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Abstract. High order discretization schemes play more important role in fractional op-
erators than classical ones. This is because usually for classical derivatives the stencil
for high order discretization schemes is wider than low order ones; but for fractional
operators the stencils for high order schemes and low order ones are the same. Then
using high order schemes to solve fractional equations leads to almost the same com-
putational cost with first order schemes but the accuracy is greatly improved. Using
the fractional linear multistep methods, Lubich obtains the v-th order (v <6) approxi-
mations of the a-th derivative (« > 0) or integral (« <0) [Lubich, SIAM J. Math. Anal.,
17,704-719, 1986], because of the stability issue the obtained scheme can not be directly
applied to the space fractional operator with a € (1,2) for time dependent problem. By
weighting and shifting Lubich’s 2nd order discretization scheme, in [Chen & Deng,
SINUM, arXiv:1304.7425] we derive a series of effective high order discretizations for
space fractional derivative, called WSLD operators there. As the sequel of the previ-
ous work, we further provide new high order schemes for space fractional derivatives
by weighting and shifting Lubich’s 3rd and 4th order discretizations. In particular,
we prove that the obtained 4th order approximations are effective for space fractional
derivatives. And the corresponding schemes are used to solve the space fractional
diffusion equation with variable coefficients.
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1 Introduction

Fractional calculus (i.e., integrals and derivatives of any arbitrary real or even complex
order) has attracted considerable attention during the past several decades, due mainly
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to its demonstrated applications in seemingly diverse and widespread fields of science
and engineering [11]; and fractional derivatives provide an excellent tool for the descrip-
tion of memory and hereditary properties of various materials and processes [17]. With
the ubiquitous applications of fractional calculus, fractional partial differential equations
(PDEs) appear naturally. Effectively solving fractional PDEs becomes urgent, and in-
trigues mathematicians. It is still possible to analytically solve the linear fractional PDEs
with constant coefficients by using Laplace or Fourier transform, but most of the time the
solutions are represented by infinite series or transactional functions. Without doubt, the
new challenges also exist in numerically solving fractional PDEs; but some basic ideas
have been developed, for instance, finite difference method [15,20-22,25]; finite element
method [7,8,23]; spectral method [12,13].

In numerically solving fractional PDEs, besides a little bit complex numerical analy-
sis, the big challenge comes from the computational cost caused by the nonlocal proper-
ties of fractional operators. High order scheme is a natural idea to reduce the challenge
of cost. Comparing with first order schemes, the high order schemes for fractional oper-
ators do not increase computational cost but greatly improve the accuracy. The reason is
that both the derived matrixes corresponding to the higher order schemes and low order
schemes are full and have the same structure [3]. In fact, there are already some important
progresses for the high order discretizations of fractional derivatives, including WSGD
operator [22], CWSGD operator [24], second order discretization [4, 5,20], second order
discretization for Riesz fractional derivative [16], and WSLD operator [2]. This paper is
the sequel of [2], i.e, based on Lubich’s 3rd and 4th operators to provide new high order
discretization schemes for space fractional derivatives.

Using the fractional linear multistep methods, [14] obtains the v-th order (v <6) ap-
proximations of the a-th derivative (x >0) or integral (x <0) by the corresponding coeffi-
cients of the generating functions 6*({), where

5(0) = (ilm—@)f) | (1.1)

i—1t

For « =1, the scheme reduces to the classical (v+1)-point backward difference formula
[10]. For v=1, a >0, the scheme (1.1) corresponds to the standard Griinwald discretiza-
tion of a-th derivative with first order accuracy; unfortunately, for the time dependent
equations all the difference discretizations are unstable. By weighting and shifting Lu-
bich’s 2nd order discretization, a class of effective high order schemes for space fractional
derivatives are presented [2]. Is it possible to design the high order schemes for space
fractional derivatives by using Lubich’s 3rd, 4th, 5th, 6th order operators? This paper will
answer that at least by applying Lubich’s 3rd, 4th order operators, the new discretizations
for space fractional derivatives can be constructed. The concrete discretizations will be
presented, and the effectiveness of 4th order schemes for space fractional derivative will
be proved. And we will also provide a simple application to solve the space fractional
diffusion equation with variable coefficients.
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The outline of this paper is as follows. In Section 2, we derive the new fourth or-
der approximations for space fractional Riemann-Liouville derivatives, being effective in
solving space fractional PDEs. A simple application of the new discretization schemes
are presented in Section 3 to solve the space fractional diffusion equation with variable
coefficients. And in Section 4, the numerical experiments are performed to show the
effectiveness of the algorithm and verify the theoretical results. Finally, the paper is con-
cluded with some remarks in the last section.

2 Derivation of new fourth order discretizations for space
fractional operators

Based on Lubich’s 3rd and 4th discretizations, we derive new fourth order approxima-
tions for Riemann-Liouville derivative, and prove that they are effective in solving space
fractional PDEs, i.e., all the eigenvalues of the matrixes corresponding to the discretized
operators have negative real parts.

Definition 2.1. [17] The a-th (n—1 <« <n) order left and right Riemann-Liouville frac-
tional derivatives of the function u(x) on [x1,xgr], —c0 < x; < xg < o0 are, respectively,
defined by
Diu() =t [ ) (g
T - T(n—a)ox" Jy, ’
and 1) @
Q _ - R . n—a—1
D) = Fo g . @0 (@)

Lemma 2.1. [8] Let >0, u € C(Q)), QCR, then

F(—eDiu(x))=(—iw)*t(w) and F(+Diu(x))=(iw)*i(w),

where F denotes Fourier transform operator and ii(w) = F (u), i.e.,

ﬁ(w):/IReiwxu(x)dx.
Lemma 2.2. Let the function f(z) = (1+bz+cz> +dz%+ez*)". Then
f(0)=1, f(0)=ab, f"(0)=a(a—1)b*+2ac,
F"(0)=a(a—1)(a—2)b° +6a(a—1)bc+6ad,
F"(0)=a(a—1)(a—2)(a—3)b* +120(a —1) (x —2)b?*c+12a(x —1)c* +24a (a —1)bd +24ae,
and 2 e 4
£(2)= F(0+2) = FO+21 O+ S/ O+ £ (0)+ 20+ O,

Proof. 1t is easy to check that by the Taylor series expansion. O
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2.1 Derivation of the discretizations

In this subsection, based on Lubich’s operator (1.1), we do the expansions to get the for-

mulas of the coefficients when v=3,4,5; by the technique of Fourier transform, prove that

the operators have their respective desired convergent order; and by weighting and shift-

ing Lubich’s 3rd (and 4th) order operators, obtain new high order discretization schemes.
First, taking v=1, for all || <1, Eq. (1.1) becomes the following equation [17],

Y. (- (,‘;) g"=) LA, 2.1)
m=0

m=0

with the recursively formula

1
e, 1131,«:(1_%)11« m>1. 2)

m—1’/

Letting v=2, for all |{| <1, Eq. (1.1) has the following form [2],

3 1 ) “_ 3 2,0
(3-20+32) = (3) a-ora-zor Zl 7, 23)
with ‘
2,6 3 * 1,a711,a
L :<§> Z:; S Lt L (2.4)

where yi, =1 and 1,;* is defined by (2.2).
Setting v=3, for all |{| <1, Eq. (1.1) leads to the following form

(st

=<1—c)“(2——c —cz)

— i 13k, (2.5)
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with

B _ 11 "‘Zk:Z]: mo—j—mlagla jla 2.6)
kK — 6 — 0,”3 2%} m Fimtk—jr .
j=0m=

where 3= 7+j@i’ "z = 7724/51" i=+/—1and k=j+n, j=14m, and l,lﬂ"" is defined by (2.2).
Taking v=4, for all |{| <1, Eq. (1.1) reduces to the following form

12 12
B\ 3., 13, 23 \°
:<E> (1-0) (—gé3+%§2—£5+1>

~(Z) 1-0r-uor - 0-7i0)"

25 4 1 “ w25 23 13 1 “
(G -araci-30+3¢t) —0-07 (B0 57

then from Shengjin’s Formulas [9], we obtain

3a
o)
” 3a
4= ;
~b+} (VG- N)+ L (VVi+ Y Ta)i
3a

Ha= ’
—b+1 (Vi —V=T2) B (VY +V-T2)i

where a:—23—5, b:%, c:—%, d=1; A=b*—3ac, B=bc—9ad, C=c*—3bd; A=B*2—4AC>0,
Y)=Ab+3a(—B—V/A)>0, Y= Ab+3a(—B++/A) <0, and i=+/—1. Thus

<§_4€+352_§CS_’_%C4>06

12
25)"‘oo « a m (& N T LAY «
~(® (—1>"< )c" (—pa) ( )5’” (—7) ( )c (—m)"( )cf’
=) Leg, (2.7)
n=0
with
Jhe 5\ &k mo=i—mylagle e la

and [};* is defined by (2.2).
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Taking v =35, for all |{| <1, Eq. (1.1) has the following form
<16307 504502 — €3+§€4_%C5>a
«
N e
- (%) “(1 % <1_ ﬁ“gz 137€3 137€4>
<1>a(1_€)“ <C4—ZCS 137g2 163€ 137>

N <W>“(1—@”‘(1—1/5@“(1%6)“(1—#5@“(1—%@)“-

—~

According to Ferrari’s Formulas [18] and Shengjin’s Formulas [9], we obtain

Vs = : ;
— (b M)+ 1/ (b+M)2—16(y+ )
_ 4
Vs = ;
(b= M)+/ (b~ M= 16(y~ )
4
U5 = ;
—(b+M) =/ (b+M)2—16(y+ )
7 4
5= p
—(b—M)—/(b—-M)=16(y— )
wherea=1,b=—2, =27 g=_18 ,—17.5-1, b_—%,N—%”zl,&V %gZ'A/z b2 —3ac,
B:b5—9ﬁd,C252—3bd;A:B2—4AC<O;T—z‘glj43;°’2”3,9 arccos(T )y-%,amd
M=./8y+b*—4c, N=/by—d. Therefore, we have
137 5 1 R
(E—5§+5C C3+Z}€4_§€5> =Zol§'“€q, (2.9)
q:
where
5, 137 nok o J —-n =j—mjlagla 7l 1la 1l
"= ZOkZOZO ZO U TE LS TE et Pl Y (2.10)
n ] m=

and [3;* is defined by (2.2).
In the following, by using the technique of Fourier transform, we again list and simply
prove the convergent order of Lubich’s operator.
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Lemma 2.3 (Case v=1; [15]). Let u, oD% u(x) with a € (1,2) and their Fourier transforms
belong to L1(R), and denote that

[ee]

1
AR () = o0 Y 1= (m—p)h),

m=0
where Ly" is defined by (2.2) and p an integer. Then
—wDfu(x) =104, u(x)+O(h).

Lemma 2.4 (Case v=2; [2]). Let u, —oD%*"u(x) (or _oD*"2u(x)) with a € (1,2) and their
Fourier transforms belong to L1(R) when p #0 (or p=0); and denote that

1S e ,
1A u(x) =12 Y I u(x—(j—p)h),
=0

2,0 ¢ . .
where [T is defined by (2.4) and p an integer. Then
_eoDiu(x)= 1LA§'“u(x) +0O(h), p#0;
_oonﬁu(x):1LA$,""u(x)+(’)(h2), p=0.

Lemma 2.5 (Case v=3). Let u, oD% 'u(x) (or _D%"3u(x)) and their Fourier transforms
belong to L1(R) when p #0 (or p=0); and denote that

1 &5,
1LA;'“u(x):h—aZl;:" u(x—(k—p)h), (2.11)
k=0

where l,f"" is defined by (2.6) and p an integer. Then

_oonéu(x):1LA%‘"u(x)+(’)(h), p#0;
—eoDju(x)= 1LA2'“u(x)—|—(9(h3), p=0.
Proof. According to (2.5), there exist

f(lLAf;“u)(w):h”‘kili'“f(u(x—(k—;?)h)) ()
=0

o0
_ hfacefiwph Z li,a <eiwh> kﬁ(a))
k=0

_ - piwph (1_eiwh>“ <E B Zeiwh+182iwh> aﬁ(w)

6 6 3
. . 1— iwh \ & 11 7 . 1 .. aA
:(_lw)we—zw}’h< _quh > (Z_geIWh—FgeZIWh) u(w)

1—e2\* /11 7 1 &
— (i \XpPZ -z -2z =~
(—iw)%e < . > <6 66 +3e > i(w),
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with z= —iwh. It is easy to check that
— o
o7 1—e7*
z
« « 30c +a
1 - ger (- )2
3 & o 30c+oc _zx+zx 3
+(6P P g )
30+ 5, a’+a®  15a*+30a° 4507 —2u

B P Pt 5760
and from the Lemma 2.2, we have

7.1 ‘o 11, 14 a\°
<Z—6 +§ > _<1+§Z+EZ _ZZ —|—O(Z)

a(3a—1) 24 a(a+3)(a—4
24 48
then from the above equation and (2.12) we obtain

T—e=\*/11 7 . 1 * 2 20—
pZ< . > <___ Ttge Z> =1+Pz+p—z2+u23+0(24)' (2.13)

1 4 a3 4 5
+ (557t 357"+ )#+0(), @12)

:1+%z+ )z3+(’)(z4),

z 6 6 3 2 12

Therefore, from Lemma 2.1, we obtain
Fir Ay u)(w) = F(-eDiu(x)) +(w),
where ¢(w) = (—iw)* (pz+ 5 Py 2p 22234 O(24))i(w), z= —iwh. Then there exists

¢ (w)] SE]W!"‘”IM(W)!-PI/ p#0;
[p(w)] < cliw|*PJi(w)| K, p=0.

Hence
® 3,x ( ) P#O,
D) - A= o] < 5 [ pn={ gk P70
The proof is complete. U

Lemma 2.6 (Case v=4). Let u, _ooD* 1u(x) (0r _ooD¥*u(x)) with a € (1,2) and their Fourier
transforms belong to L1 (R) when p #0 (or p=0); and denote that

LAY u Z Liu —p)h), (2.14)

where Iy* is defined by (2.8) and p an integer. Then
—wDju(x) =11 A u(x)+O(h), p#0;
—eoDiu(x)= 1LA%’“u(x)+(’)(h4), p=0.
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Proof. According to (2.7) we obtain

F i Abu) (@) =h ™ io 4% F (u(x— (n—p)h) ()

— j—xp—iwph i [ (eiwh) nﬁ(w)

n=0
; ; 25 23 13 5 1 5.0,\"
— 1, ,—iwph (1_ zwh) - 1wh Y Riwh _ * Biwh \
h™~%e e 5 1¢ +126 1° i(w)
: 1—e@h\" 725 23 13 ion 1 sion\"
— (i & p—iwph zwh ¥ 2iwh _ = 3iwh |
(—iw)"e ( —iwh) <12 ¢ TRt f > i(w)

1—e*\"“/25 23 13 .. 1 2 \*.
=(—iw)* epz< . ) (E—E Z—I—Ee ZZ—Ee 3Z> i(w),

where z = —iwh. From Lemma 2.2, there exist

1 “ 1 1 29 “
<§—§ Z+Ee_2z——e_3z> <1+ z+— 2——z4+(’)(z5)>

12 12 12 4 2 12 144
oo a(Ba—1) 5 a*(a—1) 4 4
=l szt = g2 +0(z%),
then we obtain
1—e2\" /25 28 . 13 1 « 2 3
pz e Yz Y =2z~ =3z =1 P_ P_ . 2.15
‘ < 2 ><12 ¢t g ) TPty E H0E). @19

Therefore, from Lemma 2.1, we obtain
FrAy u)(w)=F(-eDyu(x))+¢(w),
where ¢(w) = (—iw)" (pz+ ’;—?zz—l— g—?z3+0(z4)> ii(w). Then there exists

|p(w)| <Clicw|Ma(w)|-h,  p#0;
|p(w)| < cliw|**ia(w) | -, p=0.

Hence
D) AU =101 < o [ F@lar={ Sk P2

The proof is complete. U
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Lemma 2.7 (Case v=>5). Let u, —ooD* 1u(x) (0r oD u(x)) with a € (1,2) and their Fourier
transforms belong to L1(R) when p #0 (or p=0); and denote that

[ee]

1
1LA?,’“u(x):h—aZlg'“u(x—(q—p)h), (2.16)
q=0

where lg"" is defined by (2.10) and p an integer. Then

—oDiu(x)= 1LA?,""u(x) +0O(h), p#0;
—eoDju(x)= 1LA?,”"u(x) +0O(K°), p=0.

Proof. According to (2.9) we obtain

[ee]

F Ay u)(w) Zh_"‘lzl,?’“f(u(x— (@=p)h)) (w)
=0

oo
— % iwph Zlg,zx (eiwh> qil\(w)
=0

:h—txe—iw}?h (1 _eiwh> o <137 _ 163 ez‘wh + gezmh _ EESiWh—F 1€4iWh> aﬁ(w)

60 60 60 20 5
1—e2\" /137 163 _, 137 ,, 21 o 1 _,\".
: )(m‘me ¢ “20° T3 >“<“’>'

= (—iw)"“eP* (
where z= —iwh. Using Lemma 2.2 leads to

137 163, 137 ,. 21 . 1 ,\*
(60 o0° Te° "2 5

1 1 1 “
= <1+—z+—z2——z4+(’)(z5)>

2 12 720
oo a(Ba—1) ,  a*(a—1) 5 15a*—30a%+502+20 4 5
_1+§z+ g Zt g ? 5780 z*+0(27),

then we obtain

eP? <1—ez>a <g_@e_2+ 1376—22_§e—32+%e—42>“

z 60 60 60 20
P2 2 P3 3 P4 4 5
:1+pz+jz NETETE +0(z”). (2.17)

Therefore, from Lemma 2.1, there exists

FAy*u)(w) =F (—eD5u(x)) +(w),
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where ¢(w) = (—iw)* (pz+ 52 +§—z + 5 z4+(’)( %))ii(w). Then we get

|p(w)| <Clicw|a(w)|-h,  p#0;
¢

[p(w)| < cliw|**|@(w)| B, p=0.

Hence
D) 1A ()| = 9] < - [ Bw)ldx= { o), 7o

The proof is complete. O

According to Lemmas 2.2-2.6, the fractional approximation operators have the same
form

1Ay u ZZV ” —p)h), v=1,2,3,4,5,

where l;’“, lf’“, l,‘:”“, l;f’“ and lk’ are, respectively, defined by (2.2), (2.4), (2.6), (2.8) and
(2.10). By the same idea of the proof in [2], we can get the following Theorems 2.1-2.6;
and for the simplicity, we omit the proofs here.

Theorem 2.1 (Case v=3,4; Second order approximations for left Riemann-Liouville deriva-
tive). Let u, — oD% ?u(x) with a € (1,2) and their Fourier transforms belong to L1(R). Denote
that
ZLAV""u(x) = w;’,lLAV""u (x) +wglLAZ""u (x), v=34, (2.18)
where 1LA“;’,’“ and 1LA are defined in (2.11); 1LA “and 1LA3’“ are defined in (2.14); w), = q_ip,
wy = p%q, v=23,4, and p, q are integers, p #q. Then
—eoDyu(x) =21 Aytu(x) +O(h?).

Theorem 2.2 (Case v=3,4; Third order approximations for left Riemann-Liouville deriva-
tive). Let u, — oD% 3u(x) with a € (1,2) and their Fourier transforms belong to L1(R). Denote
that

3Lqurs ( ) wy, qZLAV’D‘u(x)—|—w]r/,52LAly/”gu(x), v=3,4, (2.19)
where o1 Ay and o Ay are defined in (2.18), w 0= T, W= pqp _ v=34,and p, q, 1,5
are integers, pq #rs. Then
—eoDyu(x) = Lqurs (x)+0(h3)'

Theorem 2.3 (Case v=3,4; Fourth order approximations for left Riemann-Liouville deriva-
tive). Let u, — oD% *u(x) with a € (1,2) and their Fourier transforms belong to L1(R). Denote
that

4LA1/1X

o5 TS st (x) :w;,q,r,ﬁLA];;’,z,r,su(x) +w%ﬁ’7,§3L ?’ﬁ’mu(x), v=3,4, (2.20)
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where 31 Ay r,s and 31 Agz 5 are defined in (2.19), and

P,
w" _ C%ﬁiﬁ C ol — C;/J,q,r,s )
,q,7,S 4 ,q,7,8 ’
P C%,ﬁ,? 5 CI;/J,q,r,s P C];é,q,r,s - C%/qy s
where
5 _2pgrs(rs—p—q)+3a(pg=rs) 5 _ 2pqrs(r+5—p—q)+3a(pg—7s)
Pt 12(rs—pq) Loopars 12(75—pq)
and
4 _pasrts—p—q) 4 Pprs(F+i—p—q)
Pt 6(rs—pq) ~ PA"E 6(rs—pq)
and p,q,1,s;P,q,7,5, are integers, c;,q,,,s # C%,W,E' Then

—eo D3 (x) = 4LA;’,Z,r,s,ﬁ,§,7,§” (x)+O(h*).

For the right Riemann-Liouville fractional derivative, denote that
1 (o]
1R A, u(x) = h—ak;)lﬁ’““(ﬁ (k=p)h), v=1,2345, (2.21)

where l;"", l,%"", l,f"", l,‘f"" and l,f’“ are, respectively, defined by (2.2), (2.4), (2.6), (2.8) and
(2.10), and p is a integer. In particular, the coefficients in (2.22) are completely the same
as the ones in (2.18); and the coefficients in (2.23) the same as the ones in (2.19); and the
coefficients in (2.24) the same as the ones in (2.20).

Theorem 2.4 (Case v = 3,4; Second order approximations for right Riemann-Liouville
derivative). Let u, ;D% 2u(x) with a € (1,2) and their Fourier transforms belong to L1(R), and
denote that

R Apgu(x) =wpir Ay u(x) twgir Ay u(x), v=34, (2.22)

then
D (x) = 2r Ajiu(x) + O (H?).

Theorem 2.5 (Case v=3,4; Third order approximations for right Riemann-Liouville deriva-
tive). Let u, D% 3u(x) with a € (1,2) and their Fourier transforms belong to L1(R), and denote
that

3RAY g st (X) =Wy, R Ay u(x) +wy or Afgu(x), v=34. (2.23)

Then

+Doout(x) = 3rApg » 14(x) +0O(12).
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Theorem 2.6 (Case v = 3,4; Fourth order approximations for right Riemann-Liouville
derivative). Let u, D% u(x) with a € (1,2) and their Fourier transforms belong to L1(R),
and denote that

4RA1/06

/q/r’s/p’q/ # (x) :wulq,r,ngA;’,z,r,sM(X)ﬁ— %ﬁ? 3RAV“77M(X), 1/:3,4, (2.24)

P p,q,7,8
then

ngOM(X) = 4RAV ”

P.9.7,5,0,9.7,5 (x) +0 (h4) .

All the above schemes are applicable to finite domain, say, (x,xg), after perform-
ing zero extensions to the functions considered. Let u(x) be the zero extended function
from the finite domain (x7,xg), and satisfy the requirements of the above corresponding
theorems (Lemma 2.5 - Theorem 2.6). Taking

N 1 [Ftl+p
1LA;"XM(X):h_“ k;‘) L u(x—(k—p)h), v=34. (2.25)

O*), A% u(x) :w;uﬁ;’;"‘u(x)—I—wguﬁg""u(x);

P Pa
v Dyu(x) =3.Ap5 , s xX)+O(1?), 3LAY g st (X) =W} o1 Ao (x) +wy o Apu(x);
o Dfu(x) =4 AyS oo cu(x) +O(h*); (2.26)

s A s parst(X) =W g 3L Apg u(X) +Whg 7 ea1 Ay parst(%)-

Denoting x;=xp+ih, i=—m,---,0,1,--- ,Ny—1,Ny,-- ,Ny+m, and h= (xg —x1) / Ny being
the uniform spacestep, it can be note that

u(x;)=0, for i=—m,—m+1,---,0 and i=N,,Ny+1,---,Ny+m,

where
m=max(abs(p,q,7,5,7,9,7,5))- (2.27)
Then the approximation operator of (2.25) can be described as
z+p 1 i+m
k—m p
1 i+m

- Z eyt (Ximksm), (2.28)
k=
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where l;éfpf n=0, when k+p—m <0, and p is an integer. Then

i+m

~ 1 v
X1 Dféu(xz-) = 1LA1;;I"‘1,[(XZ') —|—O(h) = h_"‘ Z lkfpfmu(xi,ﬂm) —|—O(h), p 750;
k=0

. 1 i+m

x Dyu(xi) = 10 Ay u () + O(h") = 5 ];)l;(/fp*mu(xiflﬁrm) +O(1"), p=0;

« AV,0 2 1 iy vV, vIv,Q 2

o Dxu(xi) =2 Apgu(x;) +O(h”) = s ;)(wplkﬂ?fm+wak+q7m)u(xi,k+m) +0O(h%);
A 3 1 iy v,n v,K

v Dyu(x;) = 3LA;’,Z,r,s”(x) +O (1) = I ];)(w];;,qw;lk’+pfm"'wl;,,qw]q/lk;rqim

+w1}’/,5w;’/lzfr—m+w;’/,sw1s/l;(/fs—m)u(xl‘*k*Hﬂ) +O(h3)l

- 1 i+m

XL ng”(xi) = 4LA;’,Z,r,5,ﬁql7,§u(xi) +O(h4) - h_“ Z @Z,au(xi—k+m) +O(h4)/ (2-29)

k=0

where

v __ 0V v VIV v v VIV, v v VIV,
gDk - wP,qfrfswP,qulk+pfm +wp,q,r,swp,qwq lkJrqu +wp,q,r,swr,swr lk+rfm

v viV,x v v
parsVpalplkpm T WparsUp Vel g m

v v o VIV,N v vV Vv,
W5 WrsWr st W sWrsWs s (230

v Vo VUK v Vv,
TWp,q,r,sWr,sWs s mtwy !

Taking U = [u(xo),u(x1), -+, u(xn,)]?, then (2.28) can be rewritten as matrix form

1

A U= o Ay, (2.31)
where
i l;,u l;’fl e l(])/’a )
A A
V,x v,n v,K v,u v,
lp+2 lp+1 lP lp—l lO
AI;J,D( = ll/,DL .. *. ll/,tx ll/,tx ll/,DL . ll/,tx 7 (232)
n—2 : p+1 p p—1 0
v,x .. .. v,x v,x o
lp+n_3 . . lp+1 lp lp—l
lv,a lv,ac . lv,a . 1« lv,ac lv,a
L"p+n—-2 “p+n-3 n—2 p+2  “p+l p A
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and [;"* =0, when k <0, and p is an integer. From (2.26) and (2.31) we obtain
Ayl = ;A”u Ayt =wp Ayt +wp AV
Lﬁpq,su hlA;;,j;,su Al =W Ay ALY (2.33)
Al =T A; arsparsth Apurspars=VparsArarst UparsApars

Similarly, for the right Riemann-Liouville fractional derivative, assume that

" 1 [?]JFP
v,
1RAZ'“u(x):h—“ kZ;) L u(x+(k—p)h).
Then there exists
_ Nx i+p 1 Ny—i+m "
1RA1;;'“ X;) h Z l x1+k—p) T Z l;cler m u(Xiyk—m)
k=m—p
1 Ny—i+m
v,
_h_a Z lk-‘,—p mu(xi-i-k—m)/
k=0
where [} pem =0 k+p—m <0, and p is an integer. And the fourth order approximation
is
_ Nx i+m
xDzRu(xi):4RAZ',ZJ,5,§,§,75 u(x;) +0( h4 Z q)k x1+k—m)+0(h4)/ (2.34)

where ¢, is defined by (2.30), and the matrices forms are

~ 1
1RA1;,’D(U = I BV"‘U Bva (Avoz)
~ 1
2RA];;”‘:;L1 =i B;gll B;:g = w;’,B;'“—l—wZBg 4

(2.35)

1
AV,& v,0 v, v,0 v,
3RAY g U= i = Byars, Bpars wp quq—l—w sBrss

~ 1
V,x _ VK v,0 _ v, v v,u
4RAY s parsH = he U parsparE U, By orspars=WparsBparstWparsBrgrs
Remark 2.1. We want to emphasize that for v =3 and 4 the coefficients in (2.18) are
the same, but they correspond to different discretization schemes; the same thing also

happens for (2.19), (2.22), and (2.23).

Remark 2.2. When p=0, « € (1,2) and v=23,4, then A" in (2.32) reduces to the lower
triangular matrix, and it can be easily checked that all the eigenvalues of A}" are greater
than one. This is the reason that the scheme for time dependent problem is unstable when
directly using the v-order (v=2,3,4,5) Lubich’s operator with a € (1,2) to discretize space
fractional derivative.
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Remark 2.3. If « <0, {l;{”“},‘f’zo (v=1,2,3,4,5) correspond to the coefficients of the v-order
approximation of fractional integral operators.

Example 2.1. To numerically verify the truncation error given in Lemma 2.7 (v =5,p=0)
in a bounded domain. We utilize the approximation (2.28) to simulate the following
equation

NG .
when a <0, the fractional operator (D is a fractional integral operator; if « € (0,1) we
take 1(0)=0; and if a € (1,2) let u(0) =0, u(1) =1; the exact solution of the above equation
is u(x) =x8.

Table 1 numerically verifies Lemma 2.7, and shows that the truncation errors are

o).

Table 1: The maximum errors and convergent orders for the second equation of (2.29), when v=5, p=0.

h a=-05 Rate a=05 Rate =138 Rate
1/10 8.0041e-04 4.0005e-03 6.9882¢-02
1/20 4.9935e-05 4.0026 2.0652e-04 4.2758 2.8034e-03 4.6397
1/40 2.1214e-06 4.5570 7.8935e-06 4.7095 1.2005e-04 4.5454
1/60 3.0790e-07 4.7601 9.3316e-07 5.2661 1.3775e-05 5.3397

2.2 Effective fourth order discretization for space fractional derivatives

This subsection focuses on how to choose the parameters p,q,7,s,p,q,7,5 such that all the
eigenvalues of the matrix A% (v =_3,4) have negative real parts; this means that

p.a.7.8,p478
the corresponding schemes work for space fractional derivatives. Since B;’g v, 5,75 18 the
v,a , .
transpose of Ay rspars We don't need to discuss them separately.

Lemma 2.8. [19, p.28] A real matrix A of order n is positive definite if and only if its symmetric
part H= A+TAT is positive definite. Let H € R"*" be symmetric, then H is positive definite if and
only if the eigenvalues of H are positive.

Lemma 2.9. [19, p.184] If Ac C"*", let H= A+TAH be the hermitian part of A, then for any
eigenvalue A of A, the real part R(A(A)) satisfies

)\min(H) S §R()\(A)) S /\max(H)/

where Amin(H) and Amax(H) are the minimum and maximum of the eigenvalues of H, respec-
tively.
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Definition 2.2. [1, p.13] Let n x n Toeplitz matrix T, be of the following form:

to tq SRR & tl—n_
t to to1 oty
T,=| : H to o I |;
fo_p e ISP
|1 th—2 - h to |

ie., t;j=t;_;and T, is constant along its diagonals. Assume that the diagonals {f };~ i “
are the Fourier coefficients of a function f, i.e.,

t —i/7T fx)e ™ dx
k_27_[ . 7

then the function f is called the generating function of T),.

Lemma 2.10. [1, p.13-15] (Grenander-Szegd theorem) Let T}, be given by above matrix with
a generating function f, where f is a 27-periodic continuous real-valued functions defined on
[—7t,7t]. Let Amin(Ty) and Amax(Ty) denote the smallest and largest eigenvalues of T, respec-
tively. Then we have

frnin S )\min(Tn) S )\max(Tn) Sfrnax/

where fmin and fmax is the minimum and maximum values of f(x), respectively. Moreover, if
fmin < fmax, then all eigenvalues of T, satisfies

fmin < )\(Tn) <fmax;
for all n>0; In particular, if fmin >0, then T), is positive definite.

Lemma 2.11. Let A} be given in (2.33), (p,q) = (1,9), q is an integer (7#1), 1 <a <2 and
denote that
AV P + AV S
H), = M v=34. (2.36)

Then the generating function of Hy , is

f;;’,q(a,x):<2sin32c> a5 +b3) :. { Zcos( §+9)—x>
+w5cos<¢x(g—§ 0)— qx)}, (2.37)

where w; and wg are defined in (2.18), 0 = —arctan %,

(11—7cos(x)+2cos(2x)), bz=—(7sin(x)—2sin(2x));

O\lH
O\lH
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and

1
1= (25—23cos(x)+13cos(2x) —3cos(3x)),

by= % (23sin(x) —13sin(2x)+3sin(3x)).
Proof. (1) For (p,q) = (1,4), 4 <0, we have Ayg =wj Ay +wj Ay and

- U v,0
JC PN
(% ¢ ¢y

v,a
AP/‘J_ 4
Vv,0 .. .. V,0 V,0
) A« S
_4’1\}x_1 ‘Pl\}x—z ‘Pz’ 471' i
with
wy v, 0<k<—g,
(Pv,oc _ Pk q
k viVv,u vV,K _
wpl " +w lk+q v k>-—q.

The generating functions of A;/g and (Ayg)T are

fA“" Z¢va i(k—1)x and f(A"fl‘" Z(Pvzx —i(k—1)x
I Pq

respectively. Then
favs () + fravayr (x)
Foalon)= k ,
is the generating function of Hy ;. Since f4ux(x) and f(4va)r(x) are mutually conjugated,
then f; _(a,x) is a 27-periodic continuous real-valued functions defined on [—7,77]. More-
over, f;’q («,x) is an even function, so we just need to consider its principal value on [0, 7t].
According to the following equations

(1—e)t = (25in2 ) 05, (a,—byi)" = (2+17) e

where v=3,4 and 6 = —arctan . then we have

fA3a Z(PSa i(k—1)x C;e—ix Zli,aeikx+wse—iqxle’a{’,aeikx
k=0 k=0
7 i 1o \" ; ; 11 7, 15.\"
zx(l 6 ) ( gezx_+_3621x> _’_wgefqu(l_elx)a <€_661x+5621x>

3
P
% Zx(l e ) (ﬂ3—b3l) +w €_iqx(1—€ix)a(a3—b3i)“
3
P
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and
A‘“‘ 24)404 i(k—1)x —ix 21404 1kx+wgefiqx leéf,aceikx
k=0
B 25 23 13 oiv 13 \”
=, (12 2° ¢ 1
25 23 13 T U
—igx 1— 2ix _ — 3ix
+w e 1% (1— )" < +¢ e )
:wée”x(l—e )* (ag —bgi)" wge’lq"(l—ei")“(a4—b4i)“
; X\% . (x_ & [ ; X\& . (x_m L
—wpe ™ <2sin§) e(373) (a3 4+13) % e+ wie ™ <2sin§> ¢*(272) (a2 4-b3) 7 ¢

. X\« 4 X_migy_ ;
:<2sm§> (aﬁ—kbi)z{ [( 3—5+0) x)]+w361

By the similar way, there exists

Fuagyr ()= (2sin3)" @) {ape (5509 e 0-0)] .

Therefore, it is easy to get

qu“x <Z¢vo¢1kl +Z¢va—zk1)

:(ZSing) (av+b12,)7-[w2cos< (f——+9) )+w5cos(rx(§—g+9)—qx)].

2 2
(2) For (p,q)=(1,9), 9>2, we have A5 =

o v,0 V0 V,0 -
(PP ¢p—l (PO
V,K V,K V,0 V0
()bp+1 Py ‘Pp_l P
, V,0 Vv,0 Vv,0 V,0
4’p+2 4’p+1 ‘PP (prl o Po
Av,ac_
- V,0 V,0 V,0 V,0 V,0
P usy P P Py Po
v,x v, v,0 V,K
¢p+n73 (Pp—H (PP (Pp—l
V,0 V,0 v,0 5 v, v,
_(Pp+n—2 (Pp+n—3 (Pn—Z ¢p+2 ¢p+l 4)?7 _
with
wh -2
(Pv,a_ — q 4
k viV,x viv,u
wak +w lk g+17 k>g—2.

w, Ayt + ngZ’“ and
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The generating functions of A;g and (Ayg)T are

g (x 24’””‘ DY and  fragr(x)= Y gpte O,
k=0

respectively. Then

v =+ vaNT
£ (@ x) = fAM( x) 2f(AM) (x)/

is the generating function of Hy, ,.
By the similar way, for 4> 2, their exists

ate) =) s (5~ F 00 s (G099

It can be noted that f; ,(«,x) has the same form when g<0and 4>2, p=1. Then Hy A has
the generating function

Foala)=(25in3 )" (al+80)* [wjcos (a(5 — 5 +0)—x) +ujeos (57 +6) —ax) |
The proof is complete. O

Theorem 2.7 (Case v =3,4; Effective 4th order schemes). Let A, , =: AV,Z,r,s,p,q,r,s with 1<
x <2, be given in (2.33) and (p,q,7,5,7,9,7,5)=(1,—1,1,2,1,—1,1,3). Then any eigenvalue A of
Ay o satisfies

R(A(Ave)) <0, v=34,
and the matrices Ay, and A; . are negative definite.

Proof. Take

A AT
HY = Avatfve _ =w' . w' HY 4w

v
2 P s p.g-p.4q pqrswrers

where Hy ,, H;;, H; - and Hy; are defined in (2.36). Then

[ (a,x) :w;,q,r,swz qf;ﬂ/q (a,x) +w1;1,q,r,sw1r/sﬂ/s ()

is the generating function of Hy, where f; (a,x), fls(a,x), f7z(a,x) and fi5(a,x) are
given by (2.37). And there exists f¥(a,x) <0 (see Figs. 1-2), when (p,q,7,5,9,9,7,5) =
(1,-1,1,2,1,—1,1,3).

Since fY(a,x) is not identically zero for a € (1,2), from Lemma 2.10, it implies that
A(HY) <0, and HY is negative definite. Then we obtain R(A(A,)) <0 by Lemma 2.9, and
the matrices A, , and AVT, « are negative definite from Lemma 2.8. O

IN
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o)
o)

xe 0] oe(12] xe 0] oe(12]

Figure 1: f¥(a,x) for v=3. Figure 2: fV(a,x) for v=4.

3 Simple application to space fractional diffusion equation

Similar to the discussions in [2], in this section, we apply the 4th order discretizations to
solve the following fractional diffusion equation with variable coefficients

ou(x,t)
ot

=d (x), Dyu(x,t) +d_(x) Dy u(x,t)+ f(x,t). (3.1)

In the time direction, the Crank-Nicolson scheme is used. The 4th order left fractional
approximation operator (2.29), and right fractional approximation operator (2.34) are re-
spectively used to discretize the left Riemann-Liouville fractional derivative, and right
Riemann-Liouville fractional derivative.

Let the mesh points x;=x; +ih, i=—m,---,0,1,--- ,Ny—1,Ny,--- ,Ny+m, with m in (2.27)
and t, =nt, 0<n <N;, where h = (xg—x1)/Ny, T=T/N,, i.e., h is the uniform space
step size and T the time step size. Taking u! as the approximated value of u(x;,t,) and
d+,l‘ = d+ (.X‘l'), d,,l‘ =d_ (xi), fin-i-l/2 :f(xi,tn+1/2), where tn+1/2 = (tn +tn+1) /2.

The full discretization of (3.1) has the following form [2]

[I— ‘ (D+Au,a+D,A3,a)}u”+1

2h~
T
_ [1+ﬁ (D+Ay,a+D_AVT, )} un 4 tFnt/2, (3.2)
where A, , =: A;’;/nsf@ﬁ with 1 <a <2, v=3,4, are given in (2.33), and
dip d—p
d d_
D.= o , D = ! , (33)
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and

ut= [ug,uil,---,u”Nx]T, Fr+1/2 [f61+1/2/ ln+1/2/___/flr\l]+1/2]T_

X

By the same way given in [2], we can theoretically prove that the difference scheme
is unconditionally stable and 4th order convergent in space directions and 2nd order
convergent in time direction; the proofs are omitted here.

Theorem 3.1. [2] Let D_ =x,D_, where x, is any given nonnegative constant, then the differ-
ence scheme (3.2) with a € (1,2) is unconditionally stable.

Theorem 3.2. [2] Let u(x;,t,) be the exact solution of (3.1) with a€(1,2), and u!! be the solution
of the finite difference scheme (3.2). If D_ =x,D_, then there is a positive constant C such that

u(xi,ty) —uf]| < C(T2+h4), i=0,2,---,Ny; n=0,1,---,Nj,

where K, is any given nonnegative constant.

4 Numerical results

In this section, we numerically verify the above theoretical results including convergence
rates and numerical stability. And the /., norm is used to measure the numerical errors.

Example 4.1. Consider the fractional diffusion equation (3.1) in the domain 0 < x <2,
0 <t <1, with the variable coefficients d (x) =x", d_(x) =2x*, the forcing function

f(x,t) =cos(t+1)x*(2—x)* —x¥sin(t+1) re) (B 42(2—x)%%)

Ir'(9—a)
— F{s(f)a) (x7—f¥+2(2—x)7—a)+24F(r7(i)‘x) (x5 42(2—x)57%)
_32F(r6(f)¢x) (x5—0¢+2(2—x)5—a)_|_16F(F5(E)“) (x4_"‘+2(2_x)4—04) ’

and the initial condition u(x,0)=sin(1)x*(2—x)*, the boundary conditions u(0,t)=u(2,t)=
0, and the exact solution of the equation is u(x,t) =sin(t+1)x*(2—x)*.

Table 2 shows the maximum errors at time ¢ =1, and the time and space stepsizes are
taken as T="h?. The numerical results confirm the accuracy O(t%+h*).

Example 4.2. Consider the fractional diffusion equation (3.1) in the domain 0 <x <1,
0<t<1, with the variable coefficients d (x) =x*, d_(x) =2x". Take the exact solution of
the equation as

u(x,t)=e 'sin((2x)*)sin((2—2x)*),



538 M. Chen and W. Deng / Commun. Comput. Phys., 16 (2014), pp. 516-540

Table 2: The maximum errors and convergent orders for the scheme (3.2) of the fractional diffusion equation
(3.1) at t=1 and T=Hh2, where (p.q.rsp475)=(1,-1,121,-1,1,3), v=3,4.

v=3h a=1.1 Rate a=15 Rate a=1.8 Rate
1/10  1.8349e-02 2.1073e-02 2.3337e-02
1/20 1.4015e-03 3.7107 1.8381e-03 3.5191 2.3106e-03 3.3362
1/40 8.8517e-05 3.9849 1.2004e-04 3.9367 1.6131e-04 3.8404
1/80  5.2342e-06 4.0799 7.5382e-06 3.9931 1.0478e-05 3.9443
v=4,h a=1.1 Rate a=1.5 Rate a=1.8 Rate
1/10  1.7241e-02 9.6037e-03 5.8735e-03
1/20  7.9269e-04 4.4430 5.2600e-04 4.1905 3.4793e-04 4.0774
1/40  3.4558e-05 4.5197 2.4926e-05 4.3994 2.1158e-05 4.0395
1/80 1.4824e-06 4.5430 1.1512e-06 4.4364 1.3045e-06 4.0196

Table 3: The maximum errors and convergent orders for the scheme (3.2) of the fractional diffusion equation
(3.1) at t=1 and T=h?, where (p,q,7,5,5,4,7,5) = (1,-1,1,2,1,—1,1,3), v=4.

v=4,h a=1.1 Rate a=1.5 Rate a=19 Rate
1/40  5.1032e-003 2.5532e-003 1.2331e-003
1/60  1.0232e-003 3.9632 4.7936e-004 4.1253 2.2225e-004 4.2260
1/80 2.7637e-004 4.5500 1.2643e-004 4.6329 6.3485e-005 4.3554
1/100 9.9946e-005 4.5581 4.4540e-005 4.6753 2.2081e-005 4.7328

then the corresponding initial condition u(x,0) = sin((2x)*)sin((2—2x)*), the boundary
conditions u(0,t) =u(1,f) =0; and the forcing function

fx,t)=—e""sin((2x)*)sin((2—2x)*) —e'dy (x)x, D¥sin((2x)*)sin((2—2x)*)
—etd_ (x)fo;Rsin((Zx)‘L)sin((2—2x)4);

by the algorithm given in [6], we can numerically obtain the values of f(x,t) at anywhere
of the considered domain with any desired accuracy.

Table 3 also shows the maximum errors at time =1, and the time and space stepsizes
are taken as T =h?. The numerical results further confirm the accuracy O(t2+h*).

5 Conclusions

For solving classical differential equations, usually people think that the high order
schemes can reduce computational cost for getting some requested accuracy, i.e., they
think that the improved accuracy can overtake the increased workload. For the issue of
computational cost of fractional differential equations, the high order schemes play more
fundamental role; since they can greatly increase the accuracy but without adding new
cost. As the sequel of [2], based on Lubich’s 3rd and 4th operators, this paper further
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provides new 4th order schemes for space fractional derivatives. The effectiveness of the
new discretizations is verified theoretically and numerically.
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