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Abstract. We study the computation of ground states and time dependent solutions
of the Schrödinger-Poisson system (SPS) on a bounded domain in 2D (i.e. in two space
dimensions). On a disc-shaped domain, we derive exact artificial boundary conditions
for the Poisson potential based on truncated Fourier series expansion in θ, and propose
a second order finite difference scheme to solve the r-variable ODEs of the Fourier co-
efficients. The Poisson potential can be solved within O(M N logN) arithmetic oper-
ations where M,N are the number of grid points in r-direction and the Fourier bases.
Combined with the Poisson solver, a backward Euler and a semi-implicit/leap-frog
method are proposed to compute the ground state and dynamics respectively. Numer-
ical results are shown to confirm the accuracy and efficiency. Also we make it clear
that backward Euler sine pseudospectral (BESP) method in [33] can not be applied to
2D SPS simulation.
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Key words: 2D Schrödinger-Poisson system, exact artificial boundary condition, backward Euler
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1 Introduction

The Schrödinger-Poisson system (SPS) is used, e.g., in quantum semiconductor mod-
elling [2, 20]. We shall deal with the 2D (two space dimensions) case [1]. The system
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reads, in rescaled form, as

i∂tψ(x,t)=

(
−1

2
∆+V(x)+β ϕ

)
ψ(x,t), x∈R

2, t>0, (1.1)

ψ(x,t=0)=ψ0(x), x∈R
2, (1.2)

−∆ϕ(x,t)= |ψ(x,t)|2 , x∈R
2, t>0, (1.3)

where the complex-valued function ψ(x,t) stands for the wave function and decays to
zero at far field, i.e., lim|x|→+∞ |ψ(x,t)|=0, ∀t>0, ψ0 is the initial data lying in the energy

space H1(R2), V(x) is an external potential and β∈R is a coupling constant that repre-
sents the relative strength of the Poisson potential for repulsive case (β>0) and attractive
case (β<0). Note that the Poisson equation (1.3) can be rewritten as a convolution of the
density and the Green’s function of Laplace operator as follows

ϕ(x,t)=
(
− 1

2π
ln|x|

)
∗|ψ(x,t)|2 . (1.4)

Two important invariants are the mass M(ψ):=
∫

R2 |ψ|2dx and the total energy E(ψ):=∫
R2

1
2 |∇ψ|2+V(x)|ψ|2+ 1

2 β ϕ|ψ|2 dx. The ground state φg is defined as the minimizer of
the energy E on the unit sphere S={φ|‖φ‖R2(R2)=1,E(φ)<∞}, i.e.,

φg=arg min
φ∈S

E(φ) (1.5)

and the ground state energy is denoted as Eg =E(φg).
The SPS is a ”weakly” nonlinear Schrödinger equation (NLS) that has been exten-

sively studied analytically and numerically. For a derivation of the Schrödinger-Poisson
system from the linear N-body Schrödinger equation with Coulomb interaction, see e.g.
[13,14,18]. For a discussion of the dimension reduction from 3D to 2D for the Schrödinger-
Poisson system, see e.g. [10, 15].

Here we focus on the numerical aspect of reducing the whole space problem to a
numerically tractable problem on a bounded domain, with emphasis on the boundary
conditions imposed on the Poisson equation.

Several efficient and accurate numerical methods had been proposed to solve SPS,
such as the time-splitting spectral/pseudospectral method [11], finite difference method
and finite element method [30]. Particularly, for SPS, we refer the reader to [12,17,33] for
the time splitting pseudospectral method, to [26, 31] for difference method and etc.

For numerical simulations of Schrödinger type equations, the whole space problem
is usually truncated on a bounded domain, assuming that the wave function outside the
computation domain is negligible. The easiest way is to truncate the wave function on a
bounded domain and to use homogeneous Dirichlet boundary conditions (correspond-
ing to reflection due to an infinite potential) or periodic boundary conditions (called
”Born-von Karman boundary conditions” in solid state physics) for the wave function
and its gradient.
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For the numerical simulation of the non-local Poisson potential in an integral equation
version (1.4), we do not need boundary conditions. Convolution-integral based Poisson
solvers, such as Fast Multipole Methods [19,23] and Wavelet-based solvers [22], are direct
and do not require truncation of whole space, but they are not easy to implement and we
shall not consider them in this work.

We deal with the differential equation version (1.3), which is posed on a bounded do-
main in 2D, either a rectangle or a disc, with appropriate boundary conditions. For exam-
ple, the plane wave methods, which includes the Fourier/sine pseudo-spectral method,
are simple and spectrally accurate on rectangular domains. In 1D and 3D, the SPS was
simulated accurately and efficiently by pseudo-spectral method in [17, 33]. However,
straightforward extension of these methods using a rectangular domain does not work
for the 2D SPS as we shall show in this work.

In 2D, problems with the boundary conditions for Poisson potential arise: if the Pois-
son potential is enforced periodic boundary conditions on a rectangular domain, Fourier
pseudo-spectral discretization of the Poisson equation would encounter similar inconsis-
tency phenomenon as addressed in [33]. At first sight, homogenous Dirichlet boundary
condition seems to be applicable, eventually for the price of a large computation do-
main so as to obtain acceptable accuracy. However, this is not the case: one can prove
that the 2D Poisson potential decays logarithmically at far-field (see appendix) and it
is not constant-valued on the rectangle boundaries. Hence the simple homogeneous
Dirichlet boundary condition does not leave the Poisson potential radial-symmetric in
a radial-symmetric setting, and the simulation fails qualitatively. Errors coming from the
boundary condition will then dominate even for larger computation domain or smaller
mesh size. Non-zero Dirichlet boundary condition is possible, but one still has to solve
a Laplace equation with Dirichlet boundary condition on a rectangle, which is not easier
either. Thus, it is necessary to use a disc-shaped domain instead of a rectangle and to
design accurate boundary conditions for the 2D Poisson equation.

This problem of an accurate and efficient evaluation of 2D Poisson potential has
been treated in [16, 21, 27–29] for the case of polar coordinates with different kinds of
approximate boundary conditions. For our situation of the 2D SPS, mass is conserved
and the wave function that yields the density decays sufficiently fast at far field, and
it is possible to derive some exact artificial boundary conditions for the Poisson poten-
tial, which can help convert the whole space problem equivalently to a bounded domain
problem [9, 24, 25].

In this article, based on truncated Fourier series expansion, we derive exact boundary
conditions for the differential equations of the Fourier coefficients and then solve the
ODEs by a second order finite different method [27, 28]. The Poisson solver proves to be
spectrally accurate in θ-direction and second order accurate in r-direction. Coupled with
a backward Euler and a semi-implicit/leap-frog scheme, we compute the ground state
and the dynamics of the 2D SPS. Extensive numerical results show that our methods are
indeed accurate and efficient.
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2 Exact artificial boundary condition for the Poisson equation

As stated before, we truncate the 2D whole space problem to a bounded disc domain
ΩR ={x∈R

2 : |x|≤R, R>0} and we use polar coordinates (r,θ). In this section, we shall
derive exact artificial boundary conditions for differential equations for the Fourier coeffi-
cients and propose a second-order finite difference scheme to solve the Poisson equation.

2.1 Derivation of artificial boundary conditions

For the SPS system, we can reasonably assume that the wave function and hence the
density that enters the Poisson equation as source data decay fast enough. By taking
initial data with compact support, we can choose a sufficiently large radius R such that
the density ρ := |ψ|2 is compactly supported in ΩR, i.e.,

supp{ρ(r,θ)}⊂ΩR .

The density ρ can be approximated by ρR that is defined as follows

ρR(r,θ)=

{
|ψ|2, 0≤ r≤R,

0, R≤ r<∞.

Thus the Poisson potential ϕR satisfies the following equation

−∆ ϕR = |ψ|2, x∈ΩR, (2.1)

−∆ ϕR =0, x∈Ωc
R, (2.2)

where the Laplacian in polar coordinates: ∆= 1
r

∂
∂r (r

∂
∂r )+

1
r2

∂2

∂θ2 .
For simplified notation, we drop the index R and write again ϕ and ρ for ϕR,ρR,

respectively. Since ϕ and ρ are periodic in θ, they both can be approximated by finite
Fourier series as

ϕ(r,θ) =
N/2−1

∑
k=−N/2

ϕk(r) eikθ , ρ(r,θ) =
N/2−1

∑
k=−N/2

ρk(r) eikθ , 0≤ r<∞, (2.3)

where N is an even positive number and the coefficients ϕk(r), ρk(r) are defined as

ϕk(r)=
1

2π

∫ 2π

0
ϕ(r,θ) e−ikθdθ, ρk(r)=

1

2π

∫ 2π

0
ρ(r,θ) e−ikθ dθ. (2.4)

Plugging (2.3) into the exterior problem (2.2), we obtain

∂2
r ϕk +

1

r
∂r ϕk −

k2

r2
ϕk=0, R≤ r<∞ (2.5)

for any k=−N/2,··· ,N/2−1. Eq. (2.5) can be solved analytically.
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For k 6=0, we have ϕk(r)=Cr±|k|. We just take ϕk(r)=Cr−|k| here because the Poisson
potential does not grow polynomially fast at far field. By a simple calculation, we can
derive Robin boundary condition as follows

∂r ϕk

∣∣
r=R

=−|k|
r

ϕk

∣∣
r=R

. (2.6)

For k = 0, we have ϕ0(r) = aln(r)+b. The transversal property of NLS allows for a
constant shift of ϕ0(r) without affecting the density evolution, thus ϕ0(r) can be shifted
as a ln(r). In fact, it can be proved rigorously that b=0 (see appendix). Similarly, we have

∂r ϕ0

∣∣
r=R

=
ϕ0

rln(r)

∣∣∣
r=R

. (2.7)

Up to now, we have derived exact artificial boundary conditions for the Fourier coef-
ficients ϕk. Plugging (2.3) into (2.1), we have for k=−N/2,··· ,N/2−1

∂2
r ϕk +

1

r
∂r ϕk −

k2

r2
ϕk = −ρk, 0≤ r≤R, (2.8)

with the ”exact artificial boundary conditions”

∂r ϕ0(R)=
ϕ0(R)

R ln(R)
, and ∂r ϕk(R)=−|k|

R
ϕk(R), k 6=0. (2.9)

By standard variational methods and a maximal principle it can be proven that Eq. (2.8)
with the boundary conditions (2.9) admits unique solutions. Since the Poisson potential
ϕ and the source term ρ are both well-defined continuous functions, they satisfy pole
conditions [21, 29] as follows

∂r ϕ0(0)=0, ϕk(0)=0, k 6=0. (2.10)

We remark that it is not necessary to treat (2.10) as boundary conditions, the solution to
(2.8)-(2.9) satisfies (2.10) automatically in SPS.

2.2 Numerical scheme to solve the Poisson equation

In this subsection, we propose a numerical method to solve the boundary value problem
(2.8)-(2.9). First, Eqs. (2.8)-(2.9) are discretized by second order finite difference method
on a uniform mesh with a half grid shift as proposed by M.-C. Lai et al. [27, 28]. For the
Robin boundary problem, we choose an integer M> 0, a mesh size ∆r=R/M and grid
point rj =(j−1/2)∆r, j=0,1,··· ,M+1 with rM =R− 1

2 ∆r, rM+1=R+ 1
2 ∆r. Let ϕk,j, ρk,j be

the approximation of ϕk(rj), ρk(rj) respectively. Then Eq. (2.8) is discretized as

ϕk,j+1−2ϕk,j+ϕk,j−1

(∆r)2
+

1

rj

ϕk,j+1−ϕk,j−1

2∆r
− k2

r2
j

ϕk,j=−ρk,j, j=1,··· ,M, (2.11)
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for k=−N/2,··· ,N/2−1. The Robin boundary conditions are approximated as

ϕ0,M+1−ϕ0,M

∆r
=

ϕ0,M+1+ϕ0,M

2R lnR
, (2.12)

ϕk,M+1−ϕk,M

∆r
=− ϕk,M+1+ϕk,M

2

|k|
R

, k 6=0. (2.13)

Notice that ϕk,M+1 can be expressed in terms of ϕk,M via (2.12)-(2.13) and the coefficient of
ϕk,0 equals to 1

(∆r)2 − 1
2r1 ∆r =0, thus we can solve the tridiagonal linear system with O(M)

arithmetic operations for each k. The Fourier coefficient in (2.4) can be approximated by
applying a trapezoidal rule and it can be accelerated by discrete Fast Fourier Transform
(FFT) within O(M N logN) arithmetic operations.

Since the Poisson equation has to be solved several times, efficiency is of great im-
portance. The coefficients of the N resultant tridiagonal linear systems keep unchanged,
thus we only need to compute them once. The total memory cost of the linear systems is
O(M N). The overall computational cost for a given source term ρ(rj,θk), which consists
of transformation between physical and phase space via Fast Fourier Transform (FFT)
and N tridiagonal linear systems, is O(M N logN).

Remark 2.1. As stated in [27,28], higher order finite difference discretization of the bound-
ary value problems is possible if the Robin boundary conditions are dealt with prop-
erly. Apart from the finite difference method we present, one could also apply finite
element method as introduced in [8]. Also there are many papers interested in spec-
tral/pseudospectral collocation/Galerkin method to solve Poisson equation in polar ge-
ometry [16, 29], however, to the authors’ knowledge, no such method combined with
artificial boundary condition has ever been proposed for (2.8)-(2.9). It is interesting and
also promising if spectral method is combined with artificial boundary condition.

Remark 2.2. The artificial boundary condition method can be extended to 3D SPS, where
the wave function and the Poisson potential are expanded by spherical harmonics, i.e.,
Ym

l (θ,φ). By solving a similar exterior Laplace equation, we can derive exact artificial
boundary conditions for the Fourier coefficients of the Poisson potential. The reduced
1D differential equation together with exact artificial boundary conditions can be solved
similarly by finite different method. Research work on extension to 3D SPS is still ongo-
ing.

3 Numerical methods to compute SPS

In this section, we present numerical methods to compute the ground state and dynamics
of SPS based on exact artificial boundary conditions for the Poisson equation. Introduce
a mesh grid (rj,θl), j= 0,··· ,M+1, l = 0,··· ,N−1 where rj is the same as specified in the

last section and θl=l ∆θ, l=0,··· ,N−1 with ∆θ= 2π
N . Denote the time by tn=nτ,n=0,1,···

with τ being the time step.
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3.1 Numerical method for computing the ground state

For computing the ground states of 2D SPS, we adapt the gradient flow with discrete
normalization (GFDN) [7] which has been widely and successfully used for computing
ground states of the Gross-Pitaevskii equation (GPE) with application to Bose-Einstein
condensation (BEC) [3, 5]. We refer to [3, 7, 33] for detailed description of GFDN.

The gradient flow with discrete normalisation (GFDN) for (1.5) reads as follows

φt=
1

2
∆φ−Vφ−β ϕ φ, tn < t< tn+1, (3.1)

ϕ=− 1

2π
ln(|x|)∗|φ|2 , lim

r→∞
φ(r,θ,t)=0, t>0, (3.2)

φ(·,tn+1)=
φ(·,t−n+1)

‖φ(·,t−n+1)‖
, n≥1, (3.3)

φ(r,θ,0)=φ0(r,θ)≥0, 0≤ r<∞, 0≤ θ≤2π, (3.4)

where ‖φ0‖=1 and the norm ‖·‖ is defined as

‖φ‖2=
∫ ∞

0
r dr

∫ 2π

0
|φ(r,θ)|2 dθ. (3.5)

Numerically, let φn
jl ,ϕ

n
jl,Vjl be approximation of φ(rj,θk,tn),ϕ(rj,θk,tn),V(rj,θk) on ΩR.

A backward Euler finite difference discretization (BEFD) reads as

φ∗
jl−φn

jl

τ
=

1

2
∆φ∗

jl−β ϕn
jl φ∗

jl− Vjl φ∗
jl, (3.6)

φn+1
jl =

φ∗
jl

‖φ∗‖ , n=1,2,··· , (3.7)

φ0
jl =φ0(rj,θl), j=1,··· ,M, l=0,··· ,N−1, (3.8)

where ϕn
jl is determined by (2.11)-(2.13) with source term |φn

jl|2 and the discrete norm

‖φ∗‖ is approximated as ‖φ∗‖=
√

∑
M−1
j=1 ∑

N−1
l=0 |φ∗

jl |2 rj ∆r∆θ. The nonlinear equation (3.6)

can be solved iteratively [6, 32] as

φ∗,s+1
jl −φn

jl

τ
=

1

2
∆φ∗,s+1

jl −β ϕn
jl φ∗,s

jl − Vjl φ∗,s
jl (3.9)

with φ∗,0
jl being some simple approximation of φ∗

jl. Note that to compute ∆φ, one can first

expand φ into Fourier series and then discretize ∆φ by a central finite difference scheme
in r-direction as follows

∆φ
∣∣∣
(r j,θl)

≈
N/2−1

∑
k=−N/2

(
∂rr+

1

r
∂r−

k2

r2

)
φk eikθl

∣∣∣
(r j,θl)

=
N/2−1

∑
k=−N/2

[
ϕk,j+1−2ϕk,j+ϕk,j−1

(∆r)2
+

1

rj

ϕk,j+1−ϕk,j−1

2∆r
− k2

r2
j

ϕk,j

]
eikθl .
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Remark 3.1. If the external potential V(r,θ)=V(r) is radial symmetric, the ground state
φ and Poisson potential ϕ are also radial symmetric and the 2D SPS would be reduced to
a 1D problem.

3.2 Numerical method for computing the dynamics

In this subsection, we discretize the SPS in θ-direction by Fourier pseudospectral method,
in r-direction by finite difference method and in time by a semi-implicit/leap-frog scheme
on ΩR with Dirichlet boundary condition ψ(R,θ,t)=0.

Let ψn, ϕn, ψn
k denote ψ(r,θ,tn),ϕ(r,θ,tn)ψn

k (r) and ψn
k,j, ψn

jk be the numerical approx-

imations of the Fourier coefficients ψk(rj,tn) and the wave function ψ(rj,θk,tn) respec-
tively.

The SPS is discretized by semi-implicit/leap-frog finite difference method (SIFD) as
[4, 32]

i
ψn+1−ψn−1

2τ
=−1

2
∆

(
ψn+1+ψn−1

2

)
+V(r,θ)ψn+β ϕn ψn, n≥1, (3.10)

where the Poisson potential ϕn are determined by (2.11)-(2.13) with source term |ψn|2.

The first step value ψ1 is computed by a second order modified Euler method as

ψ1=ψ0−i τ

[
−1

2
∆ψ(1)+V(r,θ)ψ(1)+β ϕ(1)ψ(1)

]
, (3.11)

ψ(1)=ψ0−i
τ

2

[
−1

2
∆ ψ0+V(r,θ)ψ0+β ϕ0ψ0

]
, (3.12)

where ϕ(1) are computed by (2.11)-(2.13) with source term |ψ(1)|2.

Expanding both sides of (3.10) by Fourier series, Eq. (3.10) is rewritten, in Fourier
space, as

i
ψn+1

k −ψn−1
k

2τ
=−1

2

(
∂2

r +
1

r
∂r−

k2

r2

)(
ψn+1

k +ψn−1
k

2

)
+(Vψn+β ϕn ψn)k, n≥1, (3.13)

subject to homogeneous Dirichlet boundary condition

ψn−1
k (R)= ψn

k (R)= ψn+1
k (R) = 0, (3.14)

where ψn
k =ψk(r,tn) and (Vψn+β ϕn ψn)k is the k-th Fourier coefficient of Vψn+β ϕn ψn.

If V(r,θ)=V(r), we can incorporate V(r) into the implicit part, then we have

i
ψn+1

k −ψn−1
k

2τ
=−1

2

(
∂2

r +
1

r
∂r−

k2

r2
+V(r)

)(
ψn+1

k +ψn−1
k

2

)
+(β ϕn ψn)k, n≥1. (3.15)
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Applying a central finite difference method to (3.13)/(3.15) and (3.14) on grid points
rj, j=1,··· ,M, the resulting linear system is tridiagonal and it can be solved within O(M)

operations for each k. Then the wave function ψn+1
jk can be obtained via FFT from ψn+1

k,j .

The computation of ψ1,ψ(1) are explicit and the Laplacian of ψ(1),ψ0 therein could be
calculated similarly.

Remark 3.2. If the initial wave function ψ0 and external potential V are both radial sym-
metric, the 2D SPS can be reduced to 1D problem which could be processed similarly as
in Subsection 3.1.

4 Numerical results

Based on the numerical methods we proposed in Section 3, in this section, extensive
numerical results for computing the ground state and dynamics of 2D SPS under different
setups are reported.

4.1 Numerical results in computation of ground state

In this subsection, we present numerical results in computation of ground state together
with some comparison with 2D backward Euler sine pseudospectral method (BESP) in-
troduced on rectangular domain.

Accuracy. To test the accuracy of BEFD for the ground state, we choose the attractive
interaction case, i.e., β < 0 without external potential. Then the ground state is radial
symmetric and the 2D BEFD is reduced to 1D. The initial guess for ground state is set as

φ0=
√

2/π e−r2
. The numerical ’exact’ solution φe

g is obtained with a fine mesh ∆r=1/256.

Let φ∆r
g denote the numerical solution computed with mesh ∆r and R=16. Table 1 shows

the discrete maximal errors ‖φe
g−φ∆r

g ‖l∞ of the ground state for different Poisson coupling

Table 1: Errors analysis of ‖φe
g−φ∆r

g ‖l∞ in ground state versus mesh size ∆r for different β.

∆r=1/4 ∆r=1/8 ∆r=1/16 ∆r=1/32

β=−1 2.306E-04 5.755E-05 1.436E-05 3.563E-06

rate 2.003 2.003 2.011

β=−5 2.601E-03 6.455E-04 1.614E-04 4.012E-05

rate 2.011 2.000 2.008

β=−10 7.413E-03 1.827E-03 4.546E-04 1.130E-04

rate 2.021 2.007 2.008

β=−50 9.300E-02 2.082E-02 5.105E-03 1.264E-03

rate 2.160 2.028 2.014
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Figure 1: Ground state error versus ∆r for different β (source date from Table 1). Straight lines of slope 2
confirm second order convergence in ∆r.

constants β. Fig. 1 represent Table 1 by log-log plot of the numerical errors versus ∆r. The
second order convergence in ∆r can be seen clearly by straight lines with a slope 2. Here
the convergence rate is defined as log2(‖φe

g−φ2∆r
g ‖l∞ /‖φe

g−φ∆r
g ‖l∞).

’Virial’ identity. A ’virial’ identity 4π Ekin(φg)+β=0 holds and it can be derived by

taking derivative of the total energy E(φλ
g ) with respect to λ where φλ

g =
1
λ φg(x/λ) and

Ekin(φg) =
∫

R2 |∇φg|2dx, we refer to [5] for more details about ’virial’ identity. Table 2
shows the agreement with the virial identity for ground state between kinetic energy and
Poisson constant β. As stated before, the interaction energy Eint could be evaluated with
relative small domain, numerical results shown in Table 3 confirm it.

Table 2: Virial relations between kinetic energy and β for ground state.

β=−1 β=−5 β=−10 β=−20 β=−50

Ekin 7.962E-02 3.979E-01 7.958E-01 1.592 3.979
−β
4π 7.958E-02 3.979E-01 7.958E-01 1.592 3.979

Table 3: Error analysis of Poisson potential ϕR
g versus R for β=−5.

R=6 R=8 R=10 R=12 R=14

‖ϕe
g−ϕR

g ‖l∞ 2.197E-04 1.415E-06 3.437E-09 4.682E-10 < 1.0E-10

|Ee
int−ER

int| 6.838E-04 4.667E-06 1.250E-08 1.500E-09 6.000E-10

Comparisons with BESP. As remarked in Section 1 and [33], homogenous Dirichlet
boundary conditions for the Poisson equation on rectangular domain allows a backward
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Figure 2: Symmetry property of ground state φg (left) and Poisson potential ϕg (right) obtained by BESP.

Euler sine pseudospectral method (BESP) to compute the ground state. However, this ho-
mogeneous Dirichlet boundary condition is not proper because the 2D Poisson potential
decays algorithmically at far field and simple homogeneous treatment does not respect
the algorithmically decay property. For radial symmetric case, e.g., radial symmetric ex-
ternal potential case, ground state obtained by BESP is no longer radial symmetric.

Fig. 2 depicts the ground state φg(x,y) and the Poisson potential ϕg(x,y) obtained by
BESP for V = 0, β =−5, where the red-solid lines denote φg(x,0) (left), ϕg(x,0) (right)
and blue-dashed lines denote φg(

x√
2
, x√

2
) (left) and ϕg(

x√
2
, x√

2
) (right). Obviously, the

Poisson potential is not radial symmetric, while the ground state φg appears to be radial
symmetric, which could be attributed to the exponentially decay property of φg.

As we know, the BESP is spectrally accurate for the truncated problem on a rectangu-
lar domain with homogeneous Dirichlet boundary conditions, but it does not resolve the
2D SPS spectrally accurate due to the improper treatment of the Poisson potential. Table
4 shows ‖φh

g(·,0)−φe
g‖l∞ versus mesh size h and ‖φL

g (·,0)−φe
g‖l∞ versus domain [−L,L]2

where φh
g is obtained with L=16 and φL

g with uniform mesh size h=1/16 by BESP method.
The bench mark φe

g is computed by a finite difference method with R= 16,∆r= 1/1024.
From Table 4, we can conclude that the ground state obtained by BESP is not spectrally
accurate to that of 2D SPS and the ground state error ‖φL

g −φe
g‖l∞ decreases to some fixed

accuracy as the computation domain increases. Finally, we can conclude that homoge-
nous Dirichlet boundary condition imposed for the Poisson potential on a rectangular
domain does not approximate the 2D Poisson potential, neither does the ground state.
One could also expect the same locking phenomenon in the dynamics simulation [3, 33].

Application. We compute the ground states of the 2D SPS with external potential
V = r2 for different β. Energies of numerical solutions, obtained by BEFD with R= 16,
are presented in Table 5. We can see that the total energy E

g
tot, interaction energy E

g
int and

external energy E
g
ext(φg)=

∫
R2 Vφg decrease as β decreases, while the kinetic energy E

g
kin

increases.
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Table 4: Error analysis of ground state obtained by BESP for β=−5.

h=1 h=1/2 h=1/4 h=1/8 h=1/16

‖φh
g−φe

g‖l∞ 1.668E-05 3.665E-06 4.168E-06 4.303E-06 4.337E-06

L=12 L=14 L=16 L=18 L=20

‖φL
g −φe

g‖l∞ 1.102E-05 5.415E-06 4.337E-06 4.336E-06 4.336E-06

Table 5: Energies of ground states for different β with V= r2.

β=−1 β=−5 β=−10 β=−20 β=−50

E
g
kin 0.7273 0.8137 0.9341 1.2108 2.2174

E
g
int -0.0103 -0.0746 -0.2051 -0.6187 -2.7538

E
g
ext 0.6875 0.6148 0.5362 0.4150 0.2279

E
g
tot 1.4045 1.3539 1.2653 1.0071 -0.3085

4.2 Numerical results in computation of the dynamics

To start with, we present accuracy results of SIFD. We choose R = 16 and initial value

ψ0 = e−x2−(y−2)2
without external potential, i.e., V = 0. Let ψ,ϕ be the ’exact’ solution

computed with very fine mesh size and time step, i.e., ∆r=1/128,∆θ=π/128, τ=0.0001
at time t=1/2 and let ψ(∆r,∆θ,∆t),ϕ(∆r,∆θ,∆t) be the numerical solution obtained with mesh
size (∆r,∆t) and time step ∆t.

First, we verify the spectral accuracy in the θ-direction by choosing different ∆θ with
a very small mesh size in the r-direction ∆r = 1/128 and time step ∆t = 0.0001 so that
numerical errors coming from r-direction and temporal discretisation can be neglected
compared with that from the θ-direction. Table 6 shows errors in θ-direction at time
t=1/2 with β=±5 for wave function ψ and potential ϕ. Convergence rate here is defined
as log2(‖ψ(∆r,2∆θ,∆t)−ψ‖l∞ /‖ψ(∆r,∆θ,∆t)−ψ‖l∞).

Table 6: Errors of ‖ψ(∆r,∆θ,∆t)−ψ‖l∞ and ‖ϕ(∆r,∆θ,∆t)−ϕ‖l∞ (2nd part) in θ-direction.

∆θ=π/8 ∆θ=π/16 ∆θ=π/32 ∆θ=π/64

β=−5 1.451E-02 1.314E-05 3.916E-12 5.624E-14

rate 10.109 21.678 6.122

β=5 1.367E-02 3.793E-05 2.899E-11 5.550E-14

rate 8.494 20.319 9.029

β=−5 4.063E-03 3.047E-07 1.036E-13 1.310E-14

rate 13.703 21.488 2.983

β=5 1.671E-03 8.054E-07 9.770E-14 1.055E-14

rate 11.019 22.975 3.211
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Table 7: Errors of ‖ψ(∆r,∆θ,∆t)−ψ‖l∞ and ‖ϕ(∆r,∆θ,∆t)−ϕ‖l∞(2nd part) in r-direction.

∆r=1/4 ∆r=1/8 ∆r=1/16 ∆r=1/32

β=−5 1.024E-02 2.480E-03 6.108E-04 1.491E-04

rate 2.046 2.022 2.034

β=5 1.243E-02 3.058E-03 7.491E-04 1.778E-04

rate 2.023 2.029 2.075

β=−5 3.558E-03 8.805E-04 2.180E-04 5.377E-05

rate 2.015 2.014 2.020

β=5 2.638E-03 6.537E-04 1.625E-04 3.981E-05

rate 2.013 2.008 2.029

Table 8: Errors of ‖ψ(∆r,∆θ,∆t)−ψ‖l∞ and ‖ϕ(∆r,∆θ,∆t)−ϕ‖l∞(2nd part) in temporal direction.

τ=1/128 τ=1/256 τ=1/512 τ=1/1024

β=−5 9.600E-05 2.398E-05 5.983E-06 1.484E-06

rate 2.001 2.003 2.011

β=5 1.729E-04 4.340E-05 1.086E-05 2.696E-06

rate 1.994 1.999 2.010

β=−5 2.807E-05 7.024E-06 1.754E-06 4.352E-07

rate 1.999 2.002 2.011

β=5 5.486E-05 1.369E-05 3.411E-06 8.457E-07

rate 2.003 2.005 2.012

Next, we test the second order accuracy in the r-direction by choosing different mesh
size ∆r with a very small mesh size in θ-direction ∆θ=π/128 and time step ∆t=0.0001
for different Poisson constants. Table 7 shows errors from the r-direction discretisation
with β=±5 for wave function ψ and potential ϕ, where the convergence rate is defined
as log2(‖ψ(2∆r,∆θ,∆t)−ψ‖l∞ /‖ψ(∆r,∆θ,∆t)−ψ‖l∞).

Thirdly, we show the second order accuracy in time by choosing different time step
∆t with very small mesh size (∆r,∆θ) = (1/128,π/128). Table 8 shows errors in time
with β=±5 for wave function ψ and potential ϕ, where convergence rate is defined as
log2(‖ψ(∆r,∆θ,2∆t)−ψ‖l∞ /‖ψ(∆r,∆θ,∆t)−ψ‖l∞ ).

From Tables 6-8, we can conclude that SIFD is of spectral accuracy in θ-direction,
second-order in r-direction and second-order in time for the wave function ψ and the
Poisson potential ϕ. Fig. 3 shows the second order convergence of the wave function and
the Poisson potential in ∆r and ∆t with β=±5 (in log-log plot).

We present errors ‖ϕR−ϕ‖l∞ and ‖ψR−ψ‖l∞ versus different R for β= 5 in Table 9.
From Table 9, we can see that errors ‖ϕR−ϕ‖l∞ and ‖ψR−ψ‖l∞ decrease as the computa-
tion domain increases.
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Figure 3: Accuracy diagrams: errors in wave function and Poisson potential for different β (source data from
Table 7 (left)-Table 8 (right)). All the straight lines are of slope 2, which confirm the second order convergence
in ∆r and ∆t.

Table 9: Error analysis of ‖ϕR−ϕ‖l∞ and ‖ψR−ψ‖l∞ versus R with β=5.

R=6 R=8 R=10 R=12 R=14

‖ψ
R
−ψ‖l∞ 2.753E-04 3.042E-08 3.356E-09 1.655E-09 7.144E-10

‖ϕR −ϕ‖l∞ 1.683E-08 6.462E-09 3.094E-09 1.482E-09 5.701E-10

5 Conclusion

In this paper, we presented a new way of imposing boundary conditions on the 2D Pois-
son equation when truncating the 2D Schrödinger-Poisson system to a finite domain for
computation. By choosing a disc-shaped domain, instead of the more common rectangle-
shaped domain with homogeneous Dirichlet boundary conditions, and by using polar
coordinates (r,θ), we derived exact artificial boundary conditions for the Poisson poten-
tial, based on truncated Fourier series expansion in θ-direction. We proposed a finite dif-
ference scheme on a shifted mesh grid in r-direction to solve ODEs within O(M N logN)
arithmetic operations where M,N are the number of grid points in r-direction and Fourier
bases. A backward Euler and a semi-implicit/leap-frog method were proposed to solve
the Schrödinger equation. Combined with the Poisson solver, we implemented our nu-
merical methods to compute the ground state and dynamics of the 2D SPS.

The Poisson potential and the interaction energy can be evaluated accurately by our
method. Numerical results confirmed the accuracy and showed the efficiency of our
method. Also we made it clear that the backward Euler sine pseudospectral (BESP)
method in [33] can not be applied to 2D SPS ground state computation due to improper
treatment of the boundary condition for the Poisson equation.
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Appendix

Without loss of generality, let us assume ρ= |ψ|2 is radial symmetric and decays expo-
nentially fast, then the Poisson equation ϕ is also symmetric and satisfies the following
equation:

1

r
∂r(r∂r ϕ)=−ρ. (A.1)

Introduce ϕ̃=
√

rϕ and ψ̃=
√

rψ, the Poisson equation is equivalent to

∂rr ϕ̃+
1

4r2
ϕ̃=−|ψ̃|2√

r
. (A.2)

By a variation of constant coefficient, we have

ϕ̃=C1(r)φ1(r)+C2(r)φ2(r), φ1=
√

r, φ2(r)=
√

rln(r), (A.3)

with

C1(r)=
∫ r

0
ln(t)|ψ̃|2 dt+C0

1 =
∫ r

0
ln(t)|ψ|2 tdt+C0

1,

C2(r)=−
∫ r

0
|ψ̃|2 dt+C0

2 =−
∫ r

0
|ψ|2 tdt+C0

2.

Then ϕ= ϕ̃/
√

r=C1(r)+C2(r)ln(r).
The Poisson potential is finite at (0,0), hence we can deduce C0

2 =0.
For symmetric density, we have

ϕ(0)=
∫

R2
− 1

2π
ln(|y|)|ψ|2(y)dy=

∫ ∞

0
−ln(t)|ψ|2 tdt, (A.4)

lim
r→0+

ϕ(r)= ϕ(0)= lim
r→0+

[C1(r)+C2(r)ln(r)]=C0
1 . (A.5)

Up to now, from (A.1) and (A.4) we can rewrite the Poisson potential as

ϕ=−
∫ ∞

r
ln(t)|ψ|2 tdt−

(∫ r

0
|ψ|2 tdt

)
ln(r). (A.6)

By asymptotic analysis in Section 2, we proved that ϕ(r)≈ aln(r)+b, as r→∞. Then
we have

a= lim
r→+∞

ϕ(r)

ln(r)
=−

∫ ∞

0
|ψ|2 tdt,

b= lim
r→+∞

[ϕ(r)−aln(r)]=0.

In the same way, we can also prove that ϕ0 satisfy the same asymptotic analysis, i.e.,

ϕ0=−
∫ ∞

r
ln(t)ρ0 tdt−

(∫ r

0
ρ0 tdt

)
ln(r),

ϕ0(r)≈
[
−
∫ ∞

0
ρ0 tdt

]
ln(r), as r→∞.
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