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Abstract. In this paper, we present an adaptive, analysis of variance (ANOVA)-based
data-driven stochastic method (ANOVA-DSM) to study the stochastic partial differen-
tial equations (SPDEs) in the multi-query setting. Our new method integrates the ad-
vantages of both the adaptive ANOVA decomposition technique and the data-driven
stochastic method. To handle high-dimensional stochastic problems, we investigate
the use of adaptive ANOVA decomposition in the stochastic space as an effective
dimension-reduction technique. To improve the slow convergence of the generalized
polynomial chaos (gPC) method or stochastic collocation (SC) method, we adopt the
data-driven stochastic method (DSM) for speed up. An essential ingredient of the
DSM is to construct a set of stochastic basis under which the stochastic solutions en-
joy a compact representation for a broad range of forcing functions and/or boundary
conditions.

Our ANOVA-DSM consists of offline and online stages. In the offline stage, the
original high-dimensional stochastic problem is decomposed into a series of low-
dimensional stochastic subproblems, according to the ANOVA decomposition tech-
nique. Then, for each subproblem, a data-driven stochastic basis is computed using
the Karhunen-Loève expansion (KLE) and a two-level preconditioning optimization
approach. Multiple trial functions are used to enrich the stochastic basis and improve
the accuracy. In the online stage, we solve each stochastic subproblem for any given
forcing function by projecting the stochastic solution into the data-driven stochastic
basis constructed offline. In our ANOVA-DSM framework, solving the original high-
dimensional stochastic problem is reduced to solving a series of ANOVA-decomposed
stochastic subproblems using the DSM. An adaptive ANOVA strategy is also provided
to further reduce the number of the stochastic subproblems and speed up our method.
To demonstrate the accuracy and efficiency of our method, numerical examples are
presented for one- and two-dimensional elliptic PDEs with random coefficients.
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1 Introduction

Over the past few decades, there has been growing interest and significant progress in
modeling complex physical and engineering systems with uncertainties. Many physical
and engineering applications involving uncertainty quantification can be described by
stochastic partial differential equations (SPDEs). One of the essential challenges in these
applications is how to solve SPDEs efficiently when the dimension of stochastic input
variables is high. These problems are computationally prohibitive for some of the ex-
isting numerical methods, such as stochastic finite element method [14], Wiener chaos
expansion method [19, 28], generalized polynomial chaos (gPC) methods [29, 35, 37, 38],
and stochastic collocation method [1, 39]. One of the reasons is that these methods use
a problem-independent basis, which produces a very large coupled system when the di-
mension of the input stochastic variables is high.

For stochastic problems with high stochastic input dimensions, we employ the func-
tional Analysis of Variance, or ANOVA method [4, 16] as a dimension-reduction tech-
nique. This is motivated by the observation that for many real physical systems, only
a relatively small number of stochastic dimensions is important and will significantly
impact the stochastic systems’ outputs. The ANOVA decomposition was introduced by
Fisher [9]. Later in 1948, Hoeffding successfully applied ANOVA decomposition to study
U-statistics [17]. ANOVA also was used for uncertainty quantification in [36] and was
employed in gPC for solving high-dimensional stochastic PDE systems in [5, 10, 12, 26,
27, 40, 42]. In [10] ANOVA was integrated with a multi-element stochastic collocation
method. In [26], an adaptive version of ANOVA was developed to automatically detect
the important dimensions. In [40], adaptive ANOVA methods based on three different
adaptive criteria were proposed and compared.

ANOVA decomposition of the original high-dimensional stochastic problem results
in a set of low-dimensional subproblems in stochastic space, which are efficiently solved
by the sparse-grid stochastic collocation method. The stochastic collocation method was
first introduced by Tatang and McRae in [34]. The properties of stochastic collocation
method have been extensively studied in the past 10 years. In [3,30,31], the errors of inte-
grating or interpolating functions with Sobolev regularity were analyzed for Smolyak
constructions based on one-dimensional (1D) nested Clenshaw-Curtis rules. In [31],
the degree of exactness of the Smolyak quadrature using Clenshaw-Curtis and Gaus-
sian one-dimensional rules was investigated. In 2003, Gerstner and Griebel [13] intro-
duced the dimension-adaptive tensor-product quadrature method. Recently Xiu and
Hesthaven [39] have used Lagrange polynomial interpolation to construct high-order
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stochastic collocation methods. In [39], the efficiency of Clenshaw-Curtis-based sparse
grid stochastic collocation was demonstrated in comparison to other stochastic methods
on an elliptic problem. In [11], sparse grid collocation schemes were applied to solving
stochastic natural convection problems. In [21–24], a multi-element stochastic collocation
method was employed to study the random roughness problem, stochastic compressible
flow, and plasma flow problems. In [15, 26, 41], some adaptive hierarchical sparse grid
collocation algorithms were developed.

In traditional numerical methods for SPDEs, such as the gPC and stochastic collo-
cation methods, the basis are determined depending on the probabilistic distribution of
stochastic inputs, which are problem independent. However, the stochastic outputs may
not share the same probabilistic distribution as the stochastic inputs. Hence, these basis
may not be optimal for such systems and cause the slow convergence. In applications,
we often need to solve the same SPDE many times with multiple forcing functions or
boundary conditions. This is also known as the multi-query problem. In this case, these tra-
ditional numerical methods will be computationally expensive or even infeasible. In [7],
the authors proposed and developed a data-driven stochastic method (DSM) to study
the multi-query problem of SPDEs. The motivation for the DSM is to obtain a problem-
dependent stochastic basis, which can provide a compact representation of the solution
to the SPDEs with multiple forcing functions or boundary conditions. To illustrate the
main idea of the DSM, we consider a SPDE of the form:

L(x,ω)u(x,ω)= f (x,θ), x∈D, ω∈Ω, (1.1a)

u(x,ω)=0, x∈∂D, ω∈Ω, (1.1b)

where D∈ Rd is a bounded spatial domain, L(x,ω) is a stochastic differential operator,
and f (x,θ) is the deterministic forcing function parameterized by θ.

The DSM method proposed in [7] consists of an offline and an online stage. Below we
will give a brief review of this method. In the offline stage, we use the Karhunen-Loève
expansion (KLE) [20, 25] of the SPDE solutions to construct stochastic basis {Ai(ω)}m

i=0,
where A0(ω) = 1 and m is the number of elements in the basis. Specifically, we ex-
pand the stochastic solution in terms of this stochastic basis u(x,ω) = ∑

m
i=0ui(x)Ai(ω)

and solve a coupled system of PDEs by the Galerkin method for the deterministic coeffi-
cients, {ui(x)}m

i=0. The detailed construction of the stochastic basis will be elaborated in
detail in Section 2, see also [7].

The KLE is well known for generating the optimal basis in the sense that it minimizes
the total mean squared error. As a result, it gives the optimal representation of a stochas-
tic solution. First, a compact representation of f (x,θ) is constructed by expanding it into
a finite dimensional basis fi(x), i.e., f (x,θ)≈∑

K
i=0ci(θ) fi(x). Such expansion can be ob-

tained by applying singular value decomposition (SVD) or the empirical interpolation
method (EIM) [2] to f (x,θ). With such parametrization of f , we begin the construction
of the stochastic basis {Ai(ω)}m

i=0 based on the KLE of the SPDE solution of Eq. (1.1)
with f0(x) as a forcing function. An error analysis was proposed in [7] to evaluate the



574 Z. Zhang et al. / Commun. Comput. Phys., 16 (2014), pp. 571-598

completeness of the data-driven basis {Ai(ω)}m
i=0. When the dimension of the stochastic

solution is low, the stochastic basis {Ai(ω)}m
i=0 is approximately complete with just one

forcing function. However, when the dimension of the stochastic solution is high, we
need to use multiple forcing functions to construct the stochastic basis {Ai(ω)}m

i=0. To
reduce the computational cost in computing the KLE of the SPDE solution, the random-
ized SVD algorithm [7, 18] was used in [7] to directly calculate the KLE of the stochastic
solution instead of forming a covariance matrix and solving an expensive eigenvalue
problem.

To ensure the stochastic basis {Ai} is applicable to a broad range of forcing func-
tions f (x), an algorithm was designed to enrich stochastic basis based on the trial func-
tions fk(x), k=1,2,··· ,K. More specifically, a greedy-type algorithm has been proposed,
which is used together with a two-level preconditioning [8] to reduce the computational
cost. First, one derives an error equation for the stochastic solution obtained by the most
recently enriched basis. On the coarse grid, the error equation is solved for each trial
function fk(x), k=1,2,··· ,K, and the maximum error τk∗ is identified along with the cor-
responding trial function fk∗ . Subsequently, the error equation for this trial function is
solved again, but on the fine grid. After that, the KLE of the residual error can be used
to enrich the stochastic basis. This process is repeated until the maximum residual error
is below the prescribed threshold ǫ. When this updating process terminates, we obtain
our data-driven basis {Ai(ω)}m

i=0, which provides a compact representation of the SPDE
solutions that can be used to solve this parameterized family of forcing functions. This
enriching algorithm is illustrated in Fig. 1 in Section 2. The detailed implementation of
this enriching algorithm depends on the specific numerical representation of the stochas-
tic basis, which will be elaborated about at length in Section 2.

In the online stage, we expand the SPDE solution under the data-driven stochastic
basis and solve a set of coupled deterministic PDEs to obtain the coefficients. By explor-
ing the low-dimensional structure of the solution, our DSM offers considerable compu-
tational saving over some traditional methods, especially when the dimension of input
stochastic variables is high, but the effective dimension of the output stochastic solution is
low. Depending on the representations of the data-driven stochastic basis {Ai(ω)}, three
versions of DSM have been proposed, i.e., ensemble representation, stochastic collocation rep-
resentation, and spectral representation. However, it should be pointed out that when the
input stochastic variables are high, how to effectively represent the data-driven stochas-
tic basis is still an open issue. To address this issue, in this paper we present an adaptive,
ANOVA-based, data-driven stochastic method (ANOVA-DSM) to study the SPDEs in the
multi-query setting, which integrates the advantages of both the ANOVA decomposition
technique and the DSM. For notation simplicity, we only consider the DSM in stochastic
collocation representation in this paper.

This paper is organized as follows; in Section 2, we provide the detailed deriva-
tion of DSM in stochastic collocation representation. In Section 3, we give a prelimi-
nary introduction about standard ANOVA decomposition. The adaptive ANOVA-DSM
is discussed in Section 4. In Section 5, we apply our method to both the one- and two-
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dimensional elliptic PDEs with random elliptic coefficients to demonstrate its computa-
tional efficiency. Finally, some concluding remarks are provided in Section 6.

2 The data-driven stochastic method

2.1 General framework of the DSM

In this section, we give a brief review of DSM and its general framework. The primary
driver for the data-driven stochastic method is to obtain a problem-dependent stochastic
basis under which the solution of an SPDE enjoys a compact expansion. Clearly, such a
stochastic basis should be constructed by learning some information from the solution
in a data-driven fashion. The KL expansion is well known for generating the optimal
basis in the sense that it minimizes the total mean squared error. Therefore we choose
the KLE for post-processing of the SPDE solution and constructing a problem-dependent
stochastic basis.

We first outline the DSM’s general framework, which consists of offline and online
stages. In the offline stage, an effective strategy was proposed to construct a data-driven
basis {Ai(ω)}m

i=0, where A0(ω) = 1 and m is the number of elements in the basis. The
DSM method is a greedy-type algorithm combined with a two-level preconditioning [8]
to reduce the computational cost. Once the data-driven basis is constructed, we can use
it in the standard Galerkin method to solve the SPDEs (1.1) in the online stage. As the
online stage is rather straightforward, we only state the offline computation algorithm as
follows (refer to Fig. 1 for illustration of the main ideas):

DSM Offline Computation

• Step 0 (Preparations):

– Set the error threshold ǫ0. Partition the spatial domain D into a fine grid Dh

and a coarse grid DH;

– Approximate f (x,θ) by a finite dimensional basis { fk(x)}K
k=0, i.e. f (x,θ) ≈

∑
K
k=0 ck(θ) fk(x).

• Step 1 (Initial learning on the fine grid Dh):

– Solve Eq. (1.1) with f0(x) as a forcing function to obtain u(x,ω; f0);

– Calculate the truncated KLE of u(x,ω; f0) and use the first m1 terms of the
stochastic modes to obtain the current data-driven basis {Ai(ω)}m1

i=0, where
A0(ω)=1.

• Step 2 (Preconditioning on the coarse grid DH):

– For each trial function fk(x), solve Eq. (1.1) using the current stochastic ba-
sis {Ai(ω)}m1

i=0 and the stochastic Galerkin method to obtain DSM solution
uDSM(x,ω; fk);
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for fk, k = 1, 2, ...K
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Figure 1: Greedy stochastic basis enriching algorithm on a coarse-fine grid hierarchy.

– For each trial function fk(x), solve a residual error equation to obtain the ap-
proximate residual error τk =τ(x,ω; fk);

– If max1≤k≤K ||τk||< ǫ0, go to Step 4; else set k∗= argmax0≤k≤K ||τk|| and fk∗(x),
go to Step 3.

• Step 3 (Update on fine grid Dh):

– Solve the residual equation associated with fk∗(x) to obtain the residual error
τk∗ =τ(x,ω; fk∗ );

– Enrich the current stochastic basis {Ai(ω)}m1
i=0 by the KLE of τk∗ and use

{Ai(ω)}m2

i=0 to denote the updated stochastic basis. Go to Step 2.

• Step 4 (Termination):

– Save the data-driven stochastic basis, denoted by {Ai(ω)}m
i=0 and relevant

statistic quantities.

The detailed implementation of this greedy-type algorithm depends on the numerical
representation of the stochastic basis. In [7], we proposed three ways to represent the
stochastic basis:
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• Ensemble representation, i.e, sampling method, such as Monte Carlo method, quasi-
Monte Carlo method, etc.

• Stochastic collocation representation, such as the sparse grid based stochastic collo-
cation (SC) basis.

• Spectral representation, such as the gPC basis.

Different representations have their own advantages and disadvantages. The DSM in
ensemble representation has the advantage that its accuracy does not depend on the di-
mension of the input random variables. However, its convergence rate is rather slow. The
DSM in collocation representation and gPC representation depends on the multi-index of
the orthonormal polynomial basis. Both are very accurate but could be expensive when
the dimension of the input random variables is large. Under the same computational con-
dition, the collocation representation can handle a larger multi-index of the orthonormal
polynomial basis than the gPC representation due to its non-intrusive nature. Herein, we
only introduce the DSM in collocation representation.

2.2 The generalized Polynomial Chaos basis

We assume the randomness in the differential operator L(x,ω) in SPDEs (1.1) is given in
terms of r independent random variables, i.e., ξ(ω)= (ξ1(ω),ξ2(ω),··· ,ξr(ω)). Without
the loss of generality, we can further assume such independent random variables have
the same distribution function ρ(x). We get L(x,ω)=L(x,ξ1(ω),··· ,ξr(ω)). By the Doob-
Dynkin lemma [32], the solution of Eq. (1.1) can still be represented by these random
variables, i.e. u(x,ω)=u(x,ξ1(ω),··· ,ξr(ω)).

Let {Hi(ξ)}∞
i=1 denote the 1D polynomials that are orthogonal to each other with

respect to the distribution ρ(ξ), i.e.,

∫

Ω
Hi(ξ)Hj(ξ)ρ(ξ)dξ=δij .

For some commonly used distributions, such as the Gaussian and uniform distributions,
these orthogonal polynomial sets are Hermite and Legendre polynomials, respectively.
For general distributions, such polynomial sets can be obtained by numerical methods
[35]. Furthermore, by a tensor product representation, we can use the 1D polynomial
Hi(ξ) to construct a sufficient orthonormal basis Hα(ξ)’s of L

2(Ω) as follows:

Hα(ξ)=
r

∏
i=1

Hαi
(ξi), α∈J∞

r , (2.1)

where α is a multi-index and J∞
r is a multi-index set of countable cardinality,

J∞
r ={α=(α1,α2,··· ,αr) |αi ≥0,αi∈N}.
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The zero multi-index corresponding to H0(ξ) = 1, which is used to represent the mean
of the solution. Clearly, the cardinality of J∞

r is infinite. For the purpose of numerical
computations, we prefer a finite set of polynomials. One possible choice is the set of
polynomials whose total orders are, at most p, i.e.,

J
p
r =

{

α
∣

∣α=(α1,α2,··· ,αr), αi≥0, αi ∈N,|α|=
r

∑
i=1

αi ≤ p

}

. (2.2)

The cardinality of J
p
r in (2.2) or the number of polynomial basis functions, denoted by

Np =
∣

∣J
p
r

∣

∣, is equal to
(p+r)!

p!r! . When no ambiguity arises, we may simply write such a

truncated set as J. The orthonormal basis Hα(ξ) is the gPC basis (refer to [14, 19, 37] for
more details).

2.3 Data-driven stochastic basis via a collocation representation

In this section, we introduce the DSM method via a collocation representation. For nota-
tion convenience, we consider the following 1D SPDEs:

−∇·(a(x,ω)∇u(x,ω))= f (x,θ), x∈D, ω∈Ω, (2.3)

u(x,ω)=0, x∈∂D, (2.4)

where the coefficient a(x,ω) is assumed to be positive with upper and lower bounds
almost surely. If the coefficient a(x,ω) is given in terms of r independent random vari-
ables, i.e., a(x,ω)= a(x,ξ(ω))= a(x,ξ1(ω),··· ,ξr(ω)), the solution of Eq. (2.3) can be rep-
resented by these random variables, i.e., u(x,ω)=u(x,ξ1(ω),··· ,ξr(ω)). The forcing func-
tion f (x,θ) is approximated using a finite basis, { fk(x)}K

k=0, i.e., f (x,θ)=∑
K
k=0 ck(θ) fk(x).

In the initial learning step of our DSM method, we first use the stochastic collocation
method to generate J collocation points zj ∈Rr according to the distribution of random-
ness in the coefficient a(x,ξ(ω)), as well as the associated weights wj∈R. Then, we solve
Eqs. (2.3)-(2.4) with the random variable evaluated at the collocation grid points and f0(x)
as the right-hand side

−∇·(a(x,zj)∇u(x,zj))= f0(x), x∈D, j=1,··· , J, (2.5)

u(x,zj)=0, x∈∂D. (2.6)

By solving Eqs. (2.5)-(2.6), we can obtain the values of the stochastic solution u(x,ω; f0)

on the collocation points, i.e., {u(x,zj; f0)}J
j=1. The m1-term KLE of the solution u(x,ω; f0)

gives the dominant components in the random space. We use the decaying property
of eigenvalues to select parameter m1, i.e., the number of stochastic basis m1 that can
be chosen, such as λm1+1/λ1, is smaller than some pre-defined threshold, say 10−4. We
denote the truncated KLE as;

u(x,ω; f0)≈ ū(x; f0)+
m1

∑
i=1

√

λi Ai(ω)φi(x; f0). (2.7)
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We call the stochastic basis {Ai(ω)}m1
i=0 in Eq. (2.7) the data-driven stochastic basis, where

A0(ω) = 1. Furthermore, we would like to expand the stochastic basis Ai(ω) in a gPC
basis, i.e.,

Ai(ω)=∑
α

AαiHα(ξ(ω)), (2.8)

where Hα(ξ(ω)) are the orthonormal polynomial basis decided by the distribution of the
random variables in the coefficient a(x,ξ(ω)). The expansion coefficient Aαi is given by:

Aαi=E[Ai(ω)Hα(ξ(ω))]≈
J

∑
j=1

Ai(zj)Hα(zj)wj, α∈J
p
r , (2.9)

where zj ∈Rr and wj ∈R are the sparse grid points and associated weights, respectively.
We use the Np-by-(m1+1) matrix A to denote the expansion coefficient Aαi, which is essen-
tially the data-driven stochastic basis in the stochastic collocation representation. In gen-
eral, the stochastic basis constructed by using f0 may not be adequate to give an accurate
approximation of the SPDE for another right-hand side, f (x,θ). We need to supplement
the stochastic basis by using multiple trial functions involving other fk.

In the preconditioning and update step of DSM, a greedy-type algorithm was pro-
posed which is use together with a two-level preconditioning strategy to enrich the stochas-
tic basis. First of all, we consider the error analysis. Given a new right-hand side f1(x)=
f (x,θ) for some choice of θ, we expand the solution in terms of the stochastic basis,
{Ai(ω)}m

i=0,

u(x,ω; f1)≈ ū(x; f1)+
m1

∑
i=1

Ai(ω)ui(x; f1)≡
m1

∑
i=0

Ai(ω)ui(x; f1). (2.10)

In the rest part of this subsection, we also use ui(x)≡ui(x; f1) for simplification. We use
the standard stochastic Galerkin method to obtain the coefficient ui(x). Specifically, we
substitute the expansion (2.10) into the SPDE (2.3), multiply both sides by Aj(ω) and take
expectations. This gives rise to a coupled PDEs system for the expansion coefficient ui(x),

−∇·
(

E[aAi Aj]∇ui(x,ω)
)

= f1(x)E[Aj], x∈D, j=0,1,··· ,m1, (2.11)

ui(x)=0, x∈∂D, (2.12)

where Einstein summation is assumed. The term E[aAi Aj] can be calculated as follows:

E[aAi Aj]= aα(x)Aβi AγjE[Hα(ξ(ω))Hβ(ξ(ω))Hγ(ξ(ω))], (2.13)

and

E[Hα(ω)Hβ(ω)Hγ(ω)]≈
J

∑
j=1

Hα(zj)Hβ(zj)Hγ(zj)wj, α,β,γ∈J
p
r . (2.14)
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We can solve the coupled deterministic PDEs system (2.11)-(2.12) by any standard nu-
merical method, such as finite element method (FEM) or finite difference method (FDM).
We then obtain the expansion coefficient {ui(x)}m1

i=0 and the approximate solution for
u(x,ω; f1) in (2.10). We know the exact solution can be written as:

u(x,ω; f1)=
m1

∑
i=0

Ai(ω)ui(x; f1)+τ(x,ω; f1), (2.15)

where τ(x,ω; f1) is the error. Simple calculations show that the error satisfies the follow-
ing equation:

−∇·(a(x,ω)∇τ(x,ω; f1))= f1(x)+
m1

∑
i=0

∇·(a(x,ω)Ai(ω)∇ui(x)). (2.16)

To verify the effectiveness of the stochastic basis, we solve the residual Eq. (2.16)
on a coarse grid for each fk(x) (k = 1,··· ,K) and obtain the error {τ(x,ω; fk)}K

i=k. If
max1≤k≤K ||τ(x,ω; fk)||< ǫ0, then this stochastic basis is sufficient, where ||·|| is the L2

norm of the variance of the stochastic solution. Otherwise, we identify the maximum er-
ror τk∗ =max1≤k≤K ||τ(x,ω; fk)|| along with the corresponding trial function fk∗(x). Sub-
sequently, we solve the residual Eq. (2.16) for this trial function fk∗ (x) again on a fine grid.
We also do the KLE for the residual solution τ(x,ω; fk∗) and extract several dominant
components in the random space, supplementing them to the current stochastic basis.
We use {Ai(ω)}m2

i=0 to denote the updated stochastic basis. This process is repeated until
the maximum residual is below the prescribed threshold ǫ0. We project the stochastic ba-
sis denoted by {Ai(ω)}m

i=0 into the gPC basis according to Eqs. (2.8)-(2.9) and only save
the Np-by-(m+1) matrix A.

In the online stage, for each query f (x,θ) with our data-driven stochastic basis A, we
use the standard stochastic Galerkin method to solve the SPDEs (2.3)-(2.4). Specifically,
we expand the solution in terms of the stochastic basis {Ai(ω)}m

i=0, i.e.,

u(x,ω)≡
m

∑
i=0

Ai(ω)ui(x). (2.17)

Then, we substitute the expansion (2.17) into the SPDE (2.3), multiply both side by Aj(ω)
and take expectations. This gives rise to a coupled PDEs system for the expansion coeffi-
cient ui(x),

−∇·
(

E[aAi Aj]∇ui(x,ω)
)

= f (x,θ)E[Aj], x∈D, j=0,1,··· ,m1, (2.18)

ui(x)=0, x∈∂D, (2.19)

where Einstein summation is assumed. Solving the coupled deterministic PDEs system
(2.18)-(2.19) by the FEM or FDM, we obtain the expansion coefficient {ui(x)}m1

i=0 and thus
the solution u(x,ω).
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Construction of the stochastic basis could be expensive. However, once the stochas-
tic basis is constructed, it can be used repeatedly for different right-hand side function
f (x,θ) in the online stage. In [7], a complexity analysis has been carried out for DSM. It
was demonstrated that in the multi-query problem it offers considerable computational
savings than traditional methods, such as Monte Carlo, gPC and stochastic collocation
methods. See [7] for more details. We will also demonstrate the effectiveness of this
method in Section 5.

3 ANOVA decomposition

In statistics, the ANOVA method can be used to describe the interactions between a large
number of variables when only few samples are available. The same idea can be adopted
in the interpolation and integration of high-dimensional problems, as well as stochas-
tic systems. For most well-defined physical systems, only relatively low-order correla-
tions of the input variables are expected to be important for the output of the system.
The ANOVA expansion utilizes this property, and, at each new level of ANOVA expan-
sion, higher-order correlation effects of the input variables are accounted for. Consider a
Lebesgue integrable multivariate stochastic function f (Y) : R

d →R, and d is the dimen-
sion of stochastic space we are interested in. The ANOVA expansion represents f (Y) as
finite hierarchical correlated functions of input variables in the form of:

f (Y)= f0+
d

∑
s=1

∑
j1<···<js

f j1 ,···,js(Yj1 ,··· ,Yjs), (3.1)

or equivalently

f (Y)= f0+ ∑
1≤j1≤d

f j1(Yj1)+ ∑
1≤j1<j2≤d

f j1 ,j2(Yj1 ,Yj2)+···

+ f1,2,···,d(Y1,Y2,··· ,Yd). (3.2)

We call f jk(Yjk), 1≤ j1≤d the first-order term, f jk ,jl (Yjk ,Yjl ), 1≤ j1 < j2≤d the second-order
term, etc. The ANOVA components have the following properties:

1. The constant term is the mean of function, i.e.,

f0=
∫

Γd
f (Y)dµ(Y), (3.3)

which means that all higher-order components have zero mean:

∫

Γd
f j1 ,···,js dµ(Y)=0, for 1≤ s≤d. (3.4)
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2. The other important property of ANOVA expansion is the orthogonality among its
terms:

∫

Γd
f j1 ,···,js fk1,···,kl

dµ(Y)=0, (3.5)

if (j1,··· , js) 6=(k1,··· ,kl). This is the direct consequence of (3.4).

3. The variance of f is the sum of variance of all component functions:

σ2( f )=
d

∑
s=1

∑
|s|=s

σ2( fs). (3.6)

It is worth pointing out that Eq. (3.6) holds only when the measure used in the calculation
of variance, i.e., the integral with Lebesgue measure, is the same as that in the ANOVA
decomposition.

Remark 3.1. It could be extremely expensive to compute ANOVA decomposition for
high-dimensional f (Y). Therefore, Dirac measure is adopted instead of Lebesgue mea-
sure, i.e., dµ(Y)= δ(Y−c)dY,c∈Γd. The special point c is termed anchor point. However,

it is difficult to calculate anchor point c such that f0 = f (c) = f (Y). In this paper, we
take anchor point c to be the mean of random variable Y as an approximation. In this
case, the property (3.3) and (3.4) do not hold any more. Additional terms of ANOVA
decomposition are needed to improve the accuracy of the mean.

The measure dµ(Y) determines the particular form of each component function, fol-
lowing the notation in [33]. We introduce a projection operator Ps : Γd→Γ|s|

Ps f (Ys) :=
∫

Γd−|s|
f (Y)dµI\s(Y), (3.7)

where dµI\s :=∏i∈I,i/∈s dµi(Yi). Therefore, each term fs can be recursively defined by:

fs(Ys)=Ps f (Ys)−∑
t⊂s

ft(Yt). (3.8)

3.1 Adaptivity in ANOVA decomposition

When the nominal dimension of the stochastic problem increases, the computational
complexity of the standard ANOVA becomes prohibitive to evaluate all of the terms. For
example, for nominal dimension d=100, the number of terms for second-order ANOVA
decomposition needed to calculate is

1+

(

100
1

)

+

(

100
2

)

=5051.

Nevertheless, in many stochastic problems, most of the interactions among different di-
mensions are usually weak and have little contribution to the stochastic outputs. This
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means that the active dimension of those stochastic problems is small. Therefore, some
adaptive approaches can be employed to solve those problems efficiently without losing
much accuracy.

There are many “adaptive” approaches, and the one we employ in this paper is
obtained by replacing the nominal dimension by an active dimension, i.e., we modify
Eq. (3.2) to be:

f (Y)≈ f0+ ∑
j1∈F1

f j1(Yj1)+ ∑
(j1 ,j2)∈F2

f j1 ,j2(Yj1 ,Yj2)+···

+ ∑
(j1 ,j2,,jν)∈Fν

f j1 ,j2,···,jν(Yj1 ,Yj2 ,···Yjν). (3.9)

In practice, Fν are the active dimensions for each subgroup. In the model problems we
consider here we truncate the expansion with ν=2. We then adopt adaptivity criteria to
determine the active dimensions F1 and F2. We describe the adaptive criteria based on
variance weight as follow, see [40].

Adaptivity based on variance weight: Let T1 =∑
N
j=1σ2( f j), which is the sum of the

variance of all the first-order terms. Assume that the first-order terms are sorted such
that σ2( f j) is monotonically decreasing. The active dimension F1 should satisfy:

∑
f j∈F1

σ2( f j)≥ pT1, (3.10)

where p is a proportionality constant with 0< p<1 and very close to 1. This criterion is
similar to the criterion used in [6], where σ2( f ) instead of T1 is used on the right-hand
side of (3.10) and p is set to be 0.99. The set F2 can be found by computing

ηj1 ,j2 =
σ2( f j1 ,j2)

∑ f j∈F1
σ2( f j)

, (3.11)

and bounding ηj1 ,j2 with a predefined error threshold θ2.

Remark 3.2. When we employ the preceding criteria to applications of solving SPDEs, we
replace the variance of component function f j with their L2 norm values on the physical
domain.

4 An adaptive ANOVA-based data-driven stochastic method

For large dimension d ≫ 1, the number of basis or collocation points required in many
stochastic methods, such as the stochastic finite element method, Wiener chaos expan-
sion method, gPC method, and stochastic collocation method, increases exponentially,
which makes these methods become expensive or infeasible. This is the well-known
challenge, curse of dimensionality. The DSM in collocation representation also has this
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problem because the number of polynomial basis index (2.2) used in constructing the
DSM basis increases fast if the dimension of the stochastic problem is large. Combining
the advantages of both the ANOVA decomposition technique and the DSM, we propose
an adaptive ANOVA-DSM to study high-dimensional SPDEs in the multi-query setting.

Let ξ(ω)=(ξ1(ω),··· ,ξd(ω)) denote a d-dimensional vector of independent and iden-
tically distributed random variables. We consider the following 1D SPDE to demonstrate
the main idea:

−∇·(a(x,ξ(ω))∇u(x,ξ(ω)))= f (x,θ), x∈D, ω∈Ω, (4.1)

u(x,ξ(ω))=0, x∈∂D, (4.2)

where the coefficient a(x,ξ(ω) is assumed to be positive with upper and lower bounds
almost surely. For notational simplicity, we denote the solution by u(x,ξ) in the rest of
this section. We summarize our new method as follows:

Adaptive ANOVA-DSM offline computation

1. Expand stochastic solution u(x,ξ) in an adaptive ANOVA decomposition:

u(x,ξ)=u0(x)+ ∑
j1∈F1

uj1(x,ξ j1
)+ ∑

(j1,j2)∈F2

uj1 ,j2(x,ξ j1
,ξ j2

)+··· , (4.3)

where F1 and F2 are the first and second active dimension sets, respectively. See 6
for a detailed discussion about how to determine them.

2. Solve each first-order ANOVA decomposition subproblem with the DSM and ob-
tain the stochastic basis matrix Aj1 , j1∈F1. For example, the stochastic basis matrix
A1 is obtained by applying the DSM for the following subproblem:

−∇·(a(x,ξ1(ω),c2,··· ,cd)∇u(x,ξ1(ω),c2,··· ,cd))= f (x,θ), x∈D, ω∈Ω, (4.4)

u(x,ξ1(ω),c2,··· ,cd)=0, x∈∂D, (4.5)

where ck, k=2,··· ,d are anchor points.

3. For each second-order term uj1,j2(x,ξ j1
,ξ j2

), apply the DSM to solve the correspond-

ing subproblem and obtain the stochastic basis matrix Aj1 j2 , (j1, j2)∈F2.

4. Repeat the preceding steps, if needed, to calculate stochastic basis for a high-order
ANOVA decomposition subproblem.

Remark 4.1. In practical computation when the variance of the stochastic solution is not
large, only the adaptive first- and second-order terms are needed in ANOVA expansion
to obtain accurate results for mean and variance. In calculating each subproblem of the
ANOVA decomposition, several DSM basis could be enough for accuracy requirement.
This essentially expedites our computation.
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Adaptive ANOVA-DSM online computation

1. For each query f (x,θ), expand stochastic solution u(x,ξ) in an adaptive ANOVA
decomposition:

u(x,ξ)≈u0(x)+ ∑
j1∈F1

uj1(x,ξ j1
)+ ∑

(j1,j2)∈F2

uj1 ,j2(x,ξ j1
,ξ j2

)+··· , (4.6)

where the sets F1 and F2 are selected according to the adaptive approach in the
offline stage.

2. Solve for the mean term u0(x), which satisfies a deterministic equation by replacing
random variables ξ with anchor point c in the stochastic PDE (4.4)-(4.5),

−∇·(a(x,c)∇u0(x))= f (x,θ), x∈D, (4.7)

u0(x)=0, x∈∂D. (4.8)

3. For each high-order term uj1,j2 ,···,js(x,ξ j1
,ξ j2

,··· ,ξ js
), with our data-driven stochastic

basis Aj1 j2 ···js , we use the standard stochastic Galerkin method to solve the SPDEs
(4.4)-(4.5).

4. Use the ANOVA-DSM solutions to calculate the statistical information of the solu-
tion, such as mean and variance.

It should be pointed out that the construction of an ANOVA-DSM basis can be expensive
if we solve the Eqs. (4.4)-(4.5) only once for a given forcing function. However, when
we need to solve the same SPDE many times with multiple forcing functions, our online
algorithm offers considerable computational savings because the number of elements in
the stochastic basis is, in general, much smaller than the number of orthogonal polyno-
mials in the polynomial chaos basis, especially when the input stochastic dimension is
high.

5 Numerical examples

In this section, we perform a number of numerical experiments to test the performance
and accuracy of the adaptive ANOVA-DSM for elliptic SPDEs with random coefficients.
We demonstrate that the DSM can offer accurate numerical solutions to SPDEs with sig-
nificant computational savings in the online stage over traditional stochastic methods,
such as the ANOVA based stochastic collocation method (denoted by ANOVA-SC) [40].
All of the simulations and comparisons are conducted on a single computing node with
16GB of memory at the Caltech Center for Advanced Computing Research (CACR).
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5.1 1D elliptic SPDE in 20-dimensional stochastic space

We consider the following 1D elliptic SPDE with random coefficient:

− ∂

∂x

(

a(x,ω)
∂

∂x
u(x,ω)

)

= f (x), x∈D=(0,1), ω∈Ω, (5.1)

u(0,ω)=0, u(1,ω)=0. (5.2)

When modeling a whole aquifer or a whole oil reservoir, the correlation length scale for
random field a(x,ω) is significantly smaller than the size of the computational region.
However, the correlation is typically large enough to fall outside the domain of stochas-
tic homogenization techniques. In addition, typical sedimentation processes lead to fairly
irregular structures and pore networks. Therefore, a faithful model should assume only
limited spatial regularity of a(x,ω). A convenient way is to assume the covariance func-
tion of log(a(x,ω)) is given by:

C(x,y)=σ2e−
|x−y|p

λ , x,y∈ [0,1]. (5.3)

The parameters σ2 and λ are the variance and the correlation length, respectively. In this
paper, we choose p=1, σ2=1, and λ=0.1.

We use the KLE of the covariance function C(x,y) to produce samples of a(x,ω). Let
k(x,ω)= log(a(x,ω)). We expand k(x,ω) in term of a countable set of uncorrelated, zero
mean random variables {ξn}∞

n=1 such that:

k(x,ω)=
∞

∑
n=1

√

θnξn(ω)φn(x), (5.4)

where we assume E[k(x,ω)]= 0 and {θn,φn(x)}∞
n=1 are the eigenpairs of the covariance

function (5.3). An important point to note is that for random field k(x,ω), the random
variables {ξn}∞

n=1 are assumed to be independent and uniformly distributed within range

ξn ∈ (−
√

3,
√

3). In practice, we truncate the expansion (5.4) after a finite number K of
terms and define the coefficient as:

a(x,ω)= e∑
K
n=1

√
θnξn(ω)φn(x). (5.5)

We choose K=20 in (5.5), and select the anchor point c=0. Some typical samples of the
elliptic coefficients are shown in Fig. 2. The function class of the right-hand side is chosen
to be F= span{1,sin(iπx),cos(iπx)}15

i=1. The finite element method is used for the spatial
discretization with mesh size h= 1

256 . The mesh size of the coarse grid in preconditioning
of the data-driven method (i.e., the Step 2 of DSM Offline Computation) will be chosen as
hc=

1
64 . Legendre polynomials are used in the data-driven stochastic basis representation.

We choose r=1 and p=10 in the orthonormal basis index (2.2) to represent the DSM basis
for first-order ANOVA decomposition subproblem. Similarly, we choose r=2 and p=8
for the second-order ANOVA decomposition subproblem. Due to the modest stochastic
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Figure 2: The random process with exponential covariance function.
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Figure 3: The active dimension set in 2nd ANOVA decomposition.

input dimension of (5.5), the “exact” solution is obtained by sparse grid based stochastic
collocation method with quadrature level 5, which has 90561 quadrature points.

Let uDSM(x,ω) denote the ANOVA-based data-driven solution, uSC(x,ω) denote the
ANOVA-based stochastic collocation solution, and u(x,ω) the exact solution. To quantify
the error, we define the relative error of mean and STD (standard deviation) in L2(D). For
instance, the error of the DSM solution can be defined as follows:

emean=
||ū(x)−ūDSM(x)||L2(D)

||ū(x)||L2(D)
,

and

eSTD=
||STD(u)−STD(uDSM)||L2(D)

||STD(u)||L2(D)
.

In Fig. 3, we show the second-order active dimension set F2 in the ANOVA decomposi-
tion obtained by the adaptive algorithm. Without adaptivity, the second-order ANOVA
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Figure 4: The multi-query results of the ANOVA-DSM and ANOVA-SC solvers.

decomposition will generate 190 subproblems. However, using our adaptive algorithm
(η=0.99), we only need to solve 29 subproblems.

We randomly generate 50 force functions, i.e., f (x)∈ {ai sin(πkix)+bicos(πlix)}50
i=1,

where ai, bi, ki, and li are random numbers. In Fig. 4, we show the mean and STD
comparisons in the online stage. We also show the computational cost of the ANOVA-
based data-driven stochastic solver (denoted by ANOVA-DSM) and the ANOVA-based
stochastic collocation solver (denoted by ANOVA-SC) in Fig. 11. Let n denote the query
number. The computational cost of ANOVA-DSM consists of two parts. In the offline
stage, it takes 30.951 seconds to train the data-driven stochastic basis. In the online stage,
with our DSM basis, solving the SPDE (5.1) once will take 0.052 seconds. Therefore, the
total cost will be tDSM(n)=30.951+0.052n. For the ANOVA-SC solver, we omit the cost
of choosing the active dimension set in ANOVA decomposition and only consider the
online stage cost. It will take 2.606 seconds to solve the SPDE (5.1) once with the adaptive
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Figure 5: The computation time comparison.
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ANOVA-SC solver. Thus, the total cost will be tSC(n)=2.606n. The ANOVA-DSM solu-
tion has the same accuracy as the ANOVA-SC solution. However, in a multi-query setting
when we need to solve the SPDE (5.1) with more than 13 times, the ANOVA-DSM solver
will be superior to the ANOVA-SC solver. Finally, in Fig. 6, we show the mean and STD
of the solution corresponding to f (x)=0.1sin(8.6πx)+0.6cos(4.3πx). It can be seen that
the mean profile of the ANOVA-DSM and ANOVA-SC solutions match the exact solution
quite well. However, the STD profile of the ANOVA-DSM and ANOVA-SC solutions is
a little lower than the exact solution. Higher-order adaptive ANOVA decomposition can
improve the accuracy of STD, but it requires extra computational cost.

5.2 1D elliptic SPDE in 50-dimensional stochastic space

We consider the 1D elliptic SPDE in high-dimensional stochastic space. The stochastic
coefficient a(x,ω) of Eq. (5.1) now reads as:

a(x,ω)=
50

∑
i=1

Ciξi(ω)(sin(Diπx)+1), (5.6)

where {ξi} are independent uniform random variables in [0,1] and Ci ∈ (0,0.001) and
Di ∈ (0,10) are randomly generated. We first select the anchor point c=0.5. We still use
F= span{1,sin(iπx),cos(iπx)}15

i=1 as right-hand side functions to train the DSM basis.
The finite element method is used for the spatial discretization with mesh size h = 1

256 .
The mesh size of the coarse grid in the preconditioning of the data-driven method will
be chosen as hc =

1
64 . Legendre polynomials are used in the data-driven stochastic basis

representation. We choose r = 1 and p= 10 in the orthonormal basis index (2.2) to rep-
resent the DSM basis for the first-order ANOVA decomposition subproblem. Similarly,
we choose r=2 and p=6 for the second-order ANOVA decomposition subproblem. Let
uDSM denote the solution obtained by the ANOVA-based DSM solver.
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Figure 7: The active dimension set in the second-order ANOVA decomposition.

The gPC method and stochastic collocation method are computationally prohibitive
due to the curse of dimensionality. Therefore, we use the Monte Carlo method with 106

samples to calculate the “exact” solution. The ANOVA decomposition of the SPDE
(5.1) results in a set of low-dimensional subproblems in stochastic space. Thus, the
ANOVA-based stochastic collocation method is an effective approach for solving high-
dimensional SPDEs (see [5, 40]). We also compare the ANOVA-SC solver’s performance,
as well as our ANOVA-DSM solver.

In Fig. 7, we show the second-order active dimension set F2 in the ANOVA decompo-
sition obtained by the adaptive algorithm. Without adaptivity, the second-order ANOVA
decomposition will generate 1225 subproblems. However, using our adaptive algorithm
(η=0.99), we only need to solve 67 subproblems, which significantly reduces the compu-
tational cost.

We randomly generate 50 force functions, i.e., f (x)∈ {ai sin(πkix)+bicos(πlix)}50
i=1,

where ai, bi, ki, and li are random numbers. In Fig. 8, we show the mean and STD
comparison in the online stage. Let n denote the query number. In the offline stage
of ANOVA-DSM, we spend 73.901 seconds to train the data-driven stochastic basis. In
the online stage with our DSM basis, solving the SPDE (5.1) once will take 0.087 sec-
onds. Therefore, the total cost will be tDSM(n) = 73.901+0.087n. For the ANOVA-SC
solver, we omit the cost of choosing the active dimension set in the ANOVA decom-
position and only consider the online stage cost. It will take 5.629 seconds to solve
the SPDE (5.1) once with the adaptive ANOVA-SC solver. Thus, the total cost will
be tSC(n) = 5.629n. Again, the ANOVA-DSM solution has the same accuracy as the
ANOVA-SC solution. However, in a multi-query setting when we need to solve the SPDE
(5.1) more than 14 times, the ANOVA-DSM solver will be superior to the ANOVA-SC
solver. Finally, in Fig. 9, we show the mean and STD of the solution corresponding to
f (x)= 0.2sin(6.9πx)+3.3cos(5.6πx). It is evident that the mean profile of the ANOVA-
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Figure 9: The snapshot solutions of mean and STD.

DSM and ANOVA-SC solutions match the exact solution quite well. However, the STD
profile of ANOVA-DSM and ANOVA-SC solutions is a little lower than the exact solution.
Higher-order adaptive ANOVA decompositions are needed to improve the accuracy of
STD, but it requires additional computational cost.

5.3 2D elliptic SPDE in 20-dimensional stochastic space

We further apply our ANOVA-DSM to solve the following 2D stochastic elliptic problem
with a random coefficient:

−∇·(a(x,y,ω)∇u(x,y,ω))= f (x,y), (x,y)∈D, ω∈Ω, (5.7)

u(x,y,ω)=0, (x,y)∈∂D, ω∈Ω, (5.8)
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Figure 10: The multi-query results of ANOVA-DSM and ANOVA-SC solver.

where D=[0,1]×[0,1]. The random coefficient is defined as:

a(x,y,ω)=
20

∑
i=1

ξi (sin(iπx)cos((21−i)πy)+1.001) , (5.9)

where {ξi} are independent uniform random variables in [0,1]. We still select the anchor
point c=0.5. In the offline stage, the function class of the right-hand side in the precon-
ditioning DSM method is chosen to be F={sin(kiπx+liπy)cos(miπx+niπy)}20

i=1, where
ki, li, mi, and ni are random numbers. We use this random training strategy to reduce
the computational cost. The finite element method is used for the spatial discretization.
We first partition the domain D into squares with mesh size h= 1

128 then further partition
them into triangular meshes. The mesh size of the coarse grid in the preconditioning of
the data-driven method will be chosen as hc =

1
32 . Legendre polynomials are used in the

data-driven stochastic basis representation. We choose the same parameter as Section 5.1
in the orthonormal basis index (2.2) to represent the DSM basis for first- and second-order
ANOVA decomposition subproblems. We use the Monte Carlo method with 105 samples
to calculate the “exact” solution.

With our adaptive algorithm (η = 0.99), we only need to solve 24 second-order
ANOVA decomposition subproblems, which significantly reduces the computational
cost. The second-order active set result is similar to Fig. 3 (not shown here). We ran-
domly generate 50 force functions, i.e., f (x)∈{sin(πkix+ai)cos(πliy+bi)}50

i=1, where ki,
li, ai and bi are random numbers. In Fig. 10, we show the mean and STD comparison in
the online stage. Let n denote the query number. In this 2D problem, the offline stage
of the ANOVA-DSM solver takes 4331.24 seconds. In the online stage with our DSM ba-
sis, solving the SPDE (5.7) once will take 26.23 seconds. Therefore, the total cost will be
tDSM(n)=4331.24+26.23n. For the ANOVA-SC solver, we omit the cost of choosing the
active dimension set in the ANOVA decomposition and only consider the online stage
cost. It will take 343.33 seconds to solve the SPDE (5.7) once with the adaptive ANOVA-
SC solver. Thus, the total cost will be tSC(n)= 343.33n. The ANOVA-DSM solution has
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Figure 11: The computation time comparison.

the same accuracy as the ANOVA-SC solution. However, in a multi-query setting when
we need to solve the SPDE (5.7) more than 14 times, the ANOVA-DSM solver will be
superior to the ANOVA-SC solver. Finally, in Fig. 12, we show the mean and STD of the
solution corresponding to f (x,y) = sin(6.8πx+0.1)cos(4.3πy+0.2). It can be seen that
the mean and STD of the ANOVA-DSM solution match the exact solution very well. The
relative errors of the mean and STD are 0.032% and 1.34%, respectively.

Remark 5.1. The offline computing of ANOVA-DSM consists of two parts, choosing
the active dimension set and training the data-driven stochastic basis. Since both the
ANOVA-DSM and ANOVA-SC solver spend the same time to choose the active dimen-
sion set, we only consider the later part as the offline computational time of ANOVA-
DSM.

6 Conclusion and discussion

In this paper, a novel adaptive, ANOVA-based, data-driven method has been devel-
oped to solve high-dimensional stochastic elliptic equations arising from various applica-
tions, such as the randomly heterogeneous porous media flow problem. The developed
method has both an offline and online computation. In the offline computation, an adap-
tive ANOVA decomposition technique is applied to adaptively decompose the original
high-dimensional problem into a set of low-dimensional sub-problems. By modeling
the behavior of stochastic systems with only the first few lower-order terms of the high-
dimensional input, adaptive ANOVA is able to efficiently represent the output response
to the high-dimensional inputs with specified good accuracy. The adaptive ANOVA de-
composition results in a set of low-dimensional subproblems in stochastic space, which
can be efficiently solved by sparse grid based stochastic collocation method.
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Figure 12: The snapshot solutions of mean and STD.

We adopt the DSM to improve the stochastic collocation method’s slow convergence.
In the offline stage, for each subproblem in the adaptive ANOVA decomposition, an op-
timal data-driven stochastic basis is obtained by the KLE of the covariance matrix of
the stochastic output solutions computed by the stochastic collocation method. Multiple
trial functions are used to enrich the stochastic basis and improve our method’s accu-
racy. In the online computation, a Galerkin-projection-based method with the optimal
data-driven basis developed in the offline part is employed, which greatly reduces the
computational cost.

Numerical examples involving both 1D and 2D elliptic PDEs with high-dimensional
random coefficients have been conducted to verify the accuracy and efficiency of the de-
veloped adaptive ANOVA-based DSM method. These numerical examples indicate the
following three advantages of the proposed adaptive ANOVA-based DSM method: (1)
by integrating with adaptive ANOVA decomposition, it can effectively solve stochastic
problems within desired accuracy even for problems with high-dimensional stochastic
inputs; (2) the optimal data-driven stochastic basis can be used for various determinis-
tic forcing terms on the right-hand-side function of the elliptic PDE with random coef-
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ficients; (3) in comparing with the classic numerical solver, such as the Monte Carlo or
stochastic collocation methods, the ANOVA-DSM offers considerable computational sav-
ings when solving the same stochastic PDE many times with multiple forcing functions.
We should point out that when the variance of the SPDE solution is large, the current
version of the ANOVA-DSM method does not offer much computational savings as we
need to include higher-order ANOVA decomposition subproblems to solve. Currently,
we are adopting some model reduction ideas and developing a new version of DSM to
handle this class of problems.
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Appendix: An effective algorithm to determine F1 and F2

In this appendix, we propose an adaptive approach to determine the first-order active di-
mension set F1 and second-order active dimension set F2 in the ANOVA decomposition.
In this algorithm, the adaptivity is based on variance weight. A similar algorithm can be
developed based on the mean weight, see [27].

Adaptive algorithm for F1

1. Set the error threshold η = 0.99. Choose a set of test functions { fk(x)}K
k=0, which

can be the basis of f (x,θ) or decided by substituting randomly selected parameters
{θk}K

k=0 into f (x,θ).

2. For each test function fk(x), expand stochastic solution u(x,ξ; fk) into the first-order
ANOVA decomposition;

u(x,ξ; fk)=u0(x; fk)+
d

∑
j1=1

uj1(x,ξ j1
; fk). (A.1)

Solve each first-order ANOVA decomposition subproblem with the stochastic col-
location method or DSM to obtain the corresponding variance.

3. Let:

σ2( fk)=
d

∑
j1=1

σ2
j1
( fk)
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and assume the first-order terms σ2
j1
( fk) are sorted in descending order. The active

dimension set F1( fk) can be found by finding a set with the minimal number of
elements satisfied, such as in the following condition:

d

∑
j1∈F1( fk)

σ2
j1
( fk)≥ησ2( fk).

The first-order active dimension set F1 can be chosen as the union of all the sets
F1( fk), k=0,··· ,K.

Adaptive algorithm for F2

1. Set the error threshold η = 0.99. Choose a set of test functions { fk(x)}K
k=0, which

can be the basis of f (x,θ) or decided by substituting randomly selected parameters
{θk}K

k=0 into f (x,θ).

2. For each test function fk(x), expand stochastic solution u(x,ξ; fk) in the ANOVA
decomposition:

u(x,ξ; fk)=u0(x; fk)+ ∑
j1∈F1

uj1(x,ξ j1
; fk)+ ∑

j1<j2,(j1,j2∈F1)

uj1 ,j2(x,ξ j1
,ξ j2

; fk), (A.2)

where F1 is obtained by the adaptive algorithm. Solve each first- and second-
order ANOVA decomposition subproblem with the stochastic collocation method
or DSM to obtain the corresponding variance.

3. Let:

σ2( fk)= ∑
j1∈F1

σ2
j1
( fk)+ ∑

j1<j2,(j1,j2∈F1)

σ2
j1 j2

( fk)

and assume the second-order terms are sorted in descending order. The active di-
mension set F2( fk) can be found by finding a set with the minimal number of ele-
ments satisfied, such as in the following condition:

∑
j1∈F1

σ2
j1
( fk)+ ∑

(j1,j2)∈F2( fk)

σ2
j1 j2

( fk)≥ησ2( fk).

The second-order active dimension set F2 can be selected as the union of all the sets
F2( fk), k=0,··· ,K.
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