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Abstract. We investigate the critical nuclei morphology in phase transformation by
combining two effective ingredients, with the first being the phase field modeling of
the relevant energetics which has been a popular approach for phase transitions and
the second being shrinking dimer dynamics and its variants for computing saddle
points and transition states. In particular, the newly formulated generalized shrinking
dimer dynamics is proposed by adopting the Cahn-Hilliard dynamics for the gener-
alized gradient system. As illustrations, a couple of typical cases are considered, in-
cluding a generic system modeling heterogeneous nucleation and a specific material
system modeling the precipitate nucleation in FeCr alloys. While the standard shrink-
ing dimer dynamics can be applied to study the non-conserved case of generic hetero-
geneous nucleation directly, the generalized shrinking dimer dynamics is efficient to
compute precipitate nucleation in FeCr alloys due to the conservation of concentration.
Numerical simulations are provided to demonstrate both the complex morphology as-
sociated with nucleation events and the effectiveness of generalized shrinking dimer
dynamics based on phase field models.

AMS subject classifications: 37M05, 49K35, 37N30, 34K28, 6599
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1 Introduction

Many material processes start with the nucleation of nanoscale nuclei of new phase par-
ticles, and followed by growth and particle impingement or coarsening. Nucleation in
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phase transformations is often viewed as a difficult process to study experimentally since
the nucleation process is a rare event and the critical nucleus only appears transiently. It
also poses a modeling challenge given the complex energy landscape and material het-
erogeneities. Finding critical nucleus configuration computationally has attracted much
attention in recent years [1-6]. There have been much studies on the homogeneous
nucleation through both classical nucleation theory and non-classical diffuse interface
theory [1,4, 6] which utilizes the phase field approach to model the nucleation and mi-
crostructure evolution.

Nucleation of a new phase requires overcoming a minimum thermodynamic bar-
rier. A critical nucleus is defined as the order parameter or composition fluctuation hav-
ing the minimum free energy increase among all fluctuations which lead to nucleation,
i.e., the saddle point configuration along the minimum energy path between the initial
metastable phase and the final equilibrium phase. Thus, finding saddle points (transition
states) of an energy landscape is critical to the study of rare thermally-activated tran-
sitions between different equilibria and metastable states associated with the total free
energy landscape. There have been extensive studies of numerical algorithms for com-
puting saddle point including chain-of-state methods such as nudged elastic band [7]
and string method [8, 9] which provides the minimum energy path containing the de-
sired saddle point and surface-walking methods such as gentlest ascent method [10,11],
dimer method [12] and shrinking dimer dynamics [13], and so on [14]. During the phase
transformation, the computation of saddle points is often subject to one or more con-
straints, such as precipitation in a supersaturated solid or liquid solution. It is thus
necessary to develop algorithms to compute constrained saddle point by overcoming
difficulties caused by both the unstable nature of saddle points and the complications
due to constraints. To complement unconstrained algorithms, constrained string method
was developed as a chain-of-state method to find constrained minimum energy path [15]
and constrained shrinking dimer dynamics has also been proposed recently as a surface-
walking method to search index-1 saddle point on a constrained manifold [16].

In terms of applying saddle point search algorithms to the nucleation problem, much
of the focus has so far been on the homogeneous nucleation and the corresponding mor-
phology of critical nuclei. For instance, the phase field approach and the minimax al-
gorithm have been used to predict the morphology of critical nucleus in solids by tak-
ing into account both interfacial anisotropy and long range elastic interactions [4,17,18].
Other successful applications include finding both critical nucleus and equilibrium pre-
cipitate simultaneously in solids [6,19], incorporating diffuse-interface critical nuclei in
phase field simulation [20], using phase-field-crystal model to find critical nuclei for ho-
mogeneous nucleation [21] and finding the transition pathway of ordered phases in block
copolymers [5]. As most of the nucleation events in practice are not homogeneous due to
the presence of grain boundaries or crystal lattice defects, heterogeneous nucleation of-
ten occurs at preferential sites [22,23], thus leading to further complications to the critical
nuclei morphology.

In this paper, we illustrate the effectiveness of coupling the shrinking dimer dynamics
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(SDD) and its extension - generalized shrinking dimer dynamics (GSDD) with phase field
models to simulate the critical nucleation. Our work includes both new methodology and
new applications. For the latter, we consider a couple of typical cases that represent in
one case morphology of critical nuclei due to material heterogeneities in a generic system,
and in the other case the morphology in a real material system associated with a specific
binary alloy. To be more specific, in the first case, we model heterogeneous nucleation
by introducing a spatially varying energy density, while in the second case, we study the
precipitate nucleation in FeCr alloys. We examine how the critical nuclei morphology
is affected by various factors such as driving force, level of inhomogeneity, interfacial
anisotropy, and complex geometries. As for the methodology, the GSDD is a new for-
mulation and an extension of the SDD which provides the dimer dynamics analog of
the generalized gradient dynamics associated with the free energy. Such a generalization
allows a natural incorporation of the conservation conditions, in the same spirit as the
Cahn-Hilliard dynamics which is an example of the conserved gradient dynamics. This
interesting analogy is provided for the first time here, along with numerical comparisons
between the different formulations. In numerical simulations, the standard SDD is ap-
plied to study the first non-conserved case, while the second conserved case requires the
use of GSDD or alternatively constrained shrinking dimer dynamics (CSDD). As demon-
strated through extensive numerical experiments, SDD and GSDD are able to efficiently
find critical nuclei and allow us to make interesting observations on phase transforma-
tion.

The rest of this paper is organized as follows: In Section 2, we describe the phase field
model of nucleation and numerical algorithms of SDD and CSDD. We also introduce the
GSDD as a generalization of the previously proposed SDD and CSDD. We then apply the
SDD and GSDD to study critical nucleation in Section 3 which includes a generic example
of heterogeneous nucleation and a more realistic example of nucleation in FeCr alloys in
both two and three dimensional spaces. Final conclusions are given in Section 4.

2 Method

2.1 Phase field model

Following the seminal work by Cahn and Hilliard [1], phase field (diffuse interface) mod-
els have been employed to study nucleation and microstructure evolution in phase trans-
formation. A phase field variable 7 is often used to describe the compositional /structural
difference between the parent phase and nucleation phase. Then the total free energy of
the binary system is formulated as

EO)= [ (31MVnP+£0n))ax, e

where the gradient coefficient M can be used to reflect the interfacial energy anisotropy
and the local free energy density f = f(7) is a double-well energy potential. An example



784 L. Zhang, J. Y. Zhang and Q. Du / Commun. Comput. Phys., 16 (2014), pp. 781-798

of f=£(n)is \

2 3
ooyt 7 =3y
f) =" =5 +tp—"— (2.2)

where two energy wells are located at # =1 and —1, and the driving force p determines
the energy difference between two wells.

For solid state phase transformation, to account for the long-range elastic interac-
tions in solids for an arbitrary distribution of 7, in the case that the elastic modulus is
anisotropic but homogeneous, the elastic energy should be taken into consideration [4]
based on the microelasticity theory [24].

The critical nucleus can be identified as the saddle-point solution of the Euler-
Lagrange equation by taking the functional derivative of E;y,; (7). In practice, the phase
field variable 7 may be subject to additional physical constraints. For instance, the mass
conservation:

() = mo)ax=0,

with an average composition 7.

2.2 Shrinking dimer dynamics

Given an energy functional E= E(x) on a Hilbert space #, we let VE(x) denote the gra-
dient of E at x € H defined in the Frechet sense with respect to an inner product (duality
pairing) in a space £ containing H, and Hg(x) be the Hessian operator of E at xe H. Such
abstract functional analytic setting will be illustrated through concrete examples in later
discussions.

Asin [12,13], a dimer consists of a pair of points x; and x; in H with the dimer length
I =||x; —x2]||. The dimer orientation is given by a unit vector v so that x; —x, =1v. The
(rotating) center of the dimer is defined by

Xo=(1—a)x1+axy, (2.3)

where the parameter «a € [0,1] gives us the freedom to choose a point other than the geo-
metric center (the midpoint of the dimer corresponding to « =1/2). For notation conve-
nience, let

Fi=—-VE(x), i=12, and F.=—-VE(x) @4)

be natural forces at the two endpoints and the rotating center of the dimer.
Proposed in [13] as a dynamic system for index-1 saddle point search, the SDD is
given by
mte=(I-000")((1-a)Fi+ak),
F,—F
MU= (I—UUT)(llJ, (2.5)

]/lgi: —VV(Z),



L. Zhang, J. Y. Zhang and Q. Du / Commun. Comput. Phys., 16 (2014), pp. 781-798 785

where py, 12,13 are nonnegative relaxation constants. ¢ is a constant scalar which is set
to be o =2 for index-1 saddle point computation. The notation vo! is interpreted as
voly =ovTyov for any v € H and y € H*. An energy function V(I) is used to control the
dimer length /, and it is generally taken as a monotonically increasing function in / such
that / =0 is the unique critical point of V' =V(I). The initial condition of system (2.5) is
chosen as x,(0) =xp, v(0) =0y, [(0) =1y >0, x0,v9 € H with ||vg]| =1 in L.

As explained in [13], the first two equations of (2.5) represent the translation step and
the rotation step, respectively, which essentially follow from the dimer method originally
developed in [12]. The operator [ —cvv! =—2vv! is the Householder mirror reflection
which reverses the component of the natural force along v while (I—vv") is a projection
to keep v of unit length. The third equation in (2.5) follows a gradient flow of V(I) and
allows the shrinking of the dimer length over time by forcing it to approach zero. The
solution of the system (2.5) is expected to converge to an exact saddle point at the steady
state, see [13] for detailed convergence analysis.

An explicit Euler method and a modified Euler scheme for SDD, which performs a
normalization on v at each step, have been studied for SDD [13]. To improve the stability
and reduce the stiffness of the SDD system, semi-implicit splitting techniques can be
introduced to the discrete SDD system to allow a larger time step size and obtain better
error reduction [13].

Note that in the numerical implementation, we often take x =1/2 in (2.5). The choice
of spaces are such that £=L2(Q)), the standard space of square integrable functions in Q,
and H = H'(Q), the standard Sobolev space of functions in L?(Q)) with their first order
derivatives also in L?(Q)). The normalization on v is carried out at each step to explicitly
guarantee the condition that ||v"||;2 =1. The parameter ¢ is taken to further reduce the
stiffness due to the nonlinear term, and we let § =2 in our implementation which is an
effective choice related to the energy stable splitting of the commonly chosen double-well
potential (7>—1)?/4, although the optimal choice of § may depend on p in general for the
potential function in the form of (2.2) [25,26].

2.3 Constrained shrinking dimer dynamics

For some of the nucleation problems under consideration, the saddle point search is sub-
ject to certain constraints. In [16], a constrained shrinking dimer dynamics (CSDD) has
been proposed to search for constrained index-1 saddle points on a potential energy sur-
face subject to general equality constraints. For instance, without loss of generality, we
consider the abstract setting where the index-1 saddle point of E=E(x) is subject to the
constraint:

G(x)=0, (2.6)

where G:H — B is assumed to be a smooth operator from H to a Hilbert space 5. In
particular, G could be a scalar functional taking values in IR which is the case used in this
work.
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To enforce the constraints, CSDD uses the projected natural force, which is the neg-
ative gradient force projected on the tangential hyperplane (space) of the constrained
manifold:

P(G):=1-VGI[(VG)IVGT]{(VG)T, 2.7)

where the constraints are assumed to be independent so that (VG)TVGT is a positive
definite operator with a well-defined inverse [(VG)TVGT] 1.
With the above notation, the CSDD given in [16] has the following form:

1%, = (I—ovo") (1—a)P(Gy) Fi +aP(Gy) ),
120 =(I1—v0")[P(Gy)Fy — P(Ga) 2] / 14+ BV G, (2.8)
ygi: —VV(Z),

where G, = G(x,) = G((2—a)x1+(1—a)xy), and the relaxation constants 1,4z, 13, the
functional E;(!) are same as SDD. The constant scalar ¢ is also set to be ¢ =2. The initial
condition of CSDD needs the following compatibility assumption:

G(x)=0, |lvo|=1 and (VG(x0))Tvp=0. (2.9)

For general constraints, the Lagrange multiplier B in (2.8) is used to enforce
(VG(x))Tv=0. It has several formulations as presented in [16]. For linear constraints,
it can be easily shown that =0. The CSDD in this case is then essentially the same as
SDD except for the need to apply the projection P(G,) on the forcing terms. In the nu-
merical implementation of CSDD, one may apply an explicit time marching scheme like
the forward Euler method. We may also derive a similar semi-implicit scheme as the one
obtained for SDD to improve stability and ensure the convergence to the steady state.

2.4 Generalized shrinking dimer dynamics

As one of our goals here is to compute constrained saddle points based on the diffuse
interface theory, it is well known that different types of dynamics can be used to study
the transient behavior of the phase field variables, for example, the Allen-Cahn dynamics
for nonconserved variables and Cahn-Hilliard dynamics for conserved variables. These
dynamics all correspond to gradient flows of the diffuse interface energy, but with differ-
ent choices of duality (inner product). The Allen-Cahn equation refers to the standard L2
inner product while the Cahn-Hilliard equation uses the H ! inner product.

We note that the study of SDD can also be extended to incorporate the use of differ-
ent inner products for defining the dynamic systems. The convergence analysis remains
basically the same. For this reason, we now introduce a generalized shrinking dimer
dynamics (GSDD) as follows:

11 Axy = (I—ovo")((1—a)P(Gy)Fy +aP(Gy)F),
120 =(1—v0")[P(Gy)F1 —P(Gy) E2) /1+BVGL, (2.10)
]/lgiz —VV(Z),
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where A is a positive definite linear operators defined on £ which are independent of x,
v and /, and for index-1 saddle point computation, we always take o =2 so as to make
(I—covo’) a Householder mirror reflection for v satisfying v'v=1. The initial condition
is naturally required to satisfy vl v =1 as before.

For the original CSDD, we have A =1, the identity operator, then (2.10) reduces to
exactly (2.8). In general function spaces, (2.10) represents a generalization of the CSDD
as well the original SDD (if we have no constraints). For example, let

H={ueH!(Q) ]/Qudx:O}

be the space of functions in the standard Sobolev space H! defined on a domain () hav-
ing mean zero. Let A be the Laplacian operator, we may then take A = (—A)~! for con-
served dynamics. Since a constant function is in the kernel of A, the resulting GSDD then
provides a naturally conserved dynamics without the need to impose the additional con-
servation constraints as in the CSDD. This is analogous to the conserved Cahn-Hilliard
gradient dynamics [1] (which can be obtained from the first equation of (2.10) by set-
ting 0 =0. In comparison, we notice that for o =0, the first equations of the SDD and
CSDD would then corresponds respectively to the Allen-Cahn dynamics and the con-
served Allen-Cahn dynamics associated with the free energy functional.

Before we end the general discussions on the SDD types of methods, we note that
the convergence analysis of GSDD (2.10) can be carried out in the same way as for the
original SDD and CSDD [13,16]. We omit the details.

3 Application to nucleation

We now present examples that demonstrate the effectiveness of SDD and GSDD to model
and simulate the nucleation events. We consider two typical cases that represent respec-
tively a generic system with heterogeneities as well as a real material system associated
with a specific binary alloy.

3.1 Heterogeneous nucleation

Heterogeneous nucleation occurs much more often than homogeneous nucleation, and it
forms at preferential sites such as phase boundaries or surfaces. We may apply the SDD
to compute critical nuclei with the phase field formulation of heterogenous nucleation
that includes various crystalline effects (such as inhomogeneity, interfacial anisotropy,
complex phase boundary, etc). In general, the causes of concentration inhomogeneity
could be presence of structure defects, such as point defects, dislocations, twin and grain
boundaries, cracks, and inhomogeneous inclusions, etc. The distributions of inhomo-
geneity can be described by stress-free strains or eigenstrains in the inhomogeneous elas-
tic energy [27,28]. In order to illustrate the methods and the effects of inhomogeneities



788 L. Zhang, J. Y. Zhang and Q. Du / Commun. Comput. Phys., 16 (2014), pp. 781-798

without the need to carry out the calculation of elastic energy, we take a generic system
as an illustration and adopt a phenomenological function to mimic the heterogeneous
effects on the critical nuclei. The full account of inhomogeneous and anisotropic elas-
tic energy can be considered by adopting approaches similar to those in earlier stud-
ies [19,27-29].

We consider the modification of the energy functional (2.1) by

en)= [ 2 MOy + £l ()] 31

where the function 6 =6(x) represents the contributions from spatial inhomogeneities in
the domain. The coefficient matrix M is assumed to be a constant tensor modeling the
interfacial anisotropy and the local free energy density f(7) is same as (2.2).

We now consider a two dimensional sample, and choose

o)

for (x,y) € Q = [—1,1]* with the gradient coefficient M = 0.00041. Thus, the inhomo-
geneities are concentrated near a straight line x=—0.2 so that it is energetically favorable
to have interfaces represented by # align with the straight line x = —0.2.

First of all, we study the effect of the driving force on critical nuclei. We let the driv-
ing force p change from 0.1,0.07,0.05 to 0.01 in (2.2) and compute a branch of critical
nuclei. Fig. 1 contains the density plots of the phase field function 7 =#(x,y) and those
corresponding to the unstable directions. The plots clearly indicate that the driving force
mostly affects the sizes of critical nuclei, but not their shapes. The unstable directions of
critical nuclei indicate the growth directions of nuclei after nucleation. Effects of inhomo-
geneities are also evident. Without inhomogeneities, the nuclei are mostly circular, while
with inhomogeneities concentrating on a straight line, the shape becomes semi-circular
as part of the nucleus boundary falls on the line of inhomogeneities.

Next, we change the concentration of inhomogeneity from that on a straight line to
that on a curve. We also use a parameter 7y to represent the intensity of inhomogeneities
so that the function 6 is modified by

0(x,y) =tanh* (

x+0.2cos(my) +O.2) (3.2)

0.01

Numerical simulations show that the shape of critical nucleus has a circular form
without inhomogeneity (y=0) in Fig. 2(A). With the increase of inhomogeneity levels in
Fig. 2(B-D), the critical nucleus changes its shape from circle to that bounded between a
near circular arc and part of the curvy inhomogeneity (see Fig. 2(D)). It reveals that the
morphology of critical nucleus strongly depends on inhomogeneous interface conditions.

To study effects of interfacial anisotropy on the shapes of critical nuclei, we take M to
be a diagonal matrix of the form

M:0.0004<“ 0 >

0(x,y) =1—+~tanh* (

0 1/a
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Figure 1: Critical nuclei and unstable directions near a straight line boundary having different driving force with
(A) B=0.1, (B) p=0.07, (C) p=0.05, and (D) p=0.01.

and retain the same 6 in (3.2) with o =0.1.

In the presence of a curvy inhomogeneous boundary, we take 1 =4,2,1,1/2 and 1/4
in Fig. 3(A-E), respectively. As expected, the critical nuclei take on shapes that depend on
interfacial anisotropy. Unstable directions of critical nuclei also reveal how the growth
direction changes after nucleation.

To further explore the complex geometric effects of inhomogeneities on the energy
landscape and critical nuclei, we take a self-intersecting wavy curve corresponding to ¢
of the form

(3.3)

x+0.3cos(ry—0.3) ) tanthd (x—0.3cos(7ry—0.3)>’

. 4
6(x,y) =tanh ( 0.01 0.01
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Figure 2: Critical nuclei and unstable directions with different levels of the inhomogeneities near a curve (A)
=0, (B) y=0.2, (C) y=0.6, and (D) y=1.

with an isotropic interfacial energy coefficient equaling to M =0.00041. In Fig. 4, we plot
a number of possible critical nuclei computed via the SDD with different initial condi-
tions. Because of the complex energy landscape, it is not difficult to see that nucleation
can happen at a few possible preferential sites, leading to different shapes of critical nu-
clei. Meanwhile, the existence of multiple critical nuclei reveals the possibility that the
pathway of phase transformation from 77 = —1 to 7 = +1 in (2 may contain a few energy
barriers so that multiple nucleation events might occur in the complex energy landscape
during phase transformation.

We note that the case considered here represents a generic and simplistic description
of heterogeneities in real material systems. The method, however, can be applied to more
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A criticalnucleus  unstable direction
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Figure 3: Critical nuclei and unstable directions with interfacial anisotropies near a curve boundary. (A) a=4,
(B) a=2, (C) a=1, (D) a=0.5, (E) a=0.25.

practically interesting cases, by utilization more general phase field models such as those
considered in [28].
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Figure 4: Various critical nuclei in the presence of a self-intersecting curvy phase boundary.

4 Precipitate nucleation in FeCr Alloys

In this section we consider nucleation in a real material system related to a particular type
of binary alloys, namely, the nucleation of Cr precipitate in FeCr alloys [30]. This serves
as an application of GSDD, since the total concentration is set to be a constant. It also
allows us to use physically relevant parameters as opposed to the nondimensionalized
form used in generic systems considered earlier.

In FeCr alloys, the Cr precipitate is a Cr rich phase with the same structure of the
matrix phase. Thus, the Cr concentration can be used to describe the precipitate mi-
crostructure in FeCr alloys. We use the phase field model as given in (2.1) but adopt
a more conventional notation for variables of interests. Specifically, we consider the Cr
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concentration C¢,(x) as a conserved field variable. Then the Fe concentration, Cr,(x), is
uniquely determined by Cr,(x) =1—Cc¢,(x). The total free energy is thus given by

Eun (Cer) = [ ($19Ce P+ T2 (CenT) ), @)

where N=6.022 x 10* [atom /mol] is the Avogado’s constant, (g =1.4087 x 10> [m?> /mol]
is the molar volume for bee Fe, k=0.03 and Ag=1.602x10~' [J/eV]. These value are taken
to be physically meaningful ones. At a given temperature T, f(Cc,,T) is the free energy
density per atom in eV. We take the free energy at T=600K as an illustration [31,32], and
find that
f(Ccy,600) = —4.24652+0.17705Cc, +3.22557C2, —11.1095C2,
+18.9389C¢, —18.185C2, +9.1486C¢, —1.88072CZ,
+0.051704(1—C¢r)log(1—Cc,) +0.051704Cc, log(Cey ).

In numerical implementation, the conserved Cahn-Hilliard type GSDD does not re-
quire extra constraints to be imposed on the concentration variable C¢,, and it leads to
a time-dependent and spatially fourth-order parabolic equation in Cc,. We assume pe-
riodic boundary conditions with () being a domain containing a unit period, and set
2(Cer)=NAo f'(Ce,T) /. The Cahn-Hilliard type GSDD is given as follows:

( Vlccr:_A[KACCV_g(CCT)]
—UAU/ [(kVCcrVv+g(Cer)v] dx,
0

plzZ}:KAU—% (g(Cchrév) —g(Ccr—Ev)>
i i 4.2)
zyay/( Cart ) g(c”_iv)>d"

+v/0 |:K’V”0’2+7 (g(Cchr%v) —g(Ccr—év)> v] dx,

L ]/lgi: —1.

where 0 =2. Obviously, if c =0, we recover the conventional Cahn-Hilliard type gradient
dynamics from the first equation of (4.2) by setting /=0. Note that unlike the case c=0 for
which the free energy in decreasing in time, the Cahn-Hilliard shrinking dimer dynamics
(4.2) allows fluctuations in the free energy so that it goes to the constrained saddle point
asymptotically.

It is easy to see that, using the periodic boundary condition, by integrating the first
equation of the above GSDD system, we can get the mass conservation of C¢,, that is,
the conservation of total C¢, concentration is automatically satisfied. Moreover, it is easy
to check that if initially we have v to be mean zero and with unit L2 norm, then such
properties are preserved at later time.
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5 5 5 5

Figure 5: Critical nuclei for 2D FeCr alloys: Cy= 0.08 (A), 0.112 (B), 0.16 (C), 0.2 (D).

Some parameters used in the numerical simulations include the lattice size [y =
0.43nm. The size of spatial computational domain is 10y x 10l in two dimensional space
and 10y x 10l x 10l in three dimensional space. The spatial discretization is based on the
Fourier spectral methods with grid points being 512 x 512 in 2D and 128 x 128 x 128 in 3D,
respectively. Numerical verification was conducted to ensure that sufficient resolution
has been achieved.

In Fig. 5, we plot the two-dimensional critical nuclei (surface plot of C¢,) at different
levels of average Cr concentration Cp=0.08,0.12,0.16 and 0.2. As the average Cr con-
centration increases, the nucleation phase (C¢, ~ 1) of the critical nucleus disappears and
the interface of critical nucleus becomes more diffuse. Furthermore, an increase of aver-
age Cr concentration leads to an exponential decrease of total free energy for nucleation
in Fig. 7(A). Notice that the nucleation rate has the form I = Iyexp(—E*/kgT), with the
pre-exponential factor Iy calculated from the fundamental statistical approaches and the
Boltzmann’s constant kp. It implies that the critical nuclei obtained at large Cy are much
more likely to be nucleated.

Next, we compute the critical nuclei for FeCr alloys in three dimensional space and
the results of the sliced views are given in Fig. 6. Similar to two-dimensional critical nu-
clei, the maximum precipitation of critical nucleus decreases as Cy increases. The size of
critical nucleus barely changes but the interface diffuses more. Meanwhile, larger aver-
age Cr concentration requires lower energy for nucleation shown in Fig. 7(B). The mor-
phologies of critical nuclei and critical energy are critical for capturing the correct growth
kinetics of precipitation in FeCr alloys. Further investigations were performed in [32]
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Figure 7: Critical nucleation energy v.s. average Cr concentration in 2D (A) and 3D (B).

for both the critical nuclei obtained by the classical nucleation theory and the critical nu-
clei obtained by our phase field method, along with discussions on a number of relevant
phenomena.

Alternatively, CSDD can be applied to find critical nuclei in FeCr alloys as well. The
conservation of the total Cr concentration is a linear constraint on the integral of Cc, over
the domain being constant in time so that the action on C¢, of the projection operator onto
the constrained space is simply to remove its mean which makes all natural forces having
mean zero. The first two equations of the resulting CSDD then become two coupled time-
dependent and spatially second-order parabolic systems with o =2. We note that with
o =0, the first equation would become an independent equation corresponds to the so-
called conserved nonlocal Allen-Cahn or volume-preserving Ginzburg-Landau equation
[33].

To compare the performance and efficiency of CSDD (2.8) and GSDD (4.2), we per-
form a numerical test for FeCr alloys in two dimensional space. We set Cp=0.15 and use
three different initial conditions (a-c) and two different time steps T =0.005 and 7=0.01
in Table 1. The results show that GSDD requires no more than 20% iteration steps of
that for the CSDD scheme. In addition, GSDD takes less than 22% CPU time in com-
parison to CSDD scheme which indicates that the projection step P(G) in CSDD and the
additional evaluation of the Laplacian in GSDD consume comparable computation cost
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Table 1: Iteration steps and CPU time of CSDD and GSDD for FeCr alloys in 2D.

CSDD GSDD
iteration# CPU (s) | iteration# CPU (s)
(a) T=0.005 554 105.7710 107 22.3770
(b) T=0.005 603 115.1633 118 24.7117
(c) T=0.005 632 120.1767 125 26.2110

(a) 7=0.01 281 53.5855 53 11.0877
(b) T=0.01 305 58.1790 59 12.3348
(c) =0.01 320 60.9579 62 12.9818

at each step. Thus, the faster convergence of GSDD than CSDD means that GSDD can
significantly save the required CPU time overall.

5 Conclusion

In this paper, we applied the shrinking dimer dynamics and generalized shrinking dimer
dynamics to phase field models of both heterogeneous nucleations in generic systems and
precipitate nucleations in FeCr alloys. We described our approach and conducted a series
of numerical simulations to demonstrate its effectiveness. We also compared the different
formulations for problems involving a conserved variable. Some interesting observations
were revealed. In heterogeneous nucleation, we found that the level of inhomogeneity
and complex geometry of phase boundary have significant effects on the morphologies
of critical nuclei. The study of nucleation in FeCr alloys also demonstrated that our new
approaches are applicable to real materials, and we were able to predict the critical nuclei
of Cr precipitation in both two and three dimensional spaces. Meanwhile, we formulated
the Generalized Shrinking Dimer Dynamics which can be seen as a saddle point search
analog of the generalized gradient flow for energy minimizations. The GSDD includes in
particular an analog of the Cahn-Hilliard type dynamics for conserved processes which
has not been studied previously in the literature. Naturally, one may utilize the proposed
models and algorithms to help implementing the phase field simulation for the study
of nucleation and growth kinetics [20]. Thus the current work has laid the foundation
to numerical simulations of other complex nucleation processes in the future so as to
provide better insights on the role of critical nucleus in various phase transformation
processes.
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