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Abstract. In Markov Chain Monte Carlo (MCMC) simulations, thermal equilibria quan-
tities are estimated by ensemble average over a sample set containing a large number
of correlated samples. These samples are selected in accordance with the probability
distribution function, known from the partition function of equilibrium state. As the
stochastic error of the simulation results is significant, it is desirable to understand the
variance of the estimation by ensemble average, which depends on the sample size
(i.e., the total number of samples in the set) and the sampling interval (i.e., cycle num-
ber between two consecutive samples). Although large sample sizes reduce the vari-
ance, they increase the computational cost of the simulation. For a given CPU time, the
sample size can be reduced greatly by increasing the sampling interval, while having
the corresponding increase in variance be negligible if the original sampling interval
is very small. In this work, we report a few general rules that relate the variance with
the sample size and the sampling interval. These results are observed and confirmed
numerically. These variance rules are derived for the MCMC method but are also valid
for the correlated samples obtained using other Monte Carlo methods. The main con-
tribution of this work includes the theoretical proof of these numerical observations
and the set of assumptions that lead to them.
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1 Introduction

The Monte Carlo method has successfully been applied to a wide variety of applica-
tions, which include the solution of integral equations by the Markov Chain Monte
Carlo (MCMC) method [1], the Boltzmann equation by the Direct Simulation Monte
Carlo (DSMC) method [2] and stochastic partial differential equations by a multilevel
Monte Carlo method [3]. We focus our discussion on the MCMC method. An essential
part of many scientific problems is to evaluate an integral in a high-dimensional space X
with the integrand containing a weighting function f(X) (probability distribution func-
tion of the configuration X) which is large in some area but close to zero almost every-
where else. The computational cost of evaluating the integral by conventional quadra-
ture schemes is prohibitive since it demands a large number of quadrature points inside
a high-dimensional space. This integral can be estimated by the average value of the inte-
grand over a large number of configurations sampled inside the domain randomly, inde-
pendently and uniformly, using the Monte Carlo (MC) method. Metropolis and Ulam [4]
(see [5]) dubbed this simulation method Monte Carlo since it uses a large number of ran-
dom fractions generated by a computer. The accuracy of the MC method can be im-
proved by using the importance sampling scheme [6], which generates configurations
non-uniformly but according to an artificially selected probability density function g(X),
which is close to f(X), so that more probability mass is assigned to those configurations
with higher probability [5-7]. In order to ensure the sampled configurations remain in-
dependent, the process demands the primitive function G(X) of g(X) and its inverse
function X(G). Unfortunately, it is not feasible to find such g(X) in most applications of
interest. Rather than generating independent configurations, the Metropolis method [1],
which still uses the importance sampling idea, generates (possibly) correlated configura-
tions from the original f(X) by a Markov chain. The Markov chain makes the algorithm
simple and universal. This method is known as MCMC method [7]. Since the samples are
correlated with each other, the variance of MCMC simulations with the same sample size
is larger than the variance of the MC simulations using independent configurations. Ad-
ditionally, the variance of MCMC simulations usually depends on the sampling interval.

The use of averages is common in scientific studies and many quantities related to
thermal equilibria are averaged properties, measured in real experiments over large num-
bers of particles and long time intervals. If the ergodic hypothesis applies to the system at
the molecular level [5], we can compute those quantities by ensemble averaging instead
of time averaging using the probability distribution function f(X), known from the par-
tition function of the equilibrium state, an idea stemming from statistical mechanics. The
MCMC method is a powerful tool based on ensemble averaging idea that can be used to
calculate the quantities related to the thermal equilibrium state.

A system with fixed particle number N, volume V, and temperature T can be de-
scribed by a canonical ensemble (constant-NV T), with the probability distribution func-
tion containing only the coordinates of the N particles as independent variables. This
description is valid for systems where the quantities of interest only depend explicitly
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on the location of all the particles. MCMC simulations of this system apply a random
sequence of displacements to randomly selected particles. This random selection of par-
ticles and displacements is known as a trial move. The sample sequence that it forms
generates a (correlated) Markov chain. The correlation degree of this sequence depends
on the maximal random displacement applied, that is, the step size that determines the
acceptance rate of the trial move.

Most real experiments are carried out under conditions of controlled pressure and
temperature. Thus, the isobaric-isothermal ensemble (constant-NPT) is widely used in
MCMC simulations where the particle location and the volume of the system are ran-
domly modified to visit all possible configurations according to their respective probabil-
ities. Here, the step size of the volume-changing trial move also influences the correlation
degree of the successive configurations.

In adsorption studies where the chemical potential y is fixed, instead of the particle
number N, the grand-canonical ensemble (constant-1 V' T) is used to calculate the average
particle number. The corresponding MCMC method includes a displacement trial move,
as well as a trial insertion and removal of particles, with a step size usually fixed to one
particle. That is, only one particle is tentatively inserted or removed from the volume
each time. The acceptance ratio of particle insertion and removal is very small and thus
results in a high-correlation degree of the related successive configurations. This correla-
tion degree cannot be reduced because the step size is already the minimal divisible unit,
one particle.

For the simulation of coexisting phases, important in many engineering applications,
the MCMC algorithms based on the traditional ensembles described above suffer some
important drawbacks. For example, limited computational resources imply that the num-
ber of particles used to represent the phase-coexistence system is relatively small. Thus,
a large fraction of all particles used reside in the vicinity of the interface between phases.
This induces a bias towards the interfacial properties when ensemble averages are com-
puted, rather than including a balanced representation of the bulk phases.

In the literature several improvements to the traditional sampling have been pro-
posed. In [8], a Gibbs-NVT MCMC method, where the total particle number, total vol-
ume, and temperature are fixed, was proposed to alleviate these algorithmic restrictions.
This Gibbs-NV'T scheme combines NVT, NPT and uVT ensembles for simulating co-
existing phases. This combination skillfully avoids the interface predominance by intro-
ducing two subsystems modeled as separate boxes. This model allows particles to swap
from one phase (box) to the other, while neglecting the potential energy between parti-
cles from different phases. Additionally, volume exchanges are allowed between the two
boxes while the total volume is conserved. The acceptance ratio of particle swap is very
small, as was the case for the grand-canonical ensemble simulation. This limitation can
be particularly severe when the density of the dense phase is relatively very high and be-
comes important when modeling deposition and separation of dense liquids and solids.
This drawback is avoided in the Gibbs-Duhem integration method [9-11]. Nevertheless,
this integration scheme needs the initial point on the coexistence curve, and thus relies



470 J. Lietal. / Commun. Comput. Phys., 16 (2014), pp. 467-490

on the use of another method that can provide this initial point. If one of the coexisting
phases is a crystal, the method proposed in [12] improves the acceptance probability of
exchanging particles.

The MCMC method based on Gibbs ensemble has successfully been applied to prob-
lems related to water systems [13], as well as oil production and processing [14-20]. In
these applications, the solubility of hydrogen sulfide and other corrosive components in
the gas-hydrocarbon mixtures is important data. Nevertheless, this solubility is poorly
understood due to the lack of experimental results. In Gibbs-NV T ensemble simulations
of two coexisting phases, there are three kinds of trial moves: particle displacement, vol-
ume exchange, and particle swap. In order to reduce the variance of the simulation re-
sults by decreasing the correlation degree of configurations, we adjust the step size for the
first two trial moves. A discussion of the relationship between the variance and the step
size of particle displacement is given in [5] but it is usually difficult to obtain a general
rule for such a relationship. Recently [21], the liquid-vapor coexistence of methane was
simulated by the Gibbs-NVT MCMC method. Then, the variation of mole fraction with
pressure in a two-component system at a phase coexistence state was studied with the
Gibbs-NPT MCMC method proposed in [22], where the total particle number, pressure,
and temperature are fixed.

When Markov chain evolution is used for Monte Carlo simulations, it is not advisable
to sample the system for the quantities of interest after each cycle, namely each trial move.
Saving a large number of samples to reduce the stochastic noise contained in the samples
requires a large amount of memory if the correlation is high; instead, the system is sam-
pled at intervals (sampling interval). The larger the sampling interval is, the smaller the
correlation degree of the collected samples will be. The same applies to the variance with
fixed sample size (i.e., the total number of sampled cycles). The computational time is
almost proportional to the product of the number of samples collected and the sampling
interval. Thus, increasing the sampling interval either increases the CPU time when keep-
ing the number of samples constant, or increases the variance of the results when keeping
the CPU time constant. Nevertheless, our simulation results show that a good trade-off
between the CPU time and memory usage can be achieved. In this paper, we describe the
Gibbs-NVT MCMC method and employ it to model the coexisting phases of a Lennard-
Jones (L-]) fluid. To make the problem tractable for the following theoretical analysis, we
analyze the influence of the sampling interval and sample size on the variance of the sim-
ulation results on an idealized fluid, rather than the L-] fluid system. Finally, a general
theoretical analysis is proposed to justify and prove some of the empirical observations
and rules proposed.

2 The Markov Chain Monte Carlo method

Let the following integral define the expected value of A [5]:
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o fRAX)X
o f(XdX

where X is a high-dimensional vector and the formulas of A(X) and f(X) are given. To
compute (A), it is convenient to use the MCMC method to generate correlated configu-
rations X; after each cycle with a probability density proportional to f(X). Unknown
constant coefficients contained in f(X) are canceled in the MCMC computation pro-
cess. The system is sampled at intervals during the simulation and the configuration
Xj at each sampled cycle is used to estimate the expected value (A) by the average value

(A) (2.1)

A= %Z?:lA(Xj) over 1 samples.

2.1 Basic algorithm of MCMC method

The algorithm of MCMC method [1] for solving the general integral (2.1) can be summa-
rized as follows:

1. Initialization of configuration }_f;
2. For each cycle:

(a) Apply trial move changing X to X';
(b) Apply acceptance criterion to the new X’;

3. Sample the system at regular intervals (after every d cycles);

4. Stop after getting sufficient samples for analysis.

The initial configuration can be selected randomly from within the domain Q) of the
definition of the configuration space. The Markov chain is generated by randomly mod-
ifying the current configuration X into X’ using the trial move algorithm.

The algorithm outlined in steps 1 to 4 should satisfy the ergodicity and time-reversal
conditions. The ergodicity condition requires that from the current configuration X it
is possible to visit any X’ € Q) % by a limited number of trial moves. The time-reversal
condition requires that the probability for the current configuration to change back to its
previous state is larger than zero. The probability density of the trial move event (X —X')
is denoted by a(X — X'). Any new configuration X’ generated in step 2a will be accepted
or rejected in step 2b based on the following acceptance criterion: X' is accepted if the
random number distributed uniformly inside [0,1], Rf, is less than

(X' = X)f(X)
WX —=XNf(X)’

or rejected otherwise. This means that the acceptance probability is equal to

L X = X)f(X)

acc(X —X')=min |1, ——— =2
a(X—=X")f(X)
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This selection for the acceptance probability is based on the detailed balance condition
for the equilibrium state, which can be stated as

—

F(X)a(X = Xace(X =X =f(Xa(X' = X)acc(X' = X),

and also on the fact that
min|[1,f]

min[1,871] =P

The algorithm can be simplified significantly by using symmetric trial moves such that
the probability density of the trial move from X to X’ is equal to the probability density
of the reverse move, that is, (X — X') = a(X’ — X). The detailed balance condition is a
sufficient but not a necessary requirement, while in [23] the weaker “balance condition”
was shown to be a necessary and sufficient requirement.

Samples are collected in step 3 after the simulation has reached the statistical steady
state, that is, after an initial transitional period. The quantities of interest are estimated
from samples collected every d cycles.

2.2 MCMC algorithm based on Gibbs-NVT ensemble

We discuss single component systems and assume that each molecule is modeled as a
single particle. In the Gibbs-NV T ensemble [8], as described in [5], the probability density
distribution function f and the related partition function Qg are expressed as

VI (V=) N Niexp[—B(Us + )]
Qc(N,V,T)VANN ((N—Np)!

F(N,V1,51,52) = (2.2)

and

N vV oo . .
Qs(N,V,T)= Y /O / / F(N1,VA,51,52)d5,d5d Vs, (2.3)
N1:0

where T is the fixed temperature of both boxes, V is the fixed total volume, V; is the
volume occupied by box 1, N is the fixed total particle number, N; is the particle num-
ber inside box 1, §1 and §2 are high-dimensional vectors that contain the normalized
positions s; of all particles inside boxes 1 and 2, respectively, where the normalization
parameters are each of the box sizes, which are Vll/ Sand (V-V))V3, A=h/\/2tm/B
is the thermal de Broglie wavelength, / is the Planck constant, m is the molecular mass,
B=1/(ksT), kg is the Boltzmann constant, and U, =U;(Sy,V}) is the total potential energy
of box 1, namely a summation of pair potential energy u;; contributed by particles i and
j inside box 1. The probability density distribution function, given in Eq. (2.2), and the
related partition function, given in Eq. (2.3), are obtained after completing the integra-
tion with respect to the momentum variables. Here, the configuration X consists of Ni,
Vi, §1 and §2. In general, we can take U; as a function U (Nl,V1,§1,§2), although it only
depends on Ny, Vj, and §1. Since we have formula (2.2) for f (Nl,V1,§1,§2), the expected
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value (U;) can be defined as (A) using Eq. (2.1). Similarly, we can define the expected
values of (Uy), (p1), (p2), (V1), (V—=V1), (p1) and (p2) using the following definitions of
their transient values as functions of Ny, V7, S 1and §2. In the MCMC simulations, the suc-
cessive configurations X; are generated by a Markov chain according to f (N1,V1,51,5,),
and the samples of the quantities of interest can be determined from the configurations
)_fj at the sampled cycles.

The parameter Qg(N,V,T)VA3N in the denominator of Eq. (2.2) is constant and
avoided in the MCMC applications since only the ratio f(X)/f(X) is computed to de-
termine acc(f( —~ X ), as discussed in Section 2.1. During the simulation process, Ny, V3,
S; and S, are randomly selected in each cycle and tentatively changed by the correspond-
ing symmetric trial moves (see Fig. 1, where As and AV are the corresponding step sizes).
We compute acc(X — X') =min 1,f (X" /f(X )] using the following formula to avoid the
evaluation of Qg (N,V,T)VA3N:

V) (V= V)N Niexp [ B(U;+ )]

f(N11V1151/S2)O< N]'(N—Nl)'

. (2.4)

For Lennard-Jones (L-]) fluids, we have:

uijzuL-J(r>=4e[(5)12—(5)6], (2.5)

r r

where € is the depth of the potential well, ¢ is the finite distance at which the pair po-
tential energy is zero, and r = |7; —7;|, where 7; are the coordinates of particle i, computed
using the normalized §; as well as the size of the box concerned. To simplify our compu-
tations, we replace Eq. (2.5) by a truncated potential such that

u up—j(r), r<rg
ij=u t(r):{o i(r) r>rc (2.6)
7 Ce

An explicit summation of u;; under periodic boundary conditions takes into considera-
tion the infinite periodic images of all particles. Additionally, a correction term due to
the contributions beyond the cutoff distance r, is added to determine the total potential
energy for each box. Taking box 1 as an example, the correction for the total energy U,

is [5]
. 87TN? 1/ 0\’ c\°
ul=——ler’ |- (—) —=(—) |, 2.7
1 3V1 € 3 T’C,1 1’C11 ( )

where . 1 is the cutoff distance for box 1. We use 7. 1 :0.45V11/ 3 and rep=0.45(V — Vl)l/ 3
which implies that boxes with different volumes have different cutoff distances. The
total potential energy after the tentative trial move at each cycle is computed to deter-
mine f(X'). The transient pressure, which is computed only at the sampled cycles, can
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(c) Particle swap between boxes: Nj =N;+1, N;=N—Nj

Figure 1: Schematic model for trial moves with the Gibbs-NVT MCMC method.

be calculated using the following definition [5]:

_leBT+ 11 / _dur
WV 3V121.].ﬁ dr )’

p1 (2.8)

where the factor 1/2 is used to correct for double counting of the pair-wise contributions
and 7i is a vector of three integers ranging from (—o0,00) through which we can represent
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the contributions by the infinite periodic particle images. The truncation of Eq. (2.6) at the
cutoff distance is also applied to the explicit summation of Eq. (2.8) to limit the number
of effective pairs. The correction for pressure p; due to truncation is [5]

. 167TN? 2/ 0\’ c\°
tail _ 1 (73 il — = . 2.9
Pro="gvz © [3 <r6,1> (1’6,1) @9)

In MCMC simulations, it is convenient to use non-dimensional quantities. The result-
ing non-dimensional system is defined by the following normalized quantities: number
density p} =03p1 =0°N; / V3, pressure p} = p10° /€, temperature T* = Tkg /€, and energy

..
ul-j—u,]/e.

2.3 MCMC simulations using Gibbs-NVT ensemble

We designed the MCMC code according to the above algorithm based on Gibbs-NVT
ensemble and ran the simulations for the phase-coexistence study of a L-J fluid on a Dell
workstation (Dell T7500 running Ubuntu 12.04, Intel(R) processor Xeon(R) CPU X5650
@ 2.67GHz, RAM: 47GB). The cutoff distance for the two boxes is fixed at 45% (smaller
than a half) of the corresponding box size, which is modified after each accepted volume
exchange trial move. One thousand particles are used in our simulations and the initial
normalized density of the two boxes is p;. ;. = 0.3, unless otherwise stated.

In each cycle, a trial move is applied. It is selected randomly out of three possible
cases (displacement move, volume exchange, particle swap, see Fig. 1) that are assigned
different probabilities. The probability for selecting the displacement trial move is 0.9,
0.01 for volume exchange and 0.09 for particle swap. After a transitional period (about
Linit =2 % 107 cycles for the current simulations), we sample the system every 50 cycles
(d=50).

The initial values of As and AV are chosen to be 0.1 (see Fig. 3). In order to have
the acceptance ratios of the related trial moves be close to user-defined values, the step
sizes are modified by an adaptive algorithm (see the source code mentioned in the pref-
ace of [5]) using the collected information. These step sizes are reset at the end of each
Ladjust=5% 10° cycles. The adaptive procedure used ensures that, by the completion of the
initial Linit cycles, the step sizes of the different trial moves are such that the acceptance
ratios of those trial moves are approximately equal to the predetermined value (e.g., 0.5
in the current simulations). Once the transitional Liyi; cycles are executed, the step sizes
are kept fixed for the remainder of the simulation. Fixing the step sizes ensures the sym-
metry of the following trial moves.

For T*=0.9, Fig. 2 shows that the normalized density, volume, and pressure of the two
boxes are converged after the predetermined Linjt =2 X 107 cycles. Before the Lini; cycles
are complete, the step sizes As and AV are adjusted, the related achieved acceptance
ratios are changed correspondingly, and finally approach the predetermined value of 0.5
as shown in Fig. 3 (left). After Lini; cycles, the step sizes are fixed to their latest values and
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Figure 2: Evolution of normalized densi-
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Figure 3: Evolution of acceptance ratios and step sizes, T*=0.9 (left) and T*=1.25 (right).

the related acceptance ratios fluctuate about 0.5 as desired. Fig. 3 (left) also shows that the
acceptance ratio of particle swap between boxes is only about 0.0026 for T*=0.9 because
of the very high density of box 1 (see Fig. 2). This situation only worsens as density
increases. As discussed in the introduction, this acceptance ratio cannot be improved
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when T* is fixed, even though it results in a high-correlation degree of the successive
samples. If instead T* is increased from 0.9 to 1.25, the acceptance ratio of particle swap
is increased to about 0.06, as shown in Fig. 3 (right) because the density of the dense
phase is decreased. The results of p* for different values of T* are shown in Fig. 4. They
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include a comparison with results computed using the equation of state presented in [24]
and MCMC simulations [5].

As shown in Fig. 2, the statistical noise of the simulation results is larger in the dense-
phase box than in the lower-density box. A similar observation is made in [5]. For ex-
ample, the simulation results of T* =1.25 with the same initial density value of 0.3 are
shown in Fig. 5, where we observe that the intensity difference of statistical noise of the
two phases is reduced by decreasing the density difference.

3 Blocking method for estimating the variance

In the following discussion, we replace A of Eq. (2.1) by x, as used in the blocking method
described in [25] to represent the sampled quantities of interest, including pressure, num-
ber density, volume, and total potential energy of each box. In MCMC simulations, each
sample x; is a measurement of a random variable x with an exact but unknown prob-
ability distribution, from which we define the expected value (x). We use the average
value ¥= 1Y | x; to estimate (x). This estimation is then unbiased as (¥) = (x). If the
measurements can be taken as independent, the variance ¢?(X) of the estimation using
X is inversely proportional to the size n of the sample set. But, if they are correlated, the
variance then also depends on the sampling interval d between two successive samples.

In the blocking method, the following transformation is employed to decrease the
sample size till n' =2

n'=n / 2.
After each blocking step, we get a new value for
/ n’
S (x| —2)2, (3.2)

g

n'—1  (n'—1)n’

which increases during the blocking process and approximates ¢?(x) if convergence is

achieved. n,cél denotes the value we compute in practice. The value at the convergence
point is used to estimate the variance of the average value and this estimation is unbi-
ased [25]. If the blocking process does not converge, the largest value during the blocking
process is a lower bound of the variance [25]. Convergence happens if the sample set cov-
ers a span which is several times larger than the maximal correlation interval 7, so that
the “blocking” variables x/ at the convergence point are independent Gaussian variables.
The subtlety of the blocking method is to decrease the correlation degree of the new sam-
ple set (x})i1,... ,» making the correlated functions vy, = ) <x > < >< > i #j tend to
zero.

The definition of 0?(%) is given in Eq. (5.2) using the correlation function ; j- An al-
ternative scheme to estimate 0(%) is to directly select an estimator for 7; - This selection
needs to be done carefully since the most obvious estimator for 7; ; is a biased one, as its
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expected value is not exactly equal to 7;; [25]. As shown in [25], the estimator of o2 (%)

. ch s . . o c s
using -2 is unbiased since the expected value of %5 at the convergence point is equal

to 02(x). Additionally, the blocking method is more efficient than many other estimators
of o?(x) [25].

4 Influence of simulation parameters on the variance

We take the set of samples after each cycle as the full sample set. If the trial move at the
current cycle is accepted, the current sample is different from the previous one. If the trial
move is instead rejected, the configuration remains unchanged and the current sample is
the same as the previous one. The repeated samples induce a high correlation degree in
the sample set, and are reasonable from a statistical point of view. Unfortunately, they
only contain little useful information. The lower the correlation degree is, the smaller
the variance with a given sample size will be. Instead of sampling after each cycle, we
could, for example, add a sample to the set after each d cycles. The new sample set will be
referred to as coarse sample set, which is a subset of the full sample set. We can reduce the
correlation degree of the coarse sample set by increasing d. The total number of samples
in this coarse set is denoted by n. In MCMC simulations, only the coarse sample set is
stored, and the memory or disk usage can be reduced significantly by having d be much
larger than one. The average value and the corresponding variance are calculated using
the coarse sample set.

In the above simulation of a L-] fluid with T*=0.9 in Fig. 2, we observed more statisti-
cal noise in box 1, which has the denser phase. Fig. 6 (left) also shows that the variances,
estimated by the blocking method, of the normalized density and pressure of box 1, are
larger than those of box 2 (the final wild fluctuation is due to numerical instabilities when
n’ becomes very small). Their volume variances are the same since the total volume V
is fixed, which is consistent with the data shown in Fig. 2. The relative differences in
variance of the number density and the pressure between the two boxes are reduced in
Fig. 6 (right) compared to these in Fig. 6 (left) due to the increase of T*, which is consistent
with the comparison between Fig. 5 and Fig. 2.

Now, we discuss the variances of the simulation results of T* =1.25. Fig. 5 implies
that 0 (p1) is larger than 02 (p>) but Fig. 6 (right) shows that the variance 0?(p,) of p; of
the dense phase is smaller than 0?(p, ), which is different from the observation of T*=0.9
where the dense phase has a larger variance. Fig. 6 (right) also shows that 0?(7;) is
smaller than ¢2(p, ), although o (p) is larger than ¢(p;) as shown in Fig. 5 where the
variation of p; ranges from about -0.2 to 0.4, and p; varies from about 0.45 to 0.55. Eq. (5.2)
gives the definition of the variance ¢%(¥) of ¥ as a summation of the correlation functions
7i,j, which can be replaced by «; where t = |i —j| is the interval between the two samples
of x; and x;j. Although vo(p1)>70(p1), as vo(p1) =0>(p1) and yo(p1) =0?(p1), the decay
speed of 7¢(p1) with the increase of ¢ is much faster than that of ;(p1), as shown in Fig. 5,
where p; has periodic fluctuations of scales larger than those observed in the fluctuations
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Figure 6: Variance estimates by the blocking method, T*=0.9 (left) and T* =1.25 (right), n=22% and d =50,
P1 and P2 are the variances of average pressures in boxes 1 and 2, respectively, D1 and D2 are the variances of
average densities in boxes 1 and 2, respectively, and V1 and V2 are the variances of average volumes in boxes 1
and 2, respectively.

of p1. Thus, 0(P,) can be smaller than ¢?(p, ) even though ¢ (p1) > 0(p1) according to
Eq. (5.2). A similar interpretation applies to the observation of 0?(p,) < 0% (p,).

The CPU time is proportional to the total cycle times Ly, which is almost equal to
nXd (Liotal = Linit +1 x d, but the cycle times Lini; before convergence is negligible). We
discuss the influence of n and d on the variance in what follows. The rules that we obtain
are expected to be independent of the particular MCMC simulation used to generate the
correlated sample set. Therefore, an ideal system, which is simpler than the L-]J system
and makes the simulation more efficient, is used in the following simulations.

In the ideal system, the total particle number N is equal to 12, and particle coordinates
only take integral numbers s; = £1 as in the Ising model. The probability distribution

function becomes
exp [— (U1 -+ Uz)]

S1,S. 41
f(N1151/SZ)0< Nl'(N—Nl)' ’ ( )
where the total potential energy Uy =—]} -1,y §;8; is a summation over all pairs (the pe-
i<j<Np

riodic images of the particles are neglected here) located inside box 1 (the same for U>),
and ] =0.1, so that the acceptance ratio is not too small. For this model, we only need the
trial move of particle swap and the spin trial move which randomly selects a particle and
changes the sign of s;. The properties of the two boxes are equivalent, thus the correlation
degree of their sample sets is the same. We use the energy samples of U; and U, as x;
to compute n,cél using Eq. (3.2). The MCMC simulation results show that the blocking
processes of the sample sets of U; and U are very similar as shown in Fig. 7. During the

/
blocking process, only the evolution of —r%; at the initial stage provides useful informa-
tion relevant to the approaching process to the variance. As n’ shrinks, the evolution of
the blocking process becomes unstable, leading to wild fluctuations that can be arbitrar-
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Figure 7: Blocking process of energy sample sets from the two boxes of the ideal system.

ily large, either increasing or decreasing the computed value. These oscillations are due
to numerical instabilities and only serve to bound the trustworthy region of the blocking
computation. These instabilities do not cause any problem if n,c 2 converges before losing
stability, as seen in Fig. 7 (left). Thus, the value at the convergence point can be used to es-

timate the corresponding variance. But, in some cases where n,c—él cannot converge before
losing stability (see Fig. 7 (right)), it is difficult to judge where the separation point of the
two stages is located. That is, the lower bound of the variance, namely the largest value
before losing stability, is unknown. When using two sample sets with the same correla-
tion degree, their initial stages should be the same while their final stages are random,
which makes the separation point of the two stages easy to find. As shown in Fig. 7 (left)
using 7 =2% samples, the two curves overlap with each other and deviate after block-
ing 14 times which is the separation point. As it converges before the separation point,
the variance for these two sample sets is about 3.3x10~7. In Fig. 7 (right), while using
220 samples, the two curves overlap with each other before blocking 10 times (the sepa-
ration point) but are still not converged. This gives us the lower bound of the variance,
which is about 1.84 x 107°. This is the largest value achieved before losing stability. Using
different sample sets with similar correlation degrees simplifies the computation of the
lower bound of the variance. Nevertheless, in real MCMC simulations, this would incur
in prohibitive computational demands in terms of memory usage and CPU time. Thus,
as shown in Fig. 7, we propose to use the first maximal point in the blocking process as
the separation point and to estimate the lower bound of the variance. This observation
is justified by the fact that n,cél is a theoretically non-decreasing quantity, while the os-
cillations shown in Figs. 6 and 7 can be justified by the loss of stability in the blocking
computation.

Table 1 displays the variance for different combinations of n and d. The rows of Table 1
correspond to a fixed sampling interval, d, which implies that the correlation degree for
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Table 1: Variance of Markov Chain Monte Carlo simulation results with different sample size n and sampling
interval d.

n=22% n=2% n=2% n=2%0
d=2" 33x1077 13x107® Notconverged Not converged
d=22 82x107% 33x1077 1.4x107° Not converged
d=2* 23x107% 9.1x10°8 3.6x1077 1.5x107°
d=2° / 43x1078 1.7x1077 6.8x1077

*Note: “Not converged” refers to simulations where the blocking process becomes unstable
before achieving a definite maximum, as shown in Fig. 7 (right).

the coarse sample set is also fixed. As observed in Table 1, for fixed d, the variance
is almost inversely proportional to the sample size n. This feature is well known for
independent sample sets but deserves further theoretical analysis for a general sample
set. The CPU time is almost proportional to n X d as mentioned before. Thus, the variance
with fixed d is also almost inversely proportional to the CPU time and so, it is the most
rewarding choice for reducing the variance to increase n in view of CPU time. Using
V(n,d) as the variance at (1,d), we observed in Table 1 that:

V(ng,d) —m

Vi) = (4.2)

Although increasing 7 is an efficient choice for reducing the variance in view of CPU
time, it has an onerous cost for memory or disk usage. For d =1, the variance becomes
very small only if 7 is very large which makes the memory requirement unacceptable. In
order to reduce the variance while keeping the memory or disk usage low, we decrease
the correlation degree of the coarse sample set by increasing d. For n=2%4, the variance
decreases to about a quarter of the previous value when d increases from one to four,
which is almost as efficient as increasing # in view of CPU time, also increased four times.
But, when d increases from 16 to 64 with the CPU time being increased four times again,
variance is reduced to 0.47 times the previous value, instead of 0.25 times as the ideal
value, from 9.1 x 1078 to 4.3 x 10~8. This is wasteful with regard to CPU time, because we
can choose to increase 1 from 224 to 226 while fixing d at 16, with CPU time increasing by
four times too, but with the variance decreasing to about 0.25 times the previous value
(9.1x1078 to 2.3x 10~?), as already pointed out above. The following theoretical analysis
can further prove that

dl V(Tl ’ dz)

& “Vind)

where d > dq. The equality holds when the samples of the coarse sample set of d; are
already independent and so the correlation degree of the coarse sample set cannot be
further reduced by increasing d.

Usually, we also want to know how to reduce the variance for a given CPU time,
namely n xd. In the case of small d, the magnitude of the variance is more dependent

<1, (4.3)
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on the CPU time. The larger the CPU time is, the smaller the variance will be. Given the
same CPU time, the larger the sample size n is, the smaller the variance will be. In the
case of large d though, the magnitude of the variance depends more on the sample size
n and in the limit case, becomes independent of d. In fact, these rules are nothing new
compared with Egs. (4.2)-(4.3), from which we have that

V(le,dz) _ n1V(Tl2,d2)
V(Tl],d]) lev(n2/dl),

(4.4)

such that

l’lldl < V(le,dz) < E

. 4.5
nady ~ V(ny,dy) ~ np 45

For ny xdy =ny xd, corresponding to the same CPU time, Eq. (4.5) can be replaced by a
special form using a new variable V’'(CPUtime,d), such that

V'(CPUtime,d,) cm

1 ,
< V/(CPUtime,dy) ~— ny

(4.6)

where dy >d;, as required in Eq. (4.3).

The maximal correlation interval T of the full sample set can be estimated by the
sampling interval d and the blocking times before convergence, because the ‘blocking’
variables x! at the convergence point are independent Gaussian variables [25]. For the
case of Fig. 7 (left) with n=22° and d =1, the blocking process converges after blocking
about 11 times. The estimation of 7 is thus 21! xd =211 In Table 2, we present the esti-
mates of T for different sampling intervals d and sample sizes 1, reported in Table 1. The
data shows that when the blocking processes converge, different n and d lead to similar
estimates of 7, with a value close to 2!!. This is to be expected as we are using different
d and n to sample the same random experiment, where the correlation degree of the full
sample set is fixed. For the variance analysis of Table 1, all coarse sample sets satisfy the
conditions of d < T and nd>> 7, which are required in the following theoretical analysis
of the relationship between variance and the sampling parameters d and 7.

Table 2: Blocking times before convergence used by different coarse sample sets from the same random exper-
iment.

n=2% p=2% n=2%2 n=2%
d=20 11 11 Not converged Not converged
d=2? 9 8 9 Not converged
d=2* 8 7 7 7
d=2° / 5 5 5
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5 Theoretical analysis

In Section 4, we describe some empirical rules between the variance and the sample
size n and sampling interval d, namely Eqs. (4.2)-(4.3). These rules are independent of
the blocking method used to calculate the variance and reflect the underlying feature of
the statistical rules, which are independent of the Monte Carlo methods used to generate
the correlated samples. The theoretical analysis in this section justifies these rules.

Let x1,x2,---,x, be the full sample set of a random variable x in a MCMC simulation
at thermal equilibrium, which has the following features [25]:

vt,

(o) — () (37) = () — () (), i = 1], G-l

where (---) denotes the expected value with respect to these exact but unknown prob-
ability distributions. In MCMC simulations, we estimate the expected value (x) by the
average quantity Y=2Y" , x;. The variance of X is [25]:

2oy =2\ =2 1§ 1
o (x) =(x%) — (%) :F‘Zl%'f:ﬁ
ij=

n—1
Yo+2) (1—%> vt] , (5.2)
t=1

where 7;; = (xixj) — (x;) (xj) and y; = vt = |[i—j|. The variance ¢*(X) of the average
value ¥ differs from the variance ¢?(x) of the random variable x itself. We have ¢?(x) =
7ii = Y0, which is a fixed value for a given random variable x, with a fixed probability
distribution, while ¢?(%) depends on n and d. We define the maximal correlation interval
T for the full sample set as ; ~ 0, where t > 7 (see Fig. 8). In MCMC simulations, it is
reasonable to assume that

1 X 1
;ZW:‘,;’ZUZ(X)—EUZ(X)ZO, (5.3)

ij=1

i#]
where the equality holds when the samples are independent of each other. Fig. 8 shows
some representative results of y;; in usual MCMC simulations. Fig. 8 (left) shows the
results of a high-correlation sample set compared to Fig. 8 (middle). In the limit case
where all samples are independent, 7;; is equal to a constant 0?(x) for i =j and zero
otherwise, as shown in Fig. 8 (right). We use these schematic models only to show the
contour distributions, the monotone interval and the location of maximal value. These
models make it easy to understand the following linear interpolation scheme.

Theorem 5.1. In MCMC simulations, the correlation degree of the full sample set is given, thus T
is fixed. For a general coarse sample set with fixed d, the variance o (X) is inversely proportional
tonifnxd>Tt.
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Figure 8: ¢ of representative sample sets with different correlation degrees.

Proof. We introduce Y,={y;,| Ypi=X(i-1)a+1,i=1,2,+ ,n} containing n samples generated
once from each d cycles. For an arbitrary 4, Eq. (5.2) is modified to define the variance
o*(y,) as

1

2 —

v (]/b)—p Z Vij
i=(kj—1)d+1
j=(k=1d+1
ki,kal,---,n

n—1 t 1
2 1—— ~—
Yo+ ;:1 ( n) Ytd "

Assuming nd > T, making ¢ < 1, we conclude that

n

T/d t
Yo+2) (1— E) %d] . (5.4)
t=1

n

) 1 T/d f 1 T/d
o (Yy) = 70+22<1——> Yea | == | 10+2Y_ Y (5.5)
n =1 n n t=1
which is inversely proportional to n and consistent with Eq. (4.2). O

Remark 5.1. The relationship between the variance and the sample size in Theorem 5.1
is well-known for an independent sample set but holds for a correlated sample set only
if nd>> 7. This requirement is satisfied in the data presented in Tables 1 and 2. If d>> T,
making the samples in Y, independent, 0%(7,) is always inversely proportional to n even
if n is small, which can be understood from the definition of Eq. (5.2) where v; =0, >0,
for independent sample sets.

Theorem 5.2. Given two sample sets with the same sample size n but different sampling intervals
dy and dy (dy > dy), respectively. If ndy > T, ndy > 7 and d1,dy < T, their variances satisfy

d1 0’2 (n,dZ)
_— T 2L .
& = P (mdy) =
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Figure 9: Schematic model for the summations with d=4 (left) and linear interpolation model (right).

Proof. We first discuss two sample sets: Y, ={y4i|Ysi=xi,i=1,2,---,nd } containing n xd
samples and Y, = { yb,l-| Ypi=X(i-1ay1, =12, ,n} containing n samples generated once
from each d samples of Y,,. From Eq. (5.2), we have:

_ 1
o (ya) = (?ld)Z ZZ;?:l Yijr

_ 1 (5.6)
0> (Jy) = 5 L i1 Vi
e j=k-1)d+1
kik:=1,-n

1 ]7
As shown in Fig. 9, Zﬁle is a summation over all vertexes (without repeating) of small
black quadrilaterals, but

i=(kj—1)d+1
j=(kj=1)d-+1
k,-,k]-:I,---,n

is a summation over only the bottom-left vertexes of larger quadrilaterals, which are
marked by red and blue colors and have indexes k;,k; € [1,1].

In the area of each blue quadrilateral, ()¢, centered at the maximal value of y; (see
Fig. 9), it can be observed that

2
d Y v < Y mi<d® Y. v (5.7)
i=(k;—1)d+1 1,j€Mplye i=(kj=1)d+1
j=(kj=1)d+1 j=(kj=1)d+1
kikj€Opye kikj€lue

where the equality holds when 7, =0, t > 0. This can be understood by considering one
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of the blue quadrilaterals in Fig. 9 (left), while realizing that the leftmost summation,

kj, kjeﬂblue

only contains the bottom-left corner of the blue quadrilateral, namely a maximal value
which lies on the diagonal. Multiplying this maximal value by d will be lower or equal
to ) jeqy. Vij, having d maximal terms and other terms with smaller but still positive
values. The second part of the inequality stems from the fact that d* is multiplying one
maximal term, and this will always be greater than }; icq,, . 7ij, having d? terms, with
only d terms taking maximal values.

In the area ()4 of those red quadrilaterals located always at the monotone interval
of v+, we assume d is much smaller than 7, and thus the linear interpolation is valid in
each small local red area of size d. For the representative red quadrilateral shown in
Fig. 9 (right) with k; =2 and k; =1, we have 751 =2 =73 =s4. According to linear
interpolation, we get 76 1+752="772+763="783+ 7742751, Y71+ V53 =782+ V642751
and g1+ 54 ~275,1. Thus, we have the following estimate

Z 71]’“4 Y 'Yi,j:42')’5,1- (5.8)

5, i=(kj—1)4+1
1/“‘/4 j=(kj=1)4+1
ki=2k;=1

—
Il

Generally, the following approximation for any arbitrary red quadrilateral is valid:

2
Y vjgd Y v (5.9)
1,j€ed i=(kj=1)d+1
j=(kj—1)d+1
k,,kje()red

According to Egs. (5.7)-(5.9), we have

2 2
d Z 7i,j+d Z '71]< Z 71]<d Z Yi,j- (5-10)
i=(kj—1)d+1 i=(k;—1)d+1 i,j=1 =(k;—1)d+1
:(k —1)d+1 ]:( ~1)d+1 (k ~1)d+1
ki kjeoblue all ki k] red,all kl',kal,---,n

At this point, we assume Eq. (5.3) is valid and apply it to the sample set Y;,. Considering
thatd >1 and d%2 >d, we get

nd
2
d Y, S Y mi<d ) mig (5.11)
i=(kj—1)d+1 i,j=1 =(k;~1)d+1
j=(k; 1)d+1 j= (k 1)d+1

kk] kk]
/1 1]1
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where the equality holds when =0, t >0. Substituting Eq. (5.11) into Eq. (5.6), we have

o Ezyb) <0(7,) <(T,). (5.12)

We introduce Y. ={yi|yci=x;,i=1,2,---,n} which contains n samples as Y}, and has the
same correlation degree as Y,. Since n>> T and nd > T according to the assumption, the
conclusion of Eq. (5.5) implies that

2 —
7 e) _md _, (5.13)
o> (y,) n
Substituting Eq. (5.13) in Eq. (5.12), we get
1 o*(y,)
l < )
7 < 2(7) = 1, (5.14)
with which the proof is complete. O

Remark 5.2. Taking the sample set with d; in Eq. (4.3) as Y. and the other as Y}, we ob-
serve that Eq. (4.3) is equivalent to Eq. (5.14) proved here. If the sample set Y, (namely Y;)
has a high correlation degree, the summation over area ()4 is dominant (see Fig. 8 (left))
o*(7,)
7*(y.)

Zz gbg =1 if the samples in Y, are independent.

and converges to J according to Eq. (5.9) which implies 0 (y,) =02 (7, ). In contrast,

The assumptions of Theorem 5.2 are that ndy > 1, nd, > 7 and d,d, < T, which are
satisfied in the data shown in Tables 1 and 2. In real applications, nd should be much
larger than T since otherwise the variance of the average value is very high, which makes
the average value not trustworthy. For the selection of d, we suggest to let 4 be much
larger than 1 to reduce memory usage. In addition, we also suggest to let d be much
smaller than T as otherwise this leads to loss of too much correlated information that can
still reduce the variance effectively. The two necessary assumptions can thus be easily
satisfied in real applications.

6 Conclusions

The influence of the sample size n and sampling interval d used in MCMC simulations
on the variance of the average quantities is analyzed using numerical results and proved
theoretically. If nxd is much larger than the maximal correlation interval T of the full
sample set, the variance of the estimation using a coarse sample set with fixed d is in-
versely proportional to n and the CPU time. For a given CPU time, the memory or disk
usage (namely the sample size) can be reduced greatly by increasing d, while getting a
negligible increase in variance if the original d is very small.
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In the implementation of the blocking method, the blocking process is subject to in-
creased fluctuations when the sample size n’ is reduced; in particular, the fluctuation
gets worse when 1’ approaches two. The current results show that the fluctuation starts
near the first maximal point obtained during the blocking process. Additionally, the cor-
responding maximal value can be used as an estimate of the variance if the blocking
process converges, or as a lower bound estimate of the variance if the blocking process
does not converge.
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