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Abstract. This paper presents limits for stability of projection type schemes when
using high order pressure-velocity pairs of same degree. Two high order h/p varia-
tional methods encompassing continuous and discontinuous Galerkin formulations
are used to explain previously observed lower limits on the time step for projection
type schemes to be stable [18], when h- or p-refinement strategies are considered. In
addition, the analysis included in this work shows that these stability limits do not
depend only on the time step but on the product of the latter and the kinematic vis-
cosity, which is of particular importance in the study of high Reynolds number flows.
We show that high order methods prove advantageous in stabilising the simulations
when small time steps and low kinematic viscosities are used.

Drawing upon this analysis, we demonstrate how the effects of this instability can
be reduced in the discontinuous scheme by introducing a stabilisation term into the
global system. Finally, we show that these lower limits are compatible with Courant-
Friedrichs-Lewy (CFL) type restrictions, given that a sufficiently high polynomial or-
der or a mall enough mesh spacing is selected.
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1 Introduction

Since the introduction of projection type algorithms for the efficient solution of the incom-
pressible Navier-Stokes equations in primitive variables by Chorin [8] and Temam [35],
various modifications have emerged. These variations, whereby intermediate variables
enable some degree of decoupling of pressure and velocity, may be viewed as one of
three categories: pressure-correction, velocity projection and consistent splitting methods [18].
These methods share the appealing property of requiring the solution of decoupled el-
liptic equations for the velocity and pressure fields, which renders these type of schemes
very efficient and thus extremely useful in numerical simulations.

For many years, it had been thought that this category of schemes do not require an
inf-sup condition to be fulfilled since velocity and pressure are essentially “decoupled”.
The inf-sup (or LBB from Ladyzhenskaya [26], Babushka [3] and Brezzi [5]) condition
typically states that an equal order expansion for both pressure and velocity leads to an
unstable system [6,13,23]. To overcome this difficulty one can augment the velocity space
with respect to the pressure space or add stabilisation whilst maintaining the same space
dimensions for pressure and velocity.

Projection-type schemes have historically been implemented using equal order spaces
for pressure and velocity since they appeared to be stable in this setting. However, in re-
cent years it has been shown that these schemes instead correspond to stabilised-like
schemes [4, 10, 18]. Auteri et al. [2] and Guermond et al. [18] provided a summary of the
stability conditions for different projection schemes by reducing the analysis of the un-
steady incompressible Navier-Stokes equations to the equivalent steady Stokes problem.
This same approach will be considered in following sections. A particularly interesting
conclusion from [18] is that the stability condition for the Chorin-Temam scheme to be
stable depends on the time step △t. Namely, the time step is required to be large enough
for the scheme to remain stable. Observations are reported for the time step limit for sta-
bility △tlim when considering low order (e.g. linear finite element formulations, relying
only on h-refinement) and high order spectral type methods (e.g. Fourier, Chebyshev,
allowing p-refinement):

• △tlim ≥ c1h2 for low order finite element methods, where c1 is a constant indepen-
dent of the spatial discretisation defined through the characteristic mesh size h,

• △tlim≥c2k−3 for high order spectral discretisations, where c2 is a constant indepen-
dent of the spatial discretisation defined through the polynomial order k.

In this work, we examine these observations and provide an explanation for such
behaviour. Without loss of generality, we focus on the analysis of the popular velocity-
correction scheme proposed by Orszag et al. [29], Karniadakis et al. [24] and theoreti-
cally analysed by Guermond et al. [18], which under the steady Stokes assumption can
be shown to resemble the Chorin-Temam scheme. In particular, we will study the ef-
fects of using such projection schemes together with high order spatial discretisations,
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enabling both h- and p-type refinement, which to the authors’ knowledge has not been
fully addressed in the past. To this end, the results presented in this work rely on two-
dimensional computations obtained using a high order h/p continuous Galerkin (CG)
[25] and a discontinuous Galerkin (DG) solver [15–17]. Both CG and DG methods allow
h- and p-refinement strategies to be performed independently. This characteristic enables
the analysis of the effect of both types of refinement independently on the stability of the
temporal scheme. The use of both schemes additionally allows us to examine stability
properties under different spatial discretisations.

We summarise in the following the main contributions of this work:

• We confirm through examples and analysis that projection schemes such as the
velocity-correction scheme proposed by Orszag et al. [29] and Karniadakis et al. [24]
correspond to stabilised-like schemes.

• We outline the dependency of the time step limit for stability △tlim (as observed
in [18] and references therein) with respect to the spatial discretisation using either
h or p refinement.

• We analytically derive estimates for the limits of stability observed previously:
△tlim ≥ c1h2 for low order finite element methods, and △tlim ≥ c2k−3 for high or-
der spectral discretisations.

• We show that the limit for stability depends not only on the time step, but the pa-
rameter κ=ν△t where ν is the kinematic viscosity. We note that this is particularly
relevant for simulations of industrial interest, where the Reynolds number is typi-
cally high, leading to a small kinematic viscosity.

• We show that high order spatial discretisations (i.e. high polynomial orders) prove
advantageous to relax the limit for stability κlim, enabling reduced values for the
time step and/or the kinematic viscosity.

• We show that the limit for κlim is compatible with the Courant-Friedrichs-Lewy
(CFL) restriction if high order spatial discretisations are considered together with
an explicit treatment of the non-linear terms (i.e. full Navier-Stokes equations).

• Finally, we propose a possible stabilisation technique for low order spatial discreti-
sation, which takes advantage of the interior penalty discontinuous Galerkin for-
mulation used throughout this work. This technique is utilised to confirm the pre-
vious analysis.

Additionally, we note that very recently [34] reported a similar type of instability as pre-
sented in this work, which was attributed to the use of a non-conformal DG formulation.
However, in the present work we show that these instabilities are inherent to the temporal
scheme and independent of the spatial discretisation (and the continuity/discotninuity
of the underlying spaces).

The organisation of this paper is as follows. We begin in Section 2 by outlining
the velocity-correction scheme together with the continuous and discontinuous Galerkin
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spatial discretisations, where it proves advantageous to write the discretised equations
in their algebraic form. In Section 3 we consider the simulation of an unsteady Stokes
problem to illustrate the stability properties of the scheme with respect to both the time
step and the kinematic viscosity. From this, in Section 4 the analysis of the discretised sys-
tem provides a relationship between spatial and temporal discretisations for the steady
Stokes problem, showing that high order spatial discretisations or small mesh resolu-
tions are required to compensate for small time steps or small kinematic viscosities and
demonstrate stability depends on the parameter κ=ν△t. We also outline a possible low
order stabilisation strategy for the DG formulation. Finally, in Section 5 we show that the
inf-sup limit for stability κlim does not conflict with the time step required to fulfill the
CFL condition derived from the full Navier-Stokes equations, as long as the polynomial
order selected is sufficiently large or the mesh size is small enough.

2 Methodology

In what follows, we consider the two-dimensional incompressible Navier-Stokes (NS)
equations. Let Ω be a domain in R

2 with boundary ∂Ω=∂ΩD∪∂ΩN composed of Dirich-
let (∂ΩD) or Neumann (∂ΩN) parts, where ∂ΩD∩∂ΩN =∅. We denote the outward unit
normal vector to ∂Ω by n. The unsteady dimensional incompressible NS equations read:

∂u

∂t
+N(u)=−∇p+ν∇2u in Ω×[0,T],

∇·u=0 in Ω×[0,T],

u(t=0)=u0 in Ω,

u=LD on ∂ΩD×[0,T],

ν
∂u

∂n
−pn=0 on ∂ΩN×[0,T],

where t represents time, u= (u,v)⊤ the velocity vector, p the static pressure to density
ratio and ν the kinematic viscosity. In addition, u0 represents an initial condition for the
velocity field and LD defines the Dirichlet boundary data for the velocity. N(u) represents
the non-linear contributions expressed, for example, in convective form N(u)=(u·∇)u.
For a discussion on different non-linear term formulations, the reader is referred to [25]
and references therein.

2.1 Temporal discretisation of the incompressible NS equations

There is a vast amount of literature on projection type procedures for the solution of
the incompressible NS equations and reviews can be found in [11, 18, 25]. In this work,
we select a second order velocity-correction (sometimes referred to as dual stiffly stable
method) developed by Orszag et al. [29] and Karniadakis et al. [24] to discretise the equa-
tions in time. The NS equations are integrated in time using a stiffly-stable scheme with
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coefficients γ0, αn and βn. The resulting equation is separated using two intermediate
variables ũ and ˜̃u into three steps: an explicit non-linear advection, an implicit pressure
solve and an implicit velocity correction, resulting in the scheme

γ0ũ−∑
J−1
q=0αqun−q

∆t
=−

J−1

∑
q=0

βqN(un−q), (2.1)

γ0

˜̃u−ũ

∆t
=−∇pn+1, (2.2)

γ0
un+1− ˜̃u

∆t
=ν∇2un+1. (2.3)

Here un denotes u evaluated at time t = n∆t, for n ∈ N. The temporal accuracy is de-
termined by the parameter J, which we fix at two for this work (i.e. γ0 = 3/2, α0 = 2,
α1 =−1/2, β0 = 2 and β1 =−1). Note that in order to solve for the pressure field we
assume that the second intermediate velocity field is solenoidal so that ∇· ˜̃u=0, and take
the divergence of Eq. (2.2) to obtain the pressure Poisson equation

−∇2pn+1=−
γ0

∆t
∇·ũ. (2.4)

This equation must be equipped with a suitable boundary condition where solid walls are
present to avoid numerical errors which would otherwise affect the temporal accuracy of
the scheme [24]. This takes the form of a Neumann condition

∂p

∂n

n+1

=−n·
∂u

∂t

n+1

−n·
J−1

∑
q=0

βq

(

N(un−q)+ν∇×ω
n−q
)

, (2.5)

where ω=∇×u is the vorticity. This expression indirectly enforces the incompressibil-
ity constraint and gives a consistent method. As noted in [18], this Neumann vorticity
boundary condition requires the velocity to have computable second derivatives. For this
reason, all computations are performed using polynomial orders k≥2.

2.2 Spatial discretisations: continuous and discontinuous Galerkin methods

We now briefly outline the spatial discretisation of the domain Ω⊂R
2. We begin by taking

a conformal triangular tessellation of Nel elements Ωh =
⋃Nel

e=1Ωe which approximates Ω.
Interior edges (i.e. edges common to two elements) are denoted by Γh, and we partition
the exterior boundary ∂Ωh as ΓD∪ΓN , where ΓD∩ΓN=∅ and ΓD and ΓN represent Dirich-
let and Neumann boundaries respectively. For each triangle Ωe with boundary ∂Ωe, we
denote Γe

n as the positively oriented (i.e. anticlockwise) single edge with n=1,2,3 and its
associated outwards pointing normal vector as nΓe

n
.

The aim of these discretisations is to calculate an approximate solution uh to the el-
liptic equations (2.2) and (2.3). We therefore consider the general Helmholtz formulation
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−△u+αu= f in Ω, (2.6a)

u= LD on ΓD, (2.6b)

∇u·n= LN on ΓN , (2.6c)

where u∈ H1(Ω) is a scalar solution (but extension to the vector formulation is direct),
α≥ 0 represents the wave number for the Helmholtz equation, f ∈ L2(Ω) is the forcing
term, and LD ∈ H1/2(ΓD) and LN ∈ L2(ΓN) represent Dirichlet and Neumann boundary
data respectively.

2.2.1 Expansion functions

In either the continuous or discontinuous formulation, we first represent the approximate
solution uh by an expansion in terms of basis functions

uh(x)=
Ndof

∑
i=0

ûiΦi(x),

where the global modes Φi ∈Dk(Ωh) are selected from spaces containing either continu-
ous or discontinuous functions,

DCG
k (Ωh)={υh ∈C0(Ωh) : υh|Ωe ∈Pk(Ω

e)}, (2.7)

DDG
k (Ωh)={υh ∈L2(Ωh) : υh|Ωe ∈P

′
k(Ω

e)}, (2.8)

where Pk, P
′
k denote spaces of polynomials of order less than or equal to k. We note

that, in the continuous case, the definition of this space is incompatible with the Dirichlet
condition of Eq. (2.6). However in the following sections we will consider the imposition
of Dirichlet boundary conditions in a purely weak fashion.

Instead of explicitly selecting the global expansion functions from these spaces, for
each polynomial order k we consider a local expansion on each element Ωe by a tensor
product of one-dimensional basis functions in the computational space (ξ1,ξ2), so that

ul
h(x)|Ωe =

N

∑
i=0

ûe
i ϕi(x)=

k

∑
p=0

k−p

∑
q=0

ûe
pqφa

p(ξ1)φ
b
pq(ξ2), (2.9)

where N = (k+1)(k+2)/2 is the number of local degrees of freedom on each triangle.
The mapping between computational space (ξ1,ξ2) and physical space (x1,x2) is accom-
plished through a collapsed coordinate system (or Duffy coordinates) defined in [12, 25]
with both CG and DG formulations.

In this work, we select modal hierarchical expansion functions, but note that other
expansions (e.g. nodal or Lagrange polynomial based) are possible and provide similar
results. In the DG formulation we do not require continuity across element boundaries
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which provides flexibility in the selection of appropriate basis functions. We therefore
choose a hierarchical L2-orthonormal expansion basis from [25] defined in computational
space as:

φa
p(ξ1)=

√

2p+1

2
P
(0,0)
p (ξ1),

φb
pq(ξ2)=

√

p+q+1

(

1−ξ2

2

)p

P
(2p+1,0)
q (ξ2),

and P
(α,β)
p (z) is the p-th order Jacobi polynomial, with α,β>−1 given constants.

In the C0 continuous Galerkin expansion, we utilise a similar hierarchical modal
scheme, which is augmented with linear modes in order to decouple interior and bound-
ary degrees of freedom. These boundary modes enable the imposition of C0 continuity
between adjacent elements

φa
p(ξ1)=































1−ξ1

2
, p=0,

1−ξ1

2

1+ξ1

2
P
(1,1)
p−1 (ξ1), 1≤ p≤ k−1,

1+ξ1

2
, p= k,

φb
pq(ξ2)=











































φa
q(ξ2), i=0, 0≤ j≤ k,
(

1−ξ2

2

)p+1

, 1≤ p≤ k−1, q=0,

(

1−ξ2

2

)p+1 1+ξ2

2
P
(2p+1,1)
q−1 (ξ2), 1≤ p≤ k−1, 1≤q≤ k−1,

φa
q(ξ2), p= k, 0≤ j≤ k.

For both discretisations, the vector of local coefficients ûl =(û1,··· ,ûNel)⊤, where ûe de-
notes the local coefficients ûe

i as defined in equation (2.9), must be related to the global
coefficients û = (û1,··· ,ûNdof

)⊤. In the discontinuous framework, since all elements are
decoupled we have that ûl = û (i.e. double valued degrees of freedom at element edges).
In order to guarantee the continuity of uh in the C0 formulation however, we must en-
sure that coefficients along each edge are equal wherever they meet at a common edge
or vertex. To this end we define an assembly matrix A whereby û=A⊤ûl which sums
contributions from connected degrees of freedom, ensuring that global coefficients are
uniquely defined.

2.2.2 Variational formulations

To find the discrete weak solution associated with the continuous problem represented by
Eq. (2.6), we construct bilinear and linear forms a(·,·) and ℓ(·) associated with the finite
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element discrete variational formulation arising from the weak form of the continuous
problem. We therefore seek a solution uh∈Dk(Ωh) such that for all vh ∈Dk(Ωh),

a(uh,vh)= ℓ(vh). (2.10)

In the C0 formulation, we seek uh ∈DCG
k (Ωh) and derive these forms in the standard

fashion by selecting test functions vh∈DCG
k (Ωh) and integrating Eq. (2.6) by parts so that

aCG(uh,vh)=
∫

Ωh

∇uh ·∇vh dx+α
∫

Ωh

uhvh dx, ∀vh ∈DCG
k (Ωh),

ℓ
CG(vh)=

∫

Ωh

vh f dx+
∫

ΓN

vhLN ds, ∀vh ∈DCG
k (Ωh).

For the discontinuous formulation, we utilise an interior penalty method (see [1] for
a review of the various DG methods available for elliptic problems) and in particular,
the Symmetric Interior Penalty Galerkin (SIPG) method is retained for the spatial dis-
cretisation. The details of the derivation are omitted here but can be found in various
references [1, 7, 21]. In this formulation we seek uh ∈DDG

k (Ωh) and arrive at the bilinear
form

aDG(uh,vh)=
Nel

∑
e=1

[

∫

Ωe
∇uh ·∇vh dx+

∫

Ωe
αuhvh dx

]

− ∑
Γ∈Γh∪ΓD

[

∫

Γ
{{∇uh}}·nΓ[[vh]]ds+

∫

Γ
{{∇vh}}·nΓ[[uh]]ds

]

+ ∑
Γ∈Γh∪ΓD

σ

|Γ|β

∫

Γ
[[uh]][[vh ]]ds, ∀vh ∈DDG

k (Ωh), (2.11)

with the corresponding linear form

ℓ
DG(vh)=

Nel

∑
e=1

∫

Ωe
f vh dx− ∑

Γ∈ΓD

∫

Γ
(∇vh ·nΓ−

σ

|Γ|β
vh)LD ds

+ ∑
Γ∈ΓN

∫

Γ
vhLNds, ∀vh ∈DDG

k (Ωh). (2.12)

|Γ| is defined as the two-dimensional length of the element edge, with [[·]] and {{·}}
denoting the jump and average respectively across the interface between neighbouring
elements Ωe1 and Ωe2 ,

[[u]]=u|Ωe1 −u|Ωe2 , {{u}}=
1

2
(u|Ωe1 +u|Ωe2 ).

At external boundary edges we define [[u]]={{u}}=u|Ωe1 .
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The combination of σ and β in Eq. (2.11) and Eq. (2.12) defines the penalty param-
eter and has to be chosen to be large enough to enforce coercivity of the DG-SIPG bi-
linear form [31]. The determination of an analytical expression for the lower bound of
the penalty parameter for the DG-SIPG method to be stable and convergent was ob-
tained in [14] for triangular elements and was revisited by the authors in [17] provid-
ing σ = 3k(k+1) with β= 1. These expressions for the penalty parameters are retained
hereafter, if not stated otherwise.

2.2.3 Matrix formulation

Substituting the expansion (2.9) into (2.10) on a single element leads to a matrix prob-
lem to determine the global coefficients û. The global matrix problem is constructed by
considering matrices locally on each element Ωe. In the C0 formulation, ignoring con-
tributions from boundary conditions initially, on each element we arrive at the matrix
equation

(Le+αMe)ûe = f̂e,

where Me and Le =Le
x+Le

y represent the elemental mass and Laplacian matrices defined
as

(Me)ij=
∫

Ωe
φi(x)φj(x)dx, (Le

r)ij=
∫

Ωe
∂rφi(x)∂rφj(x)dx,

for 0≤ i, j ≤ N where N is the number of local degrees of freedom on each triangle and
f̂e=

∫

Ωe φi(x) f dx. The global counterparts of the elemental matrices are constructed using

the assembly matrix, so that for example M=A⊤MlA where Ml =
⊕Nel

e=1Me is the direct
sum of the elemental mass matrices. We therefore obtain the solution uh by solving the
matrix system

ACGû=(L+αM)û= f̂, (2.13)

where the vector (f̂)CG
i = ℓCG(φi) imposes the Neumann boundary condition weakly.

In the DG formulation, we use the same definitions for the elemental mass and Lapla-
cian matrices. Since the solution is discontinuous across elements, global matrices are
easily constructed as the direct sum of local matrices (i.e. A= Id and M=Ml). However,
since information must propagate between elements, we numerically approximate the
flux through common edges. In matrix form this is represented in a global sense as

(T)ij = ∑
Γ∈Γh∪ΓD

[

σ

|Γ|β

∫

Γ
[[φi]][[φj ]]ds−

∫

Γ
{{∇φi}}·nΓ[[φj]]ds−

∫

Γ
{{∇φj}}·nΓ[[φi]]ds

]

,

leading to the matrix equation

ADGû=(L+αM+T)û= f̂ (2.14)

with (f̂)DG
i = ℓDG(φi).
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2.2.4 Boundary conditions for the Poisson equation

In the previous sections we omitted a description of how Dirichlet boundary conditions
are imposed in the C0 formulation. Typically, these conditions are imposed strongly by
decomposing the solution uh(x) into a known solution uD

h (x) and an unknown homoge-
neous solution uH

h (x) so that uh(x) = uD
h (x)+uH

h (x) with uH
h (ΓN) = 0 and uD

h (ΓD) = LD.
The matrix system (2.13) is then condensed so that only the submatrix corresponding to
interior degrees of freedom and Neumann boundary conditions are solved for.

In order to provide a comparison with the DG-SIPG results, in which Dirichlet bound-
ary conditions are imposed weakly, we will only consider a fully weak C0 formulation.
For the problems considered in the next section, an exact solution is known and thus we
can theoretically impose boundary conditions weakly by specifying an exact Neumann
condition. However, since the global Laplacian matrix has rank one fewer than the total
number of degrees of freedom and is non-invertible, the solution of (2.13) cannot be deter-
mined uniquely if α=0, as is the case for the pressure Poisson equation when equipped
with only Neumann conditions. A typical solution to this is to pin a single degree of
freedom to an arbitrarily chosen Dirichlet value, making the system invertible.

Since we require an entirely weak formulation, we choose instead to impose a Robin
boundary condition of the form

∂u

∂n
+u= LD.

In the C0 formulation, this requires a modification of the elemental matrix Ae to sum addi-
tional contributions from a boundary mass matrix of any edges Γe

n which contain a Robin
condition [25]. Consequently, A becomes invertible when α= 0. Overall this is equiva-
lent to imposing a weak Dirichlet condition through a penalty scheme and matches the
strategy adopted in the DG-SIPG formulation.

2.3 Summary of the method and algebraic formulation

In this section we have outlined both the temporal and spatial discretisations under study
in this work. We conclude by defining the full matrix formulation for the high-order
splitting scheme which will be studied in the next section.

Firstly, we define two additional matrices necessary in the formulation. To calculate
divergence and gradient terms, we utilise the weak derivative matrix

(Kr
e)ij =

∫

Ωe
φi(x)∂rφj(x)dx,

for each coordinate direction r=x,y. Additionally, the explicitly treated non-linear terms
give rise to the local matrix

Nr
e(u)=

∫

Ωe
Ne

r(u
e)φi(x)dx,
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where ue denotes the solution evaluated at the quadrature points in element Ωe. The
corresponding global matrices Kr and Nr(u) are constructed through the assembly ma-
trix as seen previously. Finally, in Section 2.2.3 we considered a one dimensional elliptic
problem, whilst the Navier-Stokes equations required the multidimensional version (e.g.
u=(u,v)⊤ in 2D). Extension to a multidimensional formulation is easily achieved by re-
peating the one-dimensional global matrices APois, AHelm and M to the diagonal of an
extended matrix and completing with zero block matrices in the off-diagonal. Then each
block diagonal corresponds to an entry of the multidimensional velocity vector. Addi-
tionally, we define the 2D matrices K=(Kx,Ky) and N(u)=(Nx(u),Ny(u))⊤ Using these
matrices, we rewrite the temporal discretisation scheme in matrix form as

M
γ0 ˜̂u−α0ûn−α1ûn−1

∆t
=−β0N(un)−β1N(un−1), (2.15)

APoisp̂n+1=−
γ0

∆t
K ˜̂u+ f̂Pois, (2.16)

(

AHelm+
γ0

ν∆t
M
)

ûn+1=
1

ν

(γ0

∆t
M ˜̂u−K⊤p̂n+1

)

+ f̂Helm. (2.17)

Let us note that in general, and in particular for the CG formulation, APois and AHelm

denote the same matrix A if α= 0 (see Section 2.2.3). However, distinguishing between
the matrices arising from solving either the Poisson step or the Helmholtz step, proves
advantageous for the analysis and hence this notation will be maintained hereafter.

2.4 Eigenvalue system

To conclude the methodology section, we briefly outline the procedures used in the com-
ing sections to calculate eigenvalues of spatial operators. In general we wish to approxi-
mate a finite subset of eigenvalues of a continuous operator whose discretisation is rep-
resented by a matrix B. This is equivalent to defining a generalised eigenvalue system

Bx̂i =λiMx̂i,

where λi denotes the i-th generalised eigenvalue of B, x̂i is the vector of global coefficients
for the i-th eigenvector and M represents the mass matrix corresponding to the spatial
discretisation used to derive the matrix B. We note that this system is equivalent to the
usual eigenvalue problem Rx̂i = λix̂i with R = M−1B, as long as M is not singular; i.e.
both CG and DG formulations provide invertible global mass matrices. In Section 4.2,
the eigenvalues of various matrices are computed to derive the stability bounds of the
splitting scheme. The eigenvalues included there correspond to the eigenvalues of the
generalised system Rx̂i =λix̂i.
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3 Evidence of numerical instabilities: unsteady Stokes equations

The time discretisation scheme defined in Section 2.1 may be used without considering
the non-linear terms (i.e. N(u)=0) to solve the unsteady Stokes equations. In this section,
the following solution for the Stokes problem [28, 32] is considered:

u= e−λt sin(x)(asin(ay)−cos(a)sinh(y)),

v= e−λt cos(x)(cos(ay)+cos(a)cosh(y)),

p=λe−λt cos(a)cos(x)sinh(y),

with a and λ problem constants. For the first set of cases, we select a = 2.883356, λ =
9.313739 and solve this unsteady problem in a domain Ω= [−1,1]2 with boundary and
initial conditions provided by the exact solution (but similar results are obtained when
using the Neumann pressure boundary condition Eq. (2.5)). Tests are conducted using
both CG and DG formulations on two meshes constituted of 72 and 128 semi-structured
triangular elements (i.e. divided rectangular elements). Let us note that only equal order
polynomial spaces [Dk(Ωh)]

2
vel−[Dk(Ωh)]press for velocity and pressure are considered.

To quantify the accuracy of the methods we use the L2 relative error norm, which is
defined for velocity and pressure as:

||uexact−uh||L2(Ωh)

||uexact||L2(Ωh)
,

||pexact−ph||L2(Ωh)

||pexact||L2(Ωh)
, (3.1)

where the super-script exact denotes the analytical solution of the given variable and uh

and ph are the velocity and pressure obtained numerically for a given mesh.
Fig. 1 shows the L2 relative error norm convergence for pressure and velocity obtained

for time step refinement. For spatially well resolved simulations (k ≥ 7), convergence
rates for the L2 norm for the CG formulation are 1.98 for pressure and 2.17 for velocity.
The DG formulation provides slopes of 1.82 for the pressure and 2.21 for velocity, show-
ing that these slopes are dictated by the time advancement scheme and independent of
the spatial formulation. Both continuous and discontinuous convergence rates are in
very good agreement with the theoretical temporal convergence rates in the L2 norm ob-
tained in [20] for conformal discretisations and the splitting scheme employed, which are
O(△t3/2) for pressure and O(△t2) for velocity.

It can be seen that for all polynomial orders k the error decreases with △t provided
that the time step remains larger that a certain △tlim(h,k), which itself reduces as the
spatial discretisation increases (using either h- or p-refinement).

In addition to the time step refinement study, we explore the effect of varying the
viscosity ν. We fix the polynomial order to k=4 on a mesh comprising 128 semi-structured
triangular elements and provide results obtained from both CG and DG formulations. In
the Stokes problem previously defined, the kinematic viscosity is defined by the constants
a and λ through the relationship ν=λ/(1+a2). We therefore consider the three cases:



E. Ferrer et al. / Commun. Comput. Phys., 16 (2014), pp. 817-840 829

∆t

L2
re

la
tiv

e
pr

es
su

re
er

ro
r

10-4 10-3 10-2 10-110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

CG: k=2, 72el
CG: k=2, 128el
CG: k=3, 72el
CG: k=3, 128el
CG: k=4, 72el
CG: k=4, 128el
CG: k=5, 72el
CG: k=5, 128el
CG: k=7, 72el

(a)

∆t

L2
re

la
tiv

e
ve

lo
ci

ty
er

ro
r

10-4 10-3 10-2 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

CG: k=2, 72el
CG: k=2, 128el
CG: k=3, 72el
CG: k=3, 128el
CG: k=4, 72el
CG: k=4, 128el
CG: k=5, 72el
CG: k=5, 128el
CG: k=7, 72el

(b)

∆t

L2
re

la
tiv

e
pr

es
su

re
er

ro
r

10-4 10-3 10-2 10-110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

DG: k=2, 72el
DG: k=2, 128el
DG: k=3, 72el
DG: k=3, 128el
DG: k=4, 72el
DG: k=4, 128el
DG: k=5, 72el
DG: k=5, 128el
DG: k=7, 72el

(c)

∆t

L2
re

la
tiv

e
ve

lo
ci

ty
er

ro
r

10-4 10-3 10-2 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

DG: k=2, 72el
DG: k=2, 128el
DG: k=3, 72el
DG: k=3, 128el
DG: k=4, 72el
DG: k=4, 128el
DG: k=5, 72el
DG: k=5, 128el
DG: k=7, 72el

(d)

Figure 1: Time step refinement study for the unsteady Stokes equations at final time T= 0.1, for two meshes
and various polynomial orders k. L2 relative error norm for continuous and discontinuous formulations (a) CG
pressure, (b) CG velocity, (c) DG pressure and (d) DG velocity.

1. ν0 =1 using a=2.883356, λ=9.313739,

2. ν1 =0.1 using a=9.598822, λ=9.313739,

3. ν2 =0.1 using a=2.883356, λ=0.931374,

which demonstrate how the error varies as a and λ vary independently.

Results are depicted in Fig. 2, and show that the kinematic viscosity influences the
limit of stability of the scheme. In particular we observe that low viscosities require
higher time steps for the calculation to remain stable. As it will be shown in following
sections, the limit for stability relates to the product of the time step and the kinematic
viscosity: κlim =ν△t, and not only to the time step.

4 Analysis: temporal stability and the inf-sup condition

As showed in the previous section, instabilities (or unbounded L2 errors) may arise if for a
given viscosity ν, a small time step △t<△tlim is selected for computation. In this section,
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Figure 2: Time step refinement study for the unsteady Stokes equations at final time T= 0.1, 128 triangular
element mesh, polynomial order k = 4 and three kinematic viscosities ν0, ν1 and ν2. L2 relative error norm
for continuous and discontinuous formulations: (a) CG pressure, (b) CG velocity, (c) DG pressure and (d) DG
velocity.

we explore the causes of this behaviour seeking inspiration from the work performed
in [18]. In this paper, Guermond et al. provide a summary of the stability conditions for
projection schemes (i.e. pressure-correction methods, velocity-correction methods and
consistent splitting methods). They review different temporal schemes including the one
considered in this work and address the issue: Do projection schemes require an inf-sup
condition to be satisfied?

In [18], the authors consider the Chorin-Temam [8, 35] algorithm and detail that the
stability of projection schemes can be reduced to the analysis of the equivalent steady
Stokes problem. A similar approach is used in the next section to analyse the stability of
the selected splitting scheme.

4.1 Continuous system

Using the continuous form of the NS equations, and considering the equivalent steady
state problem without non-linear terms, the following matrix system for the continuous
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steady Stokes problem (i.e. the saddle point system) can be derived:

S=

(

−ν∇2 ∇
∇· 0

)(

u

p

)

=

(

0

0

)

. (4.1)

We modify this system slightly by dividing the first equation and multiplying the second
by the kinematic viscosity ν to obtain

S=

(

−∇2 1
ν∇

ν∇· 0

)(

u

p

)

=

(

0

0

)

. (4.2)

Let us note that since the kinematic viscosity is a constant, the system defined by Eq. (4.2)
is equivalent to Eq. (4.1). This less conventional form for the Stokes system is retained
hereafter since it proves advantageous for the analysis of the scheme.

The spatially discretised form Sh of this Stokes system S must satisfy the discrete inf-
sup (Ladyzhenskaya [26]–Babushka [3]–Brezzi [5] or LBB) condition. As introduced pre-
viously, the inf-sup condition states that an equal order discretised pressure and velocity
pair do not lead a stable system. To solve this problem one can augment the velocity
space with respect to the pressure space or add stabilisation terms whilst maintaining the
same space dimensions for pressure and velocity.

Let us consider the semi-discrete system resulting from the splitting scheme defined
in Section 2.1, where for the Stokes equations N(u)=0, and derive its steady state form
(un+1=un=u and pn+1= pn= p) using Eqs. (2.1), (2.2) and (2.3). Under the steady Stokes
assumptions, the three required steps defined in Section 2.1 reduce to:

ũ=u, (4.3)

γ0

˜̃u−ũ

∆t
=−∇p, (4.4)

γ0
u− ˜̃u

∆t
=ν∇2u, (4.5)

where ∆t does not represent a physical time step, but is a factor that accounts for the
difference between ˜̃u and ũ (resp. u). It is possible to eliminate the intermediate velocities
˜̃u and ũ. Firstly, let us substitute Eq. (4.3) in Eq. (4.4), take the divergence of the resulting
equation and make use of ∇· ˜̃u=0; secondly, one may add Eq. (4.4) and Eq. (4.5). Finally,
let us divide the first equation by ν and multiply the second by the same term, to obtain
the following matrix form:

Ssplit =

(

−∇2 1
ν∇

ν∇· − ν△t
γ0

∇2

)

(

u

p

)

=

(

0

0

)

. (4.6)

Comparing Eq. (4.6) to Eq. (4.2), it becomes clear that the new system Ssplit corre-

sponds to a pseudo-compressible scheme, where ν△t
γ0

may be interpreted as the pseudo-

compressibility coefficient [33], or alternatively ν△t
γ0

∇2 as a pressure stabilisation term
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which relaxes the incompressibility constraint (see also [30]). As noted in [18] and [19] for
the original splitting scheme of Chorin and Temam, if the spatial discretisation (Ssplit)h

of the continuous system Ssplit uses inf-sup unstable pressure-velocity pairs, then if △t
becomes “too small”, spurious modes manifest themselves, which may lead to instabili-
ties.

However, the present analysis and inspection of the matrix system Eq. (4.6), reveals
that it is not only the time step △t that ensures the stability of the scheme, but the product
of the time step and the kinematic viscosity ν: κ=ν△t.

4.2 Algebraic system

The same approach can be used to obtain the system corresponding to the discretised
algebraic scheme defined in Section 2.3. Once more, the steady Stokes problem is consid-
ered with equal order polynomial spaces for pressure and velocity. The system reads:

(S
alg
split)h=

(

AHelm 1
ν K⊤

νK ν△t
γ0

APois

)

(

û

p̂

)

=

(

f̂Helm

νf̂Pois

)

. (4.7)

This matrix form shows that if ν△t becomes small, the discrete version of the saddle
point Stokes system S (i.e. without stabilisation) is recovered, which would require an
inf-sup stable pressure-velocity pair (e.g. smaller polynomial order for pressure than
for velocity). It may be hypothesised that when equal order velocity/pressure pairs are

used (i.e. inf-sup unstable pairs), the term ν△t
γ0

APois dictates the temporal stability of the
scheme. In particular, it may be intuitively argued that “enough” stabilisation is provided
by the combination of:

• a large enough time step △t,

• a high enough viscosity ν (resp. low enough Reynolds number Re when consider-
ing the full NS equations),

• a large enough spectral radius for the matrix APois when compared to ν△t.

More precisely, one can eliminate the velocity from the system described by Eq. (4.7)
to explore the solvability condition for the pressure. Assuming that AHelm is invertible
(i.e. both CG and DG-SIPG method provide positive definite matrices), one obtains:

(

ν△t

γ0
APois−K[AHelm]−1K⊤

)

p̂=ν
(

f̂Pois−K[AHelm]−1f̂Helm
)

. (4.8)

It can be seen that the solvability for the pressure in Eq. (4.8) is determined by the invert-
ibility of the pressure Schur complement:

Schur((S
alg
split)h)=

ν△t

γ0
APois−K[AHelm]−1K⊤, (4.9)
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where the dependency of the discrete pressure stabilisation term ν△t
γ0

APois becomes ex-
plicit.

We can provide a necessary condition for solvability by considering the L2 norm of
the Schur complement defined by Eq. (4.9):

‖Schur((S
alg
split)h)‖2=

∥

∥

∥

∥

ν△t

γ0
APois−K[AHelm]−1K⊤

∥

∥

∥

∥

2

≥C

∣

∣

∣

∣

ν△t

γ0
‖APois‖2−‖K[AHelm]−1K⊤‖2

∣

∣

∣

∣

, (4.10)

which follows from the reverse triangle inequality, where ‖·‖2 denotes the L2 norm and
C is a constant independent of the discretisation. We can evaluate the worst case consid-
ering:

‖Schur((S
alg
split)h)‖2≥C

∣

∣

∣

∣

ν△t

γ0
λmax(A

Pois)−λmin(K[AHelm]−1K⊤)

∣

∣

∣

∣

, (4.11)

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of a matrix A.
We further simplify notation by denoting an eigenvalue of K[AHelm]−1K⊤ by λa and an
eigenvalue of APois by λb.

At this point, we make use of the capability of high order CG and DG methods to
perform h- and p-refinement on the steady Stokes problem (Section 3). We calculate the
eigenvalue spectrum λa and λb and study the effects of both types of refinement indepen-
dently. We therefore see how each refinement strategy affects the stability of the temporal
scheme.

For p-refinement, we consider semi-structured triangular meshes of 18 and 72 ele-
ments, and vary the polynomial order between k= 2 and k= 10, to determine how the
minimum and maximum eigenvalues scale as a function of k. For the h-refinement we
fix k to either 2 or 10, and calculate the eigenvalues of the matrices for four triangular
meshes consisting of 18, 32, 50 and 72 elements.

We find that the minimum eigenvalue λa
min for K[AHelm]−1K⊤ is zero, independently

of h and k and for both CG and DG formulations, which confirms that inf-sup unstable
pairs have been used.

The slope of λb
min and λb

max for p- and h-refinement are depicted in Fig. 3(a,b) for the
CG method and Fig. 3(c,d) for the DG method. As shown in Fig. 3(a) and Fig. 3(c) the
variation of the spectral radius for the Poisson matrix behaves as λb

max(k) =O(k3) for
p-refinement. Similarly, we find that λb

max(h) =O(h−2) for h-refinement as determined
by Fig. 3(b) and Fig. 3(d). In addition, theoretical estimates (i.e. where no boundary
conditions are taken into account) for these observed variations can be found in [22] for
p-refinement, where it is derived that λmax(k)≤O(k3) and λmin(k)≥C, where C denotes a
constant independent of the spatial discretisation. Similarly for h-refinement, theoretical
results from chapter 7 of [23] determine that λmax(h)≤O(h−2) and λmin(h)≥ C for h-
refinement. Both of these results agree very well with the values observed in this work.



834 E. Ferrer et al. / Commun. Comput. Phys., 16 (2014), pp. 817-840

h

λ m
axb

,λ
m

inb

0.1 0.12 0.14 0.16 0.18 0.2 0.220

10-4

10-2

100

102

104

106

DG: k=2 λmax
b

DG: k=10 λmax
b

DG: k=2 λmin
b

DG: k=10 λmin
b

(d)

slope = -2.0

k

λ m
axb

,λ
m

inb

2 3 4 5 6 7 8 9 10

10-4

10-2

100

102

104

106

DG: 18 elements λmax
b

DG: 72 elements λmax
b

DG: 18 elements λmin
b

DG: 72 elements λmin
b

(c)

slope = 3.2

k

λ m
axb

,λ
m

inb

2 3 4 5 6 7 8 9 10

10-4

10-2

100

102

104

106

CG: 18 elements λmax
b

CG: 72 elements λmax
b

CG: 18 elements λmin
b

CG: 72 elements λmin
b

(a)

slope = 3.0

h

λ m
axb

,λ
m

inb

0.1 0.12 0.14 0.16 0.18 0.2 0.220

10-4

10-2

100

102

104

106

CG: k=2 λmax
b

CG: k=10 λmax
b

CG: k=2 λmin
b

CG: k=10 λmin
b

(b)
slope = -2.0

Figure 3: Eigenvalues for the Poisson matrix (Stokes problem) for continuous and discontinuous Galerkin
formulations (a) CG: p-refinement, (b) CG: h-refinement, (c) DG: p-refinement and (d) DG: h-refinement. k

denotes the polynomial order and h=(Nel)
−1/2 the characteristic mesh size with Nel the number of triangular

elements in the mesh.

Combining these correlations, we can obtain an expression for the maximum eigen-
value as a function of mesh and polynomial refinement λb

max(h,k) = Ch/pk3h−2, where
Ch/p denotes a constant independent of the spatial discretisation. Thus, the limits for
solvability and associated stability outlined in Eq. (4.11) for h and p-refinement become:

general: lim
ν△t→0

λSchur−→0, (4.12)

general: lim
ν△t→0

ν△t

γ0
λmax

b−λa
min−→0, (4.13)

general: lim
ν△t→0

ν△t

γ0
Ch/pk3h−2−→0, (4.14)

h-refinement only: lim
ν△t→0

ν△t

γ0
O(h−2)−→0, (4.15)

p-refinement only: lim
ν△t→0

ν△t

γ0
O(k3)−→0. (4.16)

Eqs. (4.15) and (4.16) show that if the term κ=ν△t decreases faster than O(h2) when per-
forming h-refinement (e.g. low order finite element methods) or faster than O(k−3) for
p-refinement (e.g. high order CG or DG methods), then it is likely that the system be-
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comes ill conditioned, or equivalently requires inf-sup stable pressure-velocity pairs. We
note that Guermond et al. [18] reported without explanation an observed time step limit
for stability, for a similar time splitting scheme and conformal discretisations: △t∼O(h2)
for h-refinement and △t∼O(k−3) for p-refinement, which is consistent with the present
analysis. We can conclude from Eq. (4.14), that a necessary condition for the stability
of h/p methods, such as CG or DG, where both h and p refinement can be performed
independently is dictated by:

κlim =ν△t∼Ch/ph2k−3, (4.17)

where Ch/p denotes a constant independent of the spatial discretisation.
We also note that Maday et al. [27] showed, in the context of the Uzawa algorithm

when using high order C0 schemes, that the inf-sup constant relates to the minimum
eigenvalue of the pressure Schur complement of the discrete NS system, which is consis-
tent with our analysis.

It may be concluded that equal pressure/velocity spaces can be used in conjunction
with the selected splitting scheme as long as the product of the kinematic viscosity and
the time step does not becomes smaller than O(h−2k3). Therefore, high order spatial
discretisations in conjunction with the selected splitting scheme may not encounter this
condition, resulting in a useful method. However, low order methods (e.g. k= 1) may
require further stabilisation. In the following section we suggest a possible stabilisation
strategy for the DG formulation. In addition, this technique proves useful to verify the
previously presented analysis.

4.3 Stabilisation for low order spatial discretisations

The continuous Laplacian operator ∇2 is unique in Eq. (4.6) and when continuous dis-
cretisations are selected (e.g. CG formulation presented here). However, in the discrete
case and when the DG formulation is selected, the bilinear form used for the velocity step
(Helmholtz equation) and pressure step (Poisson equation) can differ. We outline this
possibility by setting two distinct matrices APois

(σ) and AHelm
(σ) , where σ denotes the penalty

parameter for the DG-SIPG formulation. The particularity of the DG-SIPG method is that
in the discrete bilinear form, the penalty parameters σ for the pressure and the velocity
are not required to be equal, leading to APois

(σ=σP)
and AHelm

(σ=σH)
with σP 6=σH .

The possibility to use two distinct Laplacian matrices provides the opportunity to
verify the analysis previously introduced. In addition, we show that this particularity
can be used to stabilise the method by defining a large penalty parameter for the Poisson
equation (the pressure step). For example one may set:

σP =
3k(k+1)

|Γ|

1

ν△t
, (4.18)

where 3k(k+1)
|Γ|

is the previously derived necessary penalty parameter (see Section 2.2.2).

Recalling the definition of the DG-SIPG bilinear matrix in terms of the global mass, Lapla-
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Figure 4: Time step refinement study for the unsteady Stokes equations, using the DG formulation, at final
time T=0.1, for various polynomial orders k. L2 relative error norm for (a) pressure and (b) velocity. Gray lines
show the original scheme and colored lines the stabilised scheme.

cian and flux matrices (as introduced in Section 2.3), one can expand the Poisson bilinear
matrix as:

APois
(σ=σP)

=L+αM+T1+σPT2, (4.19)

where T=T1+σPT2, T is the flux matrix and:

σP(T2)ij=

{

1

ν△t ∑
Γ∈Γh∪ΓD

3k(k+1)

|Γ|

∫

Γ
[[φi]][[φj]]ds

}

. (4.20)

Substituting Eq. (4.19) and Eq. (4.18), into the matrix form Eq. (4.7) leads:

(S
alg
split)h =

(

AHelm
(σH)

1
ν K⊤

νK ν△t
γ0

(L+αM+T1)+ 3k(k+1)
γ0|Γ|

T2

)

(

û

p̂

)

=

(

f̂Helm
(σH)

νf̂Pois
(σP)

)

. (4.21)

Inspection of this matrix system shows that for small time steps and small viscosities
(resp. high Reynolds numbers when the full NS equations are considered), the term
ν△t
γ0

(L+αM+T1) tends to zero, but leaves the term 3k(k+1)
γ0|Γ|

T2 to provide stabilisation.

To illustrate this discussion, let us reconsider the Stokes problem and the time refine-
ment study performed in Section 3. Fig. 4 compares the L2 relative errors for the original
scheme (gray lines shown previously in Fig. 1) and the new stabilised scheme (colored
lines) for various polynomial orders using the DG formulation. As predicted, the stabil-
ising effect for small time steps becomes noticeable and is particularly important for low
order spatial discretisation.
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Effectively, this technique increases the spectral radius of the Poisson operator
APois

(σ=σP)
, which scales linearly with the penalty parameter: O(σP) for the Stokes prob-

lem, rendering the scheme stable for smaller values of κ=ν△t. In fact, this modification
provides a scheme that is very similar to the stabilised technique described by Cockburn
et al. in [9]. As noted in this reference, this technique requires post-processing to obtain
truly divergence free velocities since the stabilisation term (i.e. the penalty term integral)
alters the divergence free condition. Furthermore, this technique would increase the con-
dition number of the pressure solve, which may pollute the solution if iterative solvers
are used.

Let us note that the first author analysed in [15] the stability properties of a modi-
fied splitting scheme to compute turbulent flows (i.e. based on a Smagorinsky subgrid
modelling) using the presented approach. It was shown that these type of turbulent
modifications may improve the inf-sup stability enabling lower values for time steps and
viscosities.

5 Stability limit and the CFL condition

A common practice with the splitting scheme outlined in this work is to treat the non-
linear terms explicitly, which introduces a Courant-Friedrichs-Lewy (CFL) type restric-
tion on the maximum size of the time step. In this section we therefore explore the com-
patibility between the derived lower limit of stability κlim = ν△t and the CFL limit, for
the full NS equations. In addition, this technique is used to verify the previous analysis.

The CFL estimate for high order spatial methods leads to △t<△tCFL ≈ h/Umaxk2 as
shown in [25] for an advection model problem, where h is the mesh element size, Umax

the maximum velocity and k represents the polynomial order. The question then arises
if this CFL limit, which imposes an upper bound to the time step, is in conflict with the
lower bound derived in Section 4.2.

To show that the lower limit for the time step does not represent a restriction
when the full Navier-Stokes equations are considered, it suffices to show that △tlim ≈
κlim/ν = (Ch/ph2k−3)/ν decreases faster than △tCFL ≈ h/Umaxk2 as the spatial dis-
cretisation is increased, allowing for flexibility in the selection of the computational
time step. This can be seen by expressing the usability condition △tCFL > △tlim as
△tCFL−△tlim ≈ (hk−2/Umax−(Ch/ph2k−3)/ν)>0. Factoring hk−2 leads to the condition:

(1/Umax−Ch/phk−1/ν)>0, which can be rearranged to:

k

h
>Ch/pUmax/ν, (5.1)

where Ch/p is the constant independent of the spatial discretisation and introduced in
Section 4.2. This solvability condition shows that for high Reynolds number per unit
length Re/L=Umax/ν, based on the maximum flow velocity, it is necessary to increase
the polynomial order or decrease the mesh size to obtain a useful scheme (i.e. with a
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range of time steps to select between △tCFL and △tlim). It may therefore be concluded
that the CFL condition is compatible with the lower limit for the time step and hence the
type of projections schemes can be used with pressure-velocity pairs of same degree.

6 Conclusions

This paper reports and analyses the limits for stability of projection type schemes when
using high order pressure-velocity pairs of same degree. Two high order variational
methods encompassing continuous and discontinuous Galerkin formulations have been
compared showing that the limit for stability is independent of the spatial discretisation,
but inherent to the temporal splitting scheme. This study has confirmed that the velocity-
correction scheme from [24, 29] corresponds to a stabilised scheme where the pressure
stabilisation depends on the time step and the kinematic viscosity.

This work has explained the previously observed instabilities [18] for low and high or-
der spatial discretisation when velocity or pressure correction schemes are used. Namely,
it has been shown that the stability is controlled by ν△t≥Ch/ph2k−3 leading to the con-

ditions ν△t≥Cph2 (i.e. Cp = νc1 using the notation defined in the introduction) for low
order finite element methods, and ν△t≥Chk−3 (i.e. Ch = νc2 as in the introduction) for
high order spectral discretisation. These stability estimates related to the inf-sup condi-
tion of the equivalent matrix system for the splitting temporal scheme, have shown that
high polynomial orders are beneficial to alleviate stability problems when selecting small
time steps or small viscosities (i.e. high Reynolds numbers).

In addition, it has been shown that there is no conflict for the selection of the time step,
when this condition is considered together with the Courant-Friedrichs-Lewy condition
as long as high polynomials or small mesh elements are used, providing a useful non-
linear incompressible NS solver. Finally, a stabilised algorithm for low spatial resolution
cases, that relies on an increased penalty parameter for the pressure step, has been used
to confirm the analysis.
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