Commun. Comput. Phys. Vol. 16, No. 3, pp. 599-611
doi: 10.4208/ cicp.070813.280214a September 2014

Parallelization of an Implicit Algorithm for
Multi-Dimensional Particle-in-Cell Simulations

George M. Petrov* and Jack Davis

Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave. SW,
Washington, DC 20375, USA.

Received 7 August 2013; Accepted (in revised version) 28 February 2014
Available online 24 June 2014

Abstract. The implicit 2D3V particle-in-cell (PIC) code developed to study the interac-
tion of ultrashort pulse lasers with matter [G. M. Petrov and J. Davis, Computer Phys.
Comm. 179, 868 (2008); Phys. Plasmas 18, 073102 (2011)] has been parallelized using
MPI (Message Passing Interface). The parallelization strategy is optimized for a small
number of computer cores, up to about 64. Details on the algorithm implementation
are given with emphasis on code optimization by overlapping computations with com-
munications. Performance evaluation for 1D domain decomposition has been made
on a small Linux cluster with 64 computer cores for two typical regimes of PIC oper-
ation: “particle dominated”, for which the bulk of the computation time is spent on
pushing particles, and “field dominated”, for which computing the fields is prevalent.
For a small number of computer cores, less than 32, the MPI implementation offers a
significant numerical speed-up. In the “particle dominated” regime it is close to the
maximum theoretical one, while in the “field dominated” regime it is about 75-80 %
of the maximum speed-up. For a number of cores exceeding 32, performance degra-
dation takes place as a result of the adopted 1D domain decomposition. The code
parallelization will allow future implementation of atomic physics and extension to
three dimensions.

PACS: 52.38.-1, 52.38.Ph, 52.50.Jm
Key words: Particle-in-cell, Maxwell equations, MP]I, lasertarget interaction.

1 Introduction

The particle-in-cell (PIC) codes are ubiquitous and have many applications covering di-
verse scientific areas such as astrophysics, plasma physics, microelectronics and chem-
istry [1-3]. PIC codes are also at the forefront of simulation tools for modeling laser-
matter interactions since they can adequately model both the laser radiation and the re-
sponse of the material allowing a self-consistent description of particles and fields. One

*Corresponding author. Emuail addresses: george.petrovénrl.navy.mil (G. M. Petrov), jack.davis@
nrl.navy.mil (J. Davis)

http:/ /www.global-sci.com/ 599 (©2014 Global-Science Press

600 G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

example is the interaction of short-pulse lasers with thin foils, which are routinely used
in laboratories around the world for particle acceleration, x-ray generation, and other
scientific endeavors such as laser nuclear physics.

The modeling of short-pulse lasers interacting with thin foils faces a host of chal-
lenges. Typically, the electromagnetic fields of the laser exceed the atomic field strength
and the material becomes instantaneously ionized by Optical Field Ionization. The result-
ing dense plasma may be opaque for the laser radiation and the material starts to act as a
“mirror”. The electromagnetic fields can not penetrate the plasma they created and decay
inside the material on a scale length of only 10-50 nm, which can be up to three orders of
magnitude smaller than the thickness of the foil [4]. In addition, the spatial distribution
of the material is highly non-uniform: the target is very dense and concentrated in a nar-
row region of the computational domain (see Fig. 1), contrary to other problems in which
the plasma is distributed uniformly. As a result, the numerical solution of the problem
requires high spatial resolution and the number of particles is often prohibitively large.
The problem is pushed to the extreme in virtually every numerical aspect, which makes
the simulations computationally intensive and numerical algorithms challenging. PIC
codes can run for days, sometimes weeks, which is a great impetus for development of
efficient and robust PIC codes.

In terms of numerical approach, PIC codes fall into two general categories: explicit
and implicit. In explicit PIC information (particle positions and fields) is used only from
previous time levels for physical quantities that are already calculated, which makes it
straightforward and computationally efficient (per time step). All quantities, electromag-
netic field components, current density and particle push are arranged in space and time
in the most optimal way and are advanced sequentially in a single sweep. It is, however,
subject to severe numerical stability constraints [1-3,5]. In contrast, implicit PIC codes
include information from the next time level, which is more involved and requires some
extra logistic and programming efforts, but the payoff can be substantial: the numerical
stability improves dramatically, and the number of particles, temporal and spatial reso-
lution requirements are greatly relaxed. In implicit PIC the computational cost per time
step for the particles and field update is higher compared to explicit PIC, but implicit
PIC can advance with larger time step, use a computational grid with larger cell size and
use smaller number of particles. Implicit PIC codes with application to laser-target in-
teractions first appeared in the early 80’s [6,7]. Since then, numerous codes have been
developed over the years: ANTHEM [8], AVANTI [9,10], MACROS [11], DADIPIC [12],
OSIRIS [13], LSP [14,15], CELESTE3D [16], and more recently, iPIC3D [5]. Many of those
codes are widely used and are constantly evolving both in terms of applications and nu-
merical implementation. Markidis et al. proposed muti-scale simulations with large dy-
namic range for studying phenomena spanning over large time scale [5]. Advanced im-
plicit PIC codes have emerged incorporating novel adaptive techniques [17] and adding
critical features such as energy conserving schemes [18].

The implicit PIC code, developed at the Naval Research Laboratory (NRL) [19,20] for
studying laser-matter interactions, is powerful enough to handle real-world problems

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 601

with sufficient accuracy within reasonable period of time (hours to a few days). But in
spite of the improvements, the code is still unable to tackle large-scale problems. As an
example, if the mass of the target is too large [21], a huge number of particles is required,
which is beyond the capabilities of a single processor machine. This problem is unlikely
to go away in the near future due to stagnation in CPU speed. The next logical step is
code parallelization, i.e. using not one, but many computing cores.

Code parallelization requires careful planning. To achieve maximum efficiency the
computational work must be properly distributed among the computer cores overlap-
ping computations with communications. Parallelizing implicit PIC is less straightfor-
ward than explicit PIC, because the former is more complex. In explicit PIC all quantities
are calculated sequentially in time, while in implicit PIC source terms are predicted or
evaluated at a future time level. One of the most challenging aspects of implicit PIC codes
stems from the fact that they follow different numerical schemes, which entails different
parallelization strategies. For example, iPIC3D solves a second order partial differential
equation (PDE) for the electric field components (the wave equation), while we solve
two first order PDE’s for the electric and magnetic field. In addition, in our code the
electric field components are coupled and the corresponding equations must be solved
simultaneously (see Section 2). The sequence for pushing particles and computing fields
is subject to variations too. In LSP [14, 15] particles are pushed twice per time step and
in iPIC3D an iterative procedure for the particle pusher is employed, while in our code
the particles are pushed only once. The computational domain decomposition is also
different with OSIRIS opting for more advanced domain decomposition schemes. The
choice of communications between computer cores is critical for the performance of the
(parallelized) code. While some implicit PIC codes have been parallelized using blocking
communications [5], we opted for non-blocking communications. Since the paralleliza-
tion is highly dependent on the specific numerical implementation, the parallelization
routine is unique for each approach.

It is the purpose of this paper to present a step-by-step parallelization routine of the
implicit PIC code developed in Refs. [19,20]. We employed the most popular approach
for code parallelization, the Message Passing Interface (MPI). The parallelized code is
written in C++ using Open MPI [22]. We focus on the parallelization strategy, which is
optimized for a relatively small number of computer cores, perhaps up to 64. This choice
was dictated by two factors: non-parallelized version of the implicit code is generally
more efficient compared to most explicit codes, and parallelization on a massive scale
(thousand of computer cores) may require somewhat different approach, as discussed at
the end of Section 3. The computational speed-up is evaluated on a small scale Linux
cluster system.

2 The implicit PIC method

In this section we briefly reiterate the implicit PIC method developed in Refs. [19,20]. The
Maxwell equations

602 G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

oE 1 /= R
oH 1o -

with field components E = (Ex,Ey,E:), H= (H.,Hy,H;) and B = poH are solved in a
Cartesian coordinate system with f: (jx+jy-jz) being the conduction current density. The
plasma is modeled by a set of relativistic equations of motion

dpa (2 | Pu _3
dt _qﬂé <Eﬂc+ ma’)’a X Bac) 7 (22&)
G PaSMa (2.2b)
1+ (Fa/mac)?
dry,
ﬁ :VD((2.2C)

for each computational particle « immersed in an electromagnetic field. In Eq. (2.2),
o = (X, YarZa), Pu= (PaxsPaysPaz) and Vo = (Vax,Vay,Vaz) are the radius vector, parti-
cle relativistic momentum and velocity of computational particle «, m,, g, and n, are the

mass, charge and the density carried by the particle, respectively, vy, =1/1+ (Fa/ mac)2 is

the relativistic factor, ¢ is the speed of light and E, and B, are the electric and magnetic
field at the particle position 7,. The Maxwell equations (2.1) are coupled to the particle
equations of motion (2.2) through the conduction current density j(7) =Y, ja (7o W (F— 7y),
where]_;4 =n,q4V, is the current density carried by computational particle « and W is the
particle shape function, which is used to distribute quantities from the particle position
onto grid nodes and vice versa. The coupling of j to the Maxwell equations (2.1) is critical
for the performance of the PIC code. In explicit codes the current density is computed
directly and the result inserted into Eq. (2.1a). In our implicit algorithm Eq. (2.2a) is in-
verted and solved for the particle momentum. During the process the electric field is
factored out and j(7) is put into the form j(7¥) =¥, (SaEq+0ju) W(F—7,), which in vector
notations reads:

—

j=8E+4j. (2.3)

In Eq. (2.3) Sisa global tensor and 4] is some residual current, both accumulated on
grid nodes. Their full derivation is given in Ref. [20]. Inserting (2.3) into the Maxwell

equations yields a system of three coupled equations for the electric field components
E - (Ex,Ey,Ez):

(f+§n+1/2> el <f_§n+1/2) By (@ % ﬁn—&-l/Z_(s]_") At/eq, (2.4)

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 603

which are solved simultaneously. The magnetic field components are advanced accord-
ing to
AN H3/2 = fn 12 7 5 EnHIAL g, (2.5)

once the electric field components E"*1 are calculated. We would like to point out that the
arrangement of electric and magnetic fields on the computational cell does not follow the
conventional Yee scheme. The electric field is located on grid nodes, while the magnetic
field is located in cell center instead. The next section will elaborate on the parallelization
of the implicit algorithm.

3 MPI implementation of the implicit algorithm

The code parallelization is based on standard MPI libraries. For maximum efficiency
only non-blocking parallel communications among computer cores are used. In MPI the
computational work is distributed among many computer cores. Code development is
somewhat more complicated since computations flow in parallel on all computer cores
simultaneously and need to be well coordinated in order to avoid bottlenecks and delays.
Efficient MPI parallelization is achieved by following a few basic rules such as:

o Load balancing. The computational load must be approximately equally distributed
among the computer cores. Specifically for PIC, the electromagnetic fields are re-
computed and the particles are pushed for every computational cycle, therefore,
the computer cores must be given equal slice of the computational domain and the
particles must be evenly distributed.

e Overlapping communications with computations. Since communications are costly,
good programming practice requires that some computations are done while data
are ”in transit” from one processor to another.

Though more sophisticated methods are needed to take full advantage of MPI, we find
that these two are sufficient for small scale implementation (tens to hundreds of com-
puter cores). In the following sub-sections the individual steps of the parallelized PIC
algorithm are described. They are adapted specifically for our implicit algorithm, but
other PIC codes (including explicit) can follow a similar routine with minor modifica-
tions.

3.1 Computational domain decomposition

We employ a 2D Cartesian geometry as shown in Fig. 1. The computational domain
is defined as R={0 <x <L,,0<y <Ly} with Ly and L, being its length and width,
respectively. The laser electromagnetic radiation advances from left to right along the

x” axis. At the beginning of the computations the front of the electromagnetic pulse is
at the "left” boundary x =0. The foil is perpendicular to the laser beam and has a width

604 G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

target

EnO Enm
A
T
Hy o —p>X T X T]l' X Xx<+Hoimi
¢--¢--o----- *--0-—¢
1 1 1 1
processor # k ¢ ———— === == o——-06--¢
1 1 1 1
L, 1 1 1 1
1 1 1 1
processor # 1 i i X i
r-—¢--¢----- $--¢--¢
e.m. wave processor # 0 Hoo —»x 1 X 1 X 1 x< Hom
v b b b b
< > E E
L. 00 processor k 0m

Figure 1: Computational domain, laser radiation, target, and domain decomposition (left). Local computational
domain of processor "k” (right). The electric field values are defined on grid nodes, the magnetic field values

are defined in cell center. The components of tensor S and vector (5]_"are also defined on grid nodes.

W and length L. The domain decomposition is shown in Fig. 1. The local computational
domains are long narrow strips parallel to the “x” axis. Though there are more efficient
ways, such as 2D domain decomposition [22], thls partition is simple and load balancing
for both particles and fields is accomplished. The boundaries between computer cores
are “sharp”, i.e. two adjacent computer cores have common grid nodes but no common
cells (Fig. 1). Particles are divided among computer cores according to their location and
transferred to another core if exiting the computational domain of a local core.

3.2 Initialization

The PIC cycle is preceded by an initialization routine, which includes:

1. Set up a grid on local computer cores according to the space decomposition. We set
a “global” grid and assign each computer core a slice of it, forming a local grid with

(m+1) x (n+1) grid points (n is along axis “y” and is approximately equal for all
computer cores).

2. Distribute particles among computer cores according to their location and initialize
them by assigning (local) coordinates, velocities, charge, etc.

3. Initialize the electromagnetic fields. The electric field components are located on
grid nodes, E; i, 0<i<n, 0<j<m, while the magnetic fields components H;; i, 0<i<
n—1,0<j<m—1 are located in cell center [20]. At the beginning of the computations
the electromagnetic field components inside the computational domain of every
core are set to zero.

3.3 The PIC cycle

The PIC cycle consists of electromagnetic field solver, computation of forces, particle
pusher and current density computation followed by interpolation on grid nodes. The

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 605

3 processor k+1

H(),m-]

i ==
EO.() EO.m

processor k

Figure 2: MPI parallelization sequence. The numbers correspond to the steps for computing the electromagnetic
fields described in Section 3: (1) compute interior points for tensor S and vector 5; (2) send one row of magnetic
field values ﬁo,j, 0<j<m—1 from processor k+1 to processor k; (3) apply boundary conditions at x=0 and
x=Ly to update Ei,o and Ei,m, 0<i<mn on processor k; (4) add a source field at x=0 to update Ei,on 0<i<n
o 1<i<n, 1<j<m; (6)
compute the electric field values E',,,j, 0<j<m belonging to the last row n processor k; (7) send the last row of
1<i<n-1,

on processor k; (5) compute interior points for the electric field on processor k, Ei

values En,j, 0<j<m from processor k—1 to processor k; (8) compute the magnetic field values ﬁi,jv
0<j<m—1, for rows i >1; (9) compute the magnetic field Ijlo,]-, 0<j<m—1 for row i=0.

electromagnetic field solver is broken into nine steps (Fig. 2). The motivation for having
so many steps is dictated by the desire to achieve maximum speed and efficiency of the
code. The main hurdle is the necessity to exchange information between computer cores,
which arises because generally speaking the spatial derivatives of rot(E) and rot(H) may
require information stored on adjacent computer cores. Since the information exchange
is much slower than floating point computations, computational speedup is achieved by
carefully overlapping communications with computations. The nine steps, described be-
low, are designed to optimize this process by initiating communications first, performing
computations on parts of the computational domain that are independent of the data
being sent and finally, receiving the data. For this purpose, we use non-blocking commu-
nications between computer cores. The following steps describe the order in which Ei,j

and ﬁi,j are computed. The equation number used in describing steps 1-9 refer to that of
Ref. [20].

(1) Compute tensor S and vector 7 on grid nodes on each core (Eq. 12). On the boundary between
two computer cores the values on grid nodes are incomplete since there is a contribution from
particles belonging to the adjacent core. Non-blocking communication is initiated, sending the

first row of local values Sg; and (5]_'6,]-, 0 <j<m from processor k+1 to processor k. Total of

606

(9)

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

twelve rows are sent, nine for S and three for 5;. Later, the data will be received by processor k

and added to the last row of local values gn,]- and (5]_';1,]-, 0<j<m.

In order to compute the electric field on the last row n of processor k, En,]-, 0<j<m, one needs
to know the local values of the magnetic field I:I'n,j. However, the data for the magnetic field
on local processor k span only up to row n—1. The needed row 7 resides on the next processor
k+1 as row 0. Therefore, we initiate a non-blocking communication by sending the first row of
the magnetic field HO,]-, 0<j<m—1 from processor k+1 to processor k. Later, the data will be

received by processor and stored as local values ﬁn,j' 0<;j<m—-1.

Apply boundary conditions at x =0 and x =L, (Eq. 14) to update Ei,O and Ei,m, 0<i<n on
local processor k.

Add a source field at x=0 (Eq. 15) to update Ei,oy 0<i<n on local processor k.

Compute the interior points for the electric field on local processor k, Ei,j' 1<i<n, 1<j<m
(Eq. 11).

The electric field values En,]-, 0<j<m belonging to the last row 1 are computed next. On the last
processor apply boundary condition (Eq. 14). On all other computer cores wait (if necessary) for

the communications initiated in steps (1) and (2) to complete, retrieve S, ; and (5]_';1,]-, 0<j<m,
as well as I:I'n,j, 0<j<m—1 and compute En,j-

The electric field values belonging to the first row EO,]-, 0<j<m on processor k are still not
known, but since for k> 1 they are identical to the electric field values of the last row n of
processor k—1 (shared grid nodes), initiate a non-blocking communication by sending the last
row of values En,j' 0<j<m computed in step (6) from processor k—1 to processor k. Later, the

data will be received by processor k and stored as local values Eo,j, 0<j<m. For local processor
k=0 apply boundary condition (Eq. 14).

While data sent in step (7) are in transit, compute the magnetic field ﬁi,jv 1<i<n—-1, 0<j<m—1,
using Eq. 13 for all rows except for the first one, i=0. This row can not be computed until the
data sent in step (7) are received and become available. Note that no boundary conditions are
required for the magnetic field components since all values reside in cell center and are computed
using the electric field values on grid nodes.

Wait (if necessary) for communications initiated in step (7) to complete and compute the mag-
netic field HO,]-, 0<j<m—1 on all computer cores.

The total communication cost is 12m for the coefficients forming current density (3),
3(m—1) for the magnetic field and 3m for the electric field, or the total of 18m double
precision numbers (eighteen rows), which is about twice the amount of data transfer for
explicit PIC codes. However, the overlap of communications with computations com-
pensates to a large extent for the extra communication cost. For example, steps (3)-(5)
can be performed while the data sent on steps (1) and (2) are in transit. There is a large
amount of data to be computed, on the order of (m+1) xn grid points (all internal grid

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 607

nodes plus boundary conditions), without any need of the data currently in transit. The
same holds for the magnetic field computation in steps (8) and (9). Overall, the procedure
is very efficient and is expected to scale well with the number of computer cores.

The particle pusher is the same as previously described in Ref. [20], but one has to
account for particles that cross the boundary with adjacent computer cores. Those that
do are put in a separate array, removed from the current core and the array of particles
is send to the receiving core. Actually, except for the first and last computer cores, two
such arrays are formed, one sent from computer core k to core k+1 and the other from
core k to core k—1. While the data are in transit, more computations can be done such as
collisions or ionizations.

A major issue faced in all PIC codes is the interpolation of quantities from grid nodes
to the particle position. The particle shape function, W, is a polynomial, often up to
fourth order in order to reduce spurious grid heating. The higher the order, the more
cells are involved, which presents a problem during parallelization since some of the
cells may reside on a neighboring computer core. Using ”“ghost cells” residing on adjacent
computer cores is the most common technique. In the implementation outlined above the
use of “ghost cells” is completely avoided since in our implicit PIC linear interpolation
yields sufficient accuracy and all quantities are collected within a cell using the procedure
outlined in Ref. [3, Egs. 49-56].

Load balancing is another key issue for optimizing the parallelization process. The
numerical grid on which the electromagnetic fields are computed is equidistant in each
direction and is therefore evenly distributed in the computational domain. It is intu-
itively clear that in order to compute the electromagnetic fields efficiently, it suffices to
break the computational domain approximately equally among the computer cores. In
practice, any type of partition will do, as long as each processor gets an equal piece. How-
ever, in laser target interactions the plasma density is strongly non uniform. Initially, all
particles are concentrated in a narrow strip and occupy about 1% of the computational
domain. As a result, the particles can be a major source of computational imbalance
between the computer cores. The 1D decomposition method we chose is the simplest
way to achieve computational balance for both particles and fields, though not necessar-
ily the best. Even after the particles move around for a while, each processor still has
about equal share of the particles. This choice of domain decomposition is expected to
work well for a small number of computer cores only. With increasing the number of
computer cores the strips became too narrow and particles start to cross frequently the
boundary from one processor to another. The communication cost increases to a point
that may not be fully compensated by overlapping communications with computations.
Parallelization on a massive scale (thousand of computer cores) may require alternative
ways to decompose the computational domain. A 2D decomposition is faster on the on
the order of 4/+/N [22] (N is the number of grid points in each direction), but is logis-
tically a little more complex since each processor has 4 neighbors instead of two. The
balance load for the electromagnetic fields is still very good, but not for the particles. In
fact, for a 2D decomposition the particles will be initially distributed over a very small

608 G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

number of computer cores since all particles are heavily concentrated in a small region of
the computational domain. As the particles move, they would become distributed more
evenly over many computer cores. For a small number of computer cores (< 100), the
1D decomposition is appropriate, while for a large number of computer cores (>100) we
deem the 2D decomposition advantageous.

4 Results and discussions

Our first task was to confirm that any multiprocessor run reproduces the single pro-
cessor one, i.e. several sets of results from the “original code” were reproduced. Once
benchmarking was successfully completed, we evaluated the system speedup using two
”standard” simulation runs. The PIC code was run on a single processor and repeated on
a small Linux cluster with 64 computer cores. The simulation box is a square with dimen-
sions {Lyx Ly} =30x30 pm?. The number of cells is 1200 x 1200 and cell size is 25x 25
nm?. Linearly polarized laser pulses with peak intensity Iy =2.5x 10** W/m?, pulse du-
ration Trwhm =60 fs, spot size Drywpm =3.3 um, and wavelength Ag=1 ym are used. The
two targets are carbon foils with density p=1000 kg/m3, thickness Lc =1 um (target #1)
and Lc=0.2 ym (target #2) and width W=28 ym, with a thin H,O contamination layer on
the back with density p=1000 kg/m? and thickness Ly,0=>5 nm. It is located 3 ym from
the ”“left” boundary. The particles and electromagnetic field components are advanced
with a time step At =0.01A¢/c. The simulations begin at time f = —10 fs when the laser
pulse enters the computational domain at x =0 and continue for another 180 fs. At the
beginning on the simulations the number of computational particles is 2 x 10° for target
#1 and 0.4 x 10° for target #2, but during the simulation run it increases due to ionization

(Fig. 3).

®
n
o

64
@ target #1 | (b) target #2 1 (c)
r.oo b noo b %56 B
X 64 X15- 3 48 | max speedup »
3 3 8 40
S S 240 -
S 44 s 1.0+ 2 32 e
aQ o « 1 .
2 ° 227
g2 205+ §164 d*
E L=tum| E L=0.2 um gl £% m - target #1
< particle dominated | < field dominated ~ @ target #2
0+ 0.0 ++—rrrrrrr 0 e
0 50 100 150 200 0 50 100 150 200 0 8 1624 3240485664
time (fs) time (fs) number of processors

Figure 3: Time evolution of the number of computational particles in the " particle dominated” regime (a), and
"field dominated” regime (b). Computation speedup versus number of computer cores for the two regimes (c).
Squares: particle dominated regime, cycles: field dominated regime, red dotted line: maximum speedup.

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 609

The purpose of choosing two targets is the following. For the thicker target the num-
ber of particles is large (several million) and the computations are spent primarily on
pushing them. We call this ”particle dominated” regime. The thinner target illustrates
the opposite, “field dominated” regime, for which most computations are spend on com-
puting the fields. Our goal is to investigate the system speed-up in the two regimes.

Simulations were done on an Intel Xeon 3.16 GHz machine, running 64 bit Red Had
Linux 5.4 operating system. Each nodes of the system has a dual Intel Xeon X5460
3.17GHZ quad core processors with 16GB of 667MHZ DDR2 DIMMs and a dual gibabit
NICs. OpenMPI version 1.4.1 was used with Intel compiler 11.1. MPI derived data types
are built from basic MPI datatypes such as MPI:INT and MPI:DOUBLE. The speed-
up calculation was an average of 3 runs for a different number of computer cores. For
each run the computation time was tracked and compared to a single-processor run, from
which the computation speedup was evaluated. The computation speedup s as a function
of number of computer cores N is plotted in Fig. 3c. The red dashed line is the theoretical
maximum speed-up. In the “particle dominated” regime, the speed-up is very close to
the maximum one. In the “field dominated” regime the speed-up is fairly good, about
~75-80 % of the maximum speed-up, somewhat lower compared to the thicker target.
The reason is the increased rate of communications with the number of computer cores,
which is more prominent if the number of particles is small. In both cases the speed-
up is satisfactory, but we expect that for realistic cases it will be closer to the ”particle
dominated” regime since the parallelization targets computationally intensive problems,
which arise primarily for “thick” targets (L > 10 ym) with excessively large number of
particles.

The observed speed-up as a function of the number of computer cores falls into two
categories. For a modest number of computer cores, N <32, it is linear and is close to
the maximum speed-up. For N > 32 there is a performance degradation and the overall
speed-up becomes sub-linear. The performance degradation at large N is a direct con-
sequence of the choice of computational domain decomposition (Fig. 1a). For N > 32
the long narrow strips become inefficient as the communication-to-computation cost in-
creases. To see that, consider a grid on a local core with (m+1)xn grid points. The
computation and communication cost scale as (m+1) xn and 2 xn (one for each adjacent
processor), respectively. The communication-to-computation cost is therefore ~2/m. For
a small number of computer cores the number of rows m is large enough and commu-
nication cost is negligible. With the number of computer cores N increasing m ~1/N
decreases up to a point where communications start to overwhelm computations. On a
more general note, the computation cost is roughly proportional to the surface area given
to each core, while the communication cost is proportional to the length of its periphery.
Therefore the 2D decomposition has better “surface area to periphery length” ratio com-
pared to the 1D decomposition and is on the order of 4/+/N faster [22]. For a large
number of processors N the 2D decomposition is clearly more advantageous and should
be adopted. The 1D decomposition benefits from its simplicity, but it is only efficient on
a small scale, with a number of computer cores on the order of 32.

610 G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611

5 Conclusion

The implicit particle-in-cell algorithm developed previously has been parallelized using
MPI (Message Passing Interface). The MPI implementation leads to a significant speed-
up of the numerical code, especially in the case when computations are dominated by
pushing particles. In order to use MPI efficiently, the PIC cycle is split into nine steps,
which are arranged so that a reasonably good balancing is achieved and computations
overlap with communications whenever possible. The parallelization is optimized for
a small number of computer cores, up to 64, with no attempt for parallelization on a
massive scale (thousand of computer cores). If the number of computer cores is less than
32, the speed-up is about 75-80 % of the maximum speed-up. However, for a number of
cores exceeding 32, performance degradation is observed, which is most likely a result
of the simplistic 1D domain decomposition. Future work will focus on inclusion of more
detailed atomic physics and a binary collision model for small angle Coulomb scattering,
as well as extension to three dimensions.

Acknowledgments

This work was supported by the Naval Research Laboratory under the Base 6.1 program.

References

[1] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill,
New York, 1981.

[2] C. Birdsall, Particle-in-cell charged-particle simulations plus Monte Carlo Collisions with
neutral atoms, PIC-MCC IEEE Trans. Plasma Sci., 19 (1991), 65-85.

[3] J. P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Phys. Con-
trol. Fusion, 47 (2005), A231-A260.

[4] P. Gibbon, Short Pulse Laser Interactions with Matter, Imperial College Press, London, 2005.

[5] S.Markidis and G. Lapenta, Rizwan-uddin multi-scale simulations of plasma with iPIC3D,
Mathematics and Computers in Simulation, 80 (2010), 1509-1519.

[6] R. Mason, Implicit moment particle simulation of plasmas, J. Comp. Phys., 41 (1981), 233-
244,

[7] J. U. Brackbill and D. W. Forslund, An implicit method for electromagnetic plasma simula-
tion in two dimensions, J. Comp. Phys., 46 (1982), 271-308.

[8] R.]J.Mason, An electromagnetic field algorithm for 2D implicit plasma simulation, J. Comp.
Phys., 71 (1987), 429-473.

[9] D. W. Hewett and A. B. Langdon, Electromagnetic direct implicit plasma simulation, J.
Comp. Phys., 72 (1987), 121-155.

[10] D. W. Hewett and A. B. Langdon, Recent progress with AVANTI: A 2.5D EM direct implicit
PIC code, Computer Phys. Comm., 48 (1988), 127-133.
[11] M. Tanaka, Macroscale implicit electromagnetic particle simulation of magnetized plasmas,

J. Comp. Phys., 79 (1988), 209-226.

G. M. Petrov and J. Davis / Commun. Comput. Phys., 16 (2014), pp. 599-611 611

[12] M. R. Gibbons and D. W. Hewett, The Darwin direct implicit particle-in-cell (DADIPIC)
method for simulation of low frequency plasma phenomena,]J. Comp. Phys., 120 (1995),
231-247.

[13] R. A. Fonseca, L. O. Silva, E S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S.
Lee, T. C. Katsouleas and J. C. Adam, OSIRIS: A three-dimensional, fully relativistic particle
in cell code for modeling plasma based accelerators, Proc. ICCS, Lecture Notes Computer
Science, 2331 (2002), 342.

[14] D. R. Welch, D. V. Rose, R. E. Clark, T. C. Genoni and T. P. Hughes, Implementation of an
non-iterative implicit electromagnetic field solver for dense plasma simulation, Computer
Phys. Comm., 164 (2004), 183-188.

[15] D. R. Welch, D. V. Rose, M. E. Cuneo, R. B. Campbell and T. A. Mehlhorn, Integrated sim-
ulation of the generation and transport of proton beams from laser-target interaction, Phys.
Plasmas, 13 (2006), 063105.

[16] G. Lapenta, J. U. Brackbill and P. Ricci, Kinetic approach to microscopicmacroscopic cou-
pling in space and laboratory plasmas, Phys. Plasmas, 13 (2006), 055904.

[17] M. E. Innocenti, G. Lapenta, S. Markidis, A. Beck and A. Vapirev, A multi level multi domain
method for particle in cell plasma simulations, J. Comp. Phys., 238 (2013), 115-140.

[18] S. Markidis and G. Lapenta, The energy conserving particle-in-cell method, J. Comp. Phys.,
230 (2011), 7037-7052.

[19] G. M. Petrov and]. Davis, A two-dimensional electromagnetic field algorithm for high-
intensity laser-target interactions, Computer Phys. Comm., 179 (2008), 868-880.

[20] G. M. Petrov and J. Davis, A generalized implicit algorithm for multi-dimensional particle-
in-cell simulations in Cartesian geometry, Phys. Plasmas, 18 (2011), 073102.

[21] D. P. Higginson, J. M. McNaney, D. C. Swift, G. M. Petrov, J. Davis, J. A. Frenje, L. C. Jarrott,
R. Kodama, K. L. Lancaster, A. J]. Mackinnon, H. Nakamura, P. K. Patel, G. Tynan and F.
N. Beg, Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter
interactions, Phys. Plasmas, 18 (2011), 100703.

[22] W. Gropp, E. Lusk and A. Skjellum, Using MPI, Portable Parallel Programming with the
Message Passing Interface, MIT Press, 1999.

