r)=− 1

kBT

δFex
el

δρi(r)
|ρ=ρbulk =− 1

kBT
µel

i [{ρbulk
j (r)}] (2.26)

and

C(2), el
ij (|r−r′|) :=− 1

kBT

δ2Fex
el

δρi(r)δρj(r′)
, (2.27)

where µel
i is the chemical potential of the mobile ions.
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According to the mean spherical approximation (MSA), the second-order direct cor-

relation function C(2), el
ij [59–61]:

C(2), el
ij (r)≈

{

− qiq je
2

kBTε

[

2B
σ −

(

B
σ

)2
r− 1

r

]

, r≤σ,

0, r>σ,
(2.28)

where r= |r−r′| is the distance between two ions, σi is the diameter, σ=(σi+σj)/2 is the
hard-core interaction distance between charged particles i and j, and B is given by:

B=[ξ+1−(1+2ξ)1/2 ]/ξ, (2.29)

where

ξ2=κ2σ2 =

[

e2

ε0εkBT ∑
i

ρbulk
i q2

i

]

σ2

and κ denotes the inverse Debye screening length.
The electrostatic correlation component of the chemical potential is then given by:

µel
i (r)=µel

i [{ρbulk
k (r)}]−kBT∑

j

∫

Ω
C(2), el

ij (|r−r′|)(ρj(r
′)−ρbulk

j )dr′. (2.30)

3 Numerical methods

The coupled PNP equations are discretized by finite difference method and solved itera-
tively using a decoupling method, Gummel iteration [62]. The AMG method is applied
to solve the Poisson equation (2.3) and the transformed Nernst-Planck equation (2.6) ef-
ficiently. The excess chemical potential of charged particles are determined by cDFT cal-
culation using FFTs. Fig. 2 depicts the flow chart of our numerical simulation.

We note that the convergence analysis of the numerical method for solving PNP-cDFT
system is very difficult and there is no theoretical result to the best of the authors’ knowl-
edge. In our numerical convergence test, we are only able to observe that the numerical
solutions converge when decreasing the mesh size.

3.1 Finite difference discretization

The 3D PNP equations are discretized using the standard 7-point finite difference scheme
on a uniform cubic lattice grid. For example, consider the transformed Nernst-Planck
equation (2.6) (for simplicity, we drop the species index i). The value of ρ̄ at a given grid
point (corresponding to local index 0) and its six neighbors (corresponding to the index
j=1,··· ,6) satisfy the following equation:

ρ̄0

(

D̃1+D̃2

(∆x)2
+

D̃3+D̃4

(∆y)2
+

D̃5+D̃6

(∆z)2

)

=
ρ̄1D̃1+ ρ̄2D̃2

(∆x)2
+

ρ̄3D̃3+ ρ̄4D̃4

(∆y)2
+

ρ̄5D̃5+ ρ̄6D̃6

(∆z)2
.
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Figure 2: PNP-cDFT simulation flow chart.

The diffusion coefficients D̃j (j=1,··· ,6) are computed via the harmonic mean of the
corresponding values at the grid points [12], i.e.,

D̃j=
2D̄0D̄j

D̄0+D̄j
,

where D̄j is D̄ evaluated at the grid point with local index j.

3.2 Gummel iteration with relaxation

To obtain the self-consistent solution of the PNP equations, the coupled equations are
solved using either the Gummel method with relaxations [7] or Newton method [11,
34]. Gummel iteration is a decoupling method for solving coupled systems of equations.
Given an initial guess of the ion concentration profiles ρi and the electrostatic potential φ,
a new φ is computed by solving the Poisson equation. Then, the updated φ is substituted
into the Nernst-Planck equation to update the ion concentration. This iterative process
terminates when the difference between the results of two subsequent iterations is less
than a predefined threshold value (10−6 for potential and 10−5 for ion concentrations in
our tests).
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The convergence rate of the Gummel iteration is usually slow. To speed up the conver-
gence, successive under- or over-relaxation is employed for the solution updates [7, 63].
Namely, in the n-th PNP iteration, the potential φ(n) is mixed with the previous potential
φ(n−1) through a relaxation parameter λ1 before being substituted into the Nernst-Planck
equations,

φ(n)←λ1φ(n)+(1−λ1)φ
(n−1).

Similarly, for ion concentrations, we introduce another relaxation parameter λ2,

ρ
(n)
i ←λ2ρ

(n)
i +(1−λ2)ρ

(n−1)
i .

The relaxation parameters λ1 and λ2 are selected to achieve rapid convergence while
maintaining numerical stability. Because the Nernst-Planck equation is more sensitive to
potential change than the Poisson equation to concentration changes, we choose λ1=0.2
and λ2=1.0 in our numerical simulations.

To solve the coupled nonlinear PNP system, the Newton method, which converges
quadratically when a good initial guess is available, has been employed in [11, 34]. It
requires the construction of a Jacobian matrix that, in practice, may be complicated. In
contrast, the Gummel method has a fast initial error reduction, but the convergence rate
may be slow. In [34], the PNP system is solved with the Newton method, and the result-
ing linear systems are solved using the generalized minimal residual (GMRES) method
with multigrid preconditioning. A better approach may be to combine both methods,
i.e., start the solution procedure with a few Gummel iterations to generate a good initial
guess then switch to the Newton method to accelerate the convergence.

3.2.1 The choice of initial guess

Even when using Gummel method, a good initial guess enhances the stability of solu-
tion and speeds up convergence. In our approach, we first solve the static equilibrium
problem and determine the distribution of mobile species in external electric potential by
minimizing the total free energy with cDFT. These equilibrium density distributions and
the corresponding electrostatic potential are subsequently used as initial guesses for the
Nernst-Planck and Poisson equations, respectively. This way, we avoid large changes in
densities of mobile species when solving the PNP equations by starting from the system’s
equilibrated state before imposing constant flow conditions. This two-step approach
proved to be computationally efficient with typical convergence of the PNP solution in a
few tens of iterations.

3.3 Algebraic multigrid method

In several early studies of PNP models [7, 63], classical Jacobi or Gauss-Seidel iterative
methods are used to solve the Poisson and Nernst-Planck equations. These methods suf-
fer from slow convergence, making it difficult to run large-scale 3D simulations. Because
PNP equations are all of elliptic type, many existing fast solvers can be applied to solve
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them efficiently on massively parallel computers. In this work, we use the state-of-the-art
fast iterative solver — AMG method.

The multigrid (MG) method is well know for itsO(N) optimality (N is the number of
degrees of freedom) in solving large sparse linear systems resulting from discretizations
of partial differential equations. MG’s motivation may be described by decomposing
the solution error into the sum of high- and low-frequency components. It consists of a
smoothing procedure (damped Jacobi, Gauss-Seidel, etc., also called “smoothers”), which
reduces high-frequency error components, and a coarse-grid correction operator for low-
frequency errors. Grid transfer operators (restriction and interpolation) are also defined
to connect solutions at different grid levels. The success of MG methods relies on the
combination of solution procedures at different scales, where different error components
are reduced by using the smoothing property of basic iterative methods. For a thorough
discussion about the MG method, refer to the books [64–66].

First introduced in the 1980s [67, 68], the AMG method constructs coarse-grid correc-
tion operator and restriction/interpolation operator from a matrix without using grid
information. AMG has been quite successful for solving large sparse linear systems,
especially those corresponding to discretized elliptic problems. In our numerical sim-
ulation, we use BoomerAMG, a parallel implementation of AMG from the hypre (High
Performance Preconditioners) library developed at Lawrence Livermore National Labo-
ratory [40, 41].

3.4 Fast Fourier transform

The evaluation of a large number of 3D integrals is another computationally demanding
task in cDFT computation (described in Section 2.3). Direct evaluation of these integrals
using numerical quadrature rules is computationally intractable [43]. Fortunately, these
integrals are described in convolution form, which can be calculated effectively using FFT
and inverse FFT. In our study, we use P3DFFT, a parallel FFT library optimized for large-
scale computer simulations, developed at the University of California, San Diego [42].

More precisely, the 3D integrals involved in the cDFT model can be written in the
following convolution form:

∫

Ω
ρ(r′)g(|r−r′|)dr′, (3.1)

where g(s)=1/s for the Coulomb chemical potential, g(s)=Φij(s) for the chemical poten-

tial corresponding to the short-range interactions, and g(s)=C
(2), el
ij (s) for the electrostatic

correlation chemical potential.

In the following, we illustrate how to calculate (3.1) using FFT and its inverse on a
1D example. Given a uniform grid on the interval [0,T], ti = i∆t, i=0,1,··· ,N−1, where
∆t=T/N. Consider the convolution integral:

h(t)=
∫ T

0
f (τ)g(|t−τ|)dτ (3.2)
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approximated using the trapezoidal rule, i.e.,

hk≈
N−1

∑
i=0

fig|k−i|∆x

=
k

∑
i=0

figk−i+
N−1

∑
i=k+1

figi−k, k=0,1,··· ,N−1, (3.3)

where hk=h(tk), fi= f (ti), and g|k−i|=g(t|k−i|). Note that for ease of notation, in (3.3) we
have assumed the integrand has equal values at the two endpoints.

To evaluate Eq. (3.3) by applying FFT, we need to write the sums in the convolution
form. To this end, we introduce the following auxiliary vectors:

f̂i =

{

fi, if 0≤ i≤N−1,
0, if N≤ i≤2N−1,

(3.4)

ĝi =

{

gi, if 0≤ i≤N−1,
0, if N≤ i≤2N−1,

(3.5)

g̃i =

{

gN−2−i, if 0≤ i≤N−2,
0, if N−1≤ i≤2N−1,

(3.6)

and define two circular convolution ĥ and h̃ (modulo 2N) as

ĥk :=( f̂ ⋆ ĝ)k =
2N−1

∑
i=0

f̂i ĝk−i, ∀k,

h̃m :=( f̂ ⋆ g̃)m =
2N−1

∑
i=0

f̂i g̃m−i, ∀m.

By direct calculations, we get:

ĥk =
k

∑
i=0

figk−i, k=0,1,··· ,N−1,

h̃m =
N−1

∑
i=k+1

figi−k, k=m−(N−1), m=N−1,··· ,2N−3,

h̃2N−2=0.

Hence,
hk = ĥk+ h̃k+N−1, k=0,··· ,N−1,

where ĥk and h̃m can be calculated efficiently by FFT and inverse FFT [69] withO(N logN)
computational complexity.

The generalization of the preceding approach for evaluating 3D convolution integrals
(3.1) is straightforward. As such, the details are omitted here.
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3.5 Integrals involving Dirac delta function

When calculating hard-sphere chemical potentials, it can be seen from Eqs. (2.18), (2.19),
(2.20), (2.21) and (2.22) that several 3D integrals involving Dirac delta functions need to
be evaluated. A straightforward approach is to approximate the Dirac delta function by
the Gaussian function:

δ(r)≈δα(r)=
1

α
√

π
e−r2/α2

(3.7)

and then apply any numerical quadrature rule. However, a more efficient and accurate
approach is to reduce the 3D volume integrals into 2D spherical integrals using the defi-
nition of Dirac delta function and change of variables. More precisely, we have:

I(r)=
∫

Ω
ρ(r′)δ(|r′−r|−R)dr′

=
∫ 2π

0

∫ π

0
ρ(x+Rcosθsin ϕ,y+Rsinθsin ϕ,z+Rcosϕ)R2sinϕdϕdθ

≈
k

∑
i=1

k

∑
j=1

[ρ(x+Rcosθi sinϕj,y+Rsinθi sinϕj,z+Rcos ϕj)R2sinϕj]wi w̃j,

where {(θi,ϕj)} are the quadrature points and {wi,w̃j} are the corresponding weights.
Zero extension of the integrand is used when part of the sphere lies out of the computa-
tional domain Ω.

4 Numerical results

We use the Li-ion and electron conducting solid electrolyte, LiPON, to demonstrate our
PNP-cDFT solver’s performance.

4.1 Computational domain and physical parameters

The computational domain is given by 2a×Mb×5c, where a= 1.053 nm, b= 0.612 nm,
and c = 0.493 nm are the lattice parameters for LiPON and M = 10,··· ,200. Li+ ions
are represented as spherical particles with charge q+ = 1 and diameter σ+ = 0.06 nm.
Similar representation is used for electrons, diffusing along with Li+, with the parameters
q−=−1 and diameter σ−= 0.001 nm. The experimental value for the LiPON dielectric
constant, 16.6, has been used [70]. The parameters used in our PNP-cDFT simulation for
Li+/electron transport are listed in Table 1.

4.2 Results and discussion

Ion conductivity obtained from numerical simulation is on the order of 10−7 S/cm in y di-
rection at temperature 298 K. This is close to the conductivity of 3.0×10−7 S/cm observed
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Table 1: Parameters for computation.

Parameter Symbol Value Unit

Diffusion coefficient (Li+) D+ 1×10−6 cm2/s

Diffusion coefficient (electron) D− 1×10−6 cm2/s

Valence (Li+) q+ +1

Valence (electron) q− −1

Dielectric constant of media ǫ 16.6

Fixed charge density (at z=0) ρ f 0.1 1/nm2

Bulk density of salt ρbulk 6.02×10−5 1/nm3

Thermodynamic beta (T=223K) β= 1
kBT 52.03749 1/eV

LiPON nanoparticle size in a-direction Lx 2×1.053 nm

LiPON nanoparticle size in b-direction Ly 150×0.612 nm

LiPON nanoparticle size in c-direction Lz 5×0.493 nm

Sphere diameter (Li+) σ+ 0.06 nm

Sphere diameter (electron) σ− 0.001 nm

Sphere diameter (stationary points) σs 0.2 nm

Square-well potential depth (Li+, s1) ǫ+,s1 0.21 eV

Square-well potential depth (Li+, s2) ǫ+,s2 0.17 eV

Square-well potential depth (Li+, s3) ǫ+,s3 0.17 eV

Bjerrum length (T=223K) lB=
e2

4πǫ0ǫkBT 4.514 nm

experimentally in [71] for Li0.99PO2.55N0.30 glass. Moreover, based on our simulation, con-
ductivity increases from 1.32×10−7 to 1.47×10−7 when temperature increases from 200 K
to 320 K (Fig. 3). This temperature-dependence trend for conductivity agrees well with
experimental data [72]. It is good to note that reproducing the exact experimental value
for conductivity is highly improbable as conductivity strongly depends on the film mi-
crostructure (shown in [72]). The simulation domain we use is finite with the size in
the main conductivity direction of 61.2−91.8 nm, which corresponds to polycrystalline
LiPON films, and the simulated conductivities are well within the limits of variations
in experimental values for polycrystalline samples. Apart from film microstructure, the
value for the elementary diffusion coefficient, a pre-factor to the conductivity, is another
source of uncertainly. In our simulations, we use the value of 10−6 cm2/s measured for
rutile titanium dioxide, or TiO2, a material with an interstitial Li+ diffusion mechanism
and similar barriers for elementary diffusion processes [73, 74]. Therefore, we expect the
rutile value to be a good estimate for the Li+ diffusion coefficient in LiPON.

In our previous work, we have shown that the mechanism of coupled ion and elec-
tron transport changes from strongly coupled ionic and electronic to predominantly ionic
as the particle size becomes larger than the Debye length. These differences reflect the
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Figure 3: Li+ conductivity in LiPON nanoparticles along the y direction with varying temperature. The particle
size in y direction is 150b (91.8 nm).
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Figure 4: Temperature dependence of the Li+ short-range free energy in LiPON nanoparticles. The particle
size in b direction is 100b (61.2 nm) and 150b (91.8 nm).

changes in the mechanism for the compensation of the external electric field, which is
achieved through highly correlated ion and electron flux in small nanoparticles and by
the formation of the space-charge zone at the surface of large nanoparticles. These dif-
ferent mechanisms for conductivity also lead to different temperature dependences. For
large nanoparticles considered here, conductivity increases with temperature due to two
reasons: i) thermal motion leads to partial destabilization of the space-charge layer, sup-
plying more ions and electrons to the flux through the nanoparticle, and ii) lowering of
the effective barrier for elementary ion transport between adjacent stationary points. The
second effect is manifested in the monotonic decrease in the calculated short-range en-
ergy Fex

sh , which dominates the total excess free energy Fex (Fig. 4). This effect is weaker
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Figure 5: Li+ ion density in xy plane (z=1.2577 nm).
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Figure 6: Li+ ion density in xz plane (ρ0 =2.941152817×10−5 , y=55.178 nm).

for smaller nanoparticles due to the change in relative contributions of short-range and
electrostatic correlation free energies.

The density distribution in the conduction plane (plane parallel to the y direction)
reveals the formation of the space-charge layer at the boundaries of the nanoparticle
(Fig. 5). In contrast, there is almost no variation in ion and electron densities in the plane
normal to the conduction plane with the variations in the density on the order of 10−15

nm−3 (Fig. 6).

4.2.1 Size dependency of the Li+ ion conductivity

The size effects on Li+ conductivity at temperature T=300 K is shown in Fig. 7. The ob-
served monotonic increase in conductivity is due to a combination of several competing
effects. On one hand, the increase in nanoparticle size leads to the decrease in the effec-
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Figure 7: Size effect of the conductivity at 300 K.

tive gradient of electric potential or local electric field in b direction, resulting in stronger
correlation of ion and electron fluxes. On the other hand, it reduces the driving force act-
ing on ions and electrons, reducing their diffusivities through the nanoparticle. Overall,
the size dependence of the conductivity can be expressed as [75]:

σc =
1

EyLy

∫ Ly

0
Jb(y)dy,

where σc is the conductivity, Ey is the local electric field, Ly is the nanoparticle’s size along
the y direction, and Jb is the flux along the y direction. Competition from the previously
described effects leads to an almost linear increase in conductivity with nanoparticle sizes
ranging from 10 to 100 nm, as observed in our simulations, to very weak dependence of
the conductivity on particle sizes ranging from 100 to 1000 nm. Overall, our simulations
demonstrate excellent agreement with experimental data and analytic theories, validat-
ing our approach [71, 72].

4.2.2 Computational complexity

We verify the computational complexity of the methods discussed in Section 3 via numer-
ical experiments. In Fig. 8, we plot the graph of the solution time (in seconds), as well as
the time for AMG and FFT components versus the number of grid points N. Here, we
consider a nanoparticle size 2a×10b×5c and run simulations on a sequence of uniformly
refined meshes using a single processor. The number of PNP iterations is stable with
respect to the mesh size. Hence, the CPU time is a good measurement for the computa-
tional complexity of FFT, which isO(N logN) (see Fig. 8 where the dashed line represents
O(N logN)). However, we do not observeO(N) multigrid complexity. This nonuniform
convergence of the multigrid is possibly due to the PNP-cDFT integral-differential sys-
tem’s high nonlinearity.
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5 Conclusions

As part of this effort, we have examined numerical methods for simulating a PNP-cDFT
model using state-of-the-art AMG and FFT packages. To evaluate chemical potentials
efficiently, a novel treatment of 3D integrals via FFT and integrals involving delta func-
tion is proposed. The computational complexity of our simulation is O(N logN), which
makes large-scale 3D PNP-cDFT simulation feasible. Numerical results are validated
through comparison with experimental data and results from previous studies. In future
work, we will apply the proposed methods to simulate time-dependent PNP-cDFT sys-
tems. In addition, parallel scalability of these methods will be reported in a forthcoming
paper.
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