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Abstract. In this work, we are concerned with a time-splitting Fourier pseudospectral
(TSFP) discretization for the Klein-Gordon (KG) equation, involving a dimensionless
parameter ε∈ (0,1]. In the nonrelativistic limit regime, the small ε produces high oscil-
lations in exact solutions with wavelength of O(ε2) in time. The key idea behind the
TSFP is to apply a time-splitting integrator to an equivalent first-order system in time,
with both the nonlinear and linear subproblems exactly integrable in time and, re-
spectively, Fourier frequency spaces. The method is fully explicit and time reversible.
Moreover, we establish rigorously the optimal error bounds of a second-order TSFP
for fixed ε=O(1), thanks to an observation that the scheme coincides with a type of
trigonometric integrator. As the second task, numerical studies are carried out, with
special efforts made to applying the TSFP in the nonrelativistic limit regime, which are
geared towards understanding its temporal resolution capacity and meshing strategy
for O(ε2)-oscillatory solutions when 0< ε ≪ 1. It suggests that the method has uni-
form spectral accuracy in space, and an asymptotic O(ε−2∆t2) temporal discretization
error bound (∆t refers to time step). On the other hand, the temporal error bounds for
most trigonometric integrators, such as the well-established Gautschi-type integrator
in [6], are O(ε−4∆t2). Thus, our method offers much better approximations than the
Gautschi-type integrator in the highly oscillatory regime. These results, either rigorous
or numerical, are valid for a splitting scheme applied to the classical relativistic NLS
reformulation as well.
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1 Introduction

The relativistic Klein-Gordon (KG) equation in d-dimensions (d = 1,2,3) reads, under a
proper non-dimensionalization [6, 26–28, 30, 31, 43],

ε2∂ttu(x,t)−∆u(x,t)+
1

ε2
u(x,t)+ f (u(x,t))=0, x∈R

d, t>0, (1.1a)

with initial conditions:

u(x,0)=φ1(x), ∂tu(x,0)=
1

ε2
φ2(x), x∈R

d. (1.1b)

The KG equation is also known as the relativistic version of the Schrödinger equation
and used to describe the motion of a spinless particle; see, e.g. [13, 34] for its derivation.
In this work, u= u(x,t) is considered to be a real-valued scalar field, the dimensionless
parameter ε> 0 is inversely proportional to the speed of light, φ1 and φ2 are two given
real-valued functions independent of ε. f (·) is a real-valued function describing the non-
linear interaction, independent of ε and satisfying f (0)=0. The KG equation (1.1) is time
symmetry or time reversible and conserves the energy, provided that u(·,t)∈H1(Rd) and
∂tu(·,t)∈L2(Rd),

E(t) :=
∫

Rd

[
ε2(∂tu(x,t))2+|∇u(x,t)|2+ 1

ε2
(u(x,t))2+F(u(x,t))

]
dx

≡
∫

Rd

[
1

ε2
(φ2(x))

2+|∇φ1(x)|2+
1

ε2
(φ1(x))

2+F(φ1(x))

]
dx :=E(0), t≥0, (1.2)

with F(u)=2
∫ u

0 f (ρ)dρ, u∈R.
When ε>0 in (1.1) is fixed, e.g. ε=1, corresponding to the O(1)-speed of light regime,

a surge of analysis and numerics results have been reported in literatures. For instance,
the Cauchy problem was considered in [2, 10, 23, 24, 38]. In particular, global existence
of solutions was established in [10] for F(u)≥ 0 (defocusing case); and possible blow-
up was shown in [2] for F(u)< 0 (focusing case). For more results in this regime, we
refer the readers to [29, 33, 36, 40] and references given therein. Along the numerical as-
pect, many numerical schemes have been proposed in literatures. The classical numerical
methods are the standard finite difference time domain methods including energy con-
servative, semi-implicit and explicit finite difference discretizations [1, 15, 25, 32, 41] and
some other approaches such as finite element or spectral discretization in space coupled
with appropriate time integrator, like standard finite difference or Gautschi-type expo-
nential integrator [6,12,14,42]. For comparisons of different numerical methods, we refer
the readers to [6, 22, 32].

Over the past decade, more attentions have been paid to the regime 0< ε≪1 in (1.1),
which corresponds to the nonrelativistic limit or the speed of light goes to infinity. In
this regime, the analysis and efficient simulation are mathematically rather complicated
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issues; see, e.g. [6, 26–28, 30, 31, 43]. The analysis difficulty mainly lies in the unbounded
energy E(t) in (1.2) when ε→0. Recently, Machihara et al. [27] studied the nonrelativistic
limit in the energy space, and Masmoudi et al. [28] analyzed the similar limit in a strong
topology of the energy space. For more recent progresses made to understand this limit,
we refer to [30, 31, 43]. Based on their results, the solution propagates waves with wave-
length of O(ε2) and O(1) in time and, respectively, in space when 0< ε≪1. The highly
oscillatory nature in time provides severe numerical burdens, making the computation
in the nonrelativistic limit regime is extremely challenging. Even for the stable numerical
discretizations (or under stability restrictions on meshing strategies) the approximations
may come out completely wrong unless the temporal oscillation is fully resolved numer-
ically, i.e., using many time steps per wavelength of O(ε2). Due to the non-oscillation fact
in space, there would be no spatial meshing constraint, i.e. mesh size ∆x is independent
of ε.

Since the nonrelativistic limit behavior of KG equation is largely unknown, a tem-
poral discretization that performs well (allowing largest possible time step for a given
ε) is of great importance for the investigation and prediction of the limits. In the re-
cent work [6], frequently used finite difference time discretization and a Gautschi-type
exponential integrator were analyzed rigorously by paying particular attention on how
their error bounds depend on small ε. These results show that for those finite difference
integration, one needs the time step ∆t=O(ε3) in order to guarantee ‘correct’ approxima-
tions for ε small. On the other hand, the Gautschi-type exponential integrator was well
demonstrated in literatures that it has favorable properties compared to standard time
integrators for oscillatory second-order differential equations [17, 18, 20, 21]. When the
Gautschi-type integrator is applied to the KG equation with small ε, it was proven in [6]
that, in order to guarantee ‘correct’ approximations, one needs the meshing strategy con-
straint that ∆t =O(ε2) for nonlinear problem. Although the Gautschi-type integrator
allows the time step one order of magnitude larger than the finite difference integration,
it is an interesting problem to find a temporal discretization which can further loosen the
meshing strategy restriction when 0< ε≪1.

In this work, we study a time-splitting integrator (or so-called split-step method),
coupled with Fourier pseudospectral (TSFP) discretization in space, for the nonlinear KG
equation (1.1). The starting point is to rewrite the second-order equation as an equivalent
but simple form of first-order system in time. The key ideas of the method are: (i) split
the evolution system in a proper way such that the nonlinear subproblem can be inte-
grated exactly in time space; (ii) solve the linear subproblem in phase space by applying
the Fourier pseudospectral approximation to the spatial derivative and integrating the
equations (which is a first-order linear ODE system) about the Fourier coefficients ex-
actly. We shall study simultaneously this TSFP method in various regimes, ranging from
the smooth for ε=O(1) to the highly oscillatory for 0< ε≪ 1. Moreover, an alternative
time-splitting scheme can also be constructed based on a classical first-order reformula-
tion, which results in a relativistic (i.e. fractional) nonlinear Schrödinger (NLS) equation.
Numerical analysis for the fractional NLS is a difficult issue; however, the results ob-
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tained in this work, either rigorously or numerically, still hold for the splitting integrator
applied to the fractional NLS, in the view of a fact that each splitting step in the proposed
TSFP indeed solves an equivalent subproblem based on the classical reformulation, and
vice versa.

The time-splitting schemes for evolution equations can even date back to 1970s [19];
however, few results are available so far when they are applied to the KG equation (1.1),
even with ε=O(1). The first goal of this paper is to establish rigorous error estimates of
the proposed TSFP for solving KG (1.1) with fixed ε=O(1). This is achieved thanks to
the observation that the TSFP coincides with a type of trigonometric integrator Fourier
pseudospectral discretization. On the other hand, although time-splitting schemes are
widely used to compute the solutions to NLS (see, e.g. [4,44]) and especially successful for
the semiclassical NLS whose solutions exhibit spatial-temporal oscillations (see [7, 8]), it
dose not give any clue to their performance for KG equation in highly oscillatory regime.
Thus, the second purpose of this work is to investigate numerically the performance of
the TSFP for solving KG (1.1) when ε→ 0, with special attentions paid to how does the
convergence affected by ε. Our extensive numerical experiments show that the TSFP has
uniform spectral accuracy in space, and possesses a similar temporal convergence regime
as the Gautschi-type integrator for ε vanishing. However, within the convergence regime,
the temporal discretization error bound for TSFP is suggested to be O(ε−2∆t2), whereas
it has been shown both rigorously and numerically the temporal error for Gautschi-type
integrator is O(ε−4∆t2) [6]. Therefore, the time-splitting pseudospectral discretization
offers compelling better approximations over other schemes, especially in the nonrela-
tivistic limit regime.

The rest paper is organized as follows. In Section 2, we discuss the derivation of the
TSFP method, to which rigorous convergence results are given in Section 3. In Section
4, extensive numerical studies are carried out to investigate the accuracy and temporal
resolution capacity of TSFP. Comparisons between TSFP and Gautschi-type schemes are
also made. Finally, some concluding remarks are drawn in Section 5. Throughout this
paper, we adopt the standard Sobolev spaces and the corresponding norms, and also
denote A.B to represent that there exists a generic constant C>0, which is independent
of ∆t, ∆x and ε if any, such that |A|≤CB.

2 Numerical methods

In this section, we shall first present the time-splitting Fourier pseudospectral (TSFP)
method, which is based on the application of Fourier pseudospectral approximation to
spatial derivative followed by the time-splitting integrator to time discretization. Then,
two alternative approaches to the TSFP will be discussed. Also, the Gautschi-type expo-
nential integrator Fourier pseudospectral scheme will be recalled for comparison reasons.

For simplicity of notations, we only present the methods in one space dimension (1D),
and generalization to higher dimensions are straightforward due to the tensor product
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grids. In practice, we truncate the whole space problem onto an interval Ω=(a,b) with
periodic boundary conditions. In 1D, the KG equation (1.1) with periodic boundary con-
ditions collapses to

ε2∂ttu(x,t)−∂xxu(x,t)+
1

ε2
u(x,t)+ f (u(x,t))=0, a< x<b, t>0, (2.1a)

u(a,t)=u(b,t), ∂xu(a,t)=∂xu(b,t), t≥0, (2.1b)

u(x,0)=φ1(x), ∂tu(x,0)=
1

ε2
φ2(x), a≤ x≤b. (2.1c)

Such boundary conditions are inspired by the physical backgrounds as well as most stud-
ies in literatures; see, e.g. [6] and references given therein.

2.1 Time-splitting Fourier pseudospectral (TSFP) discretization

As a preparatory step, we begin by recalling the construction of a time-splitting (or split-
step) integrator for a general evolution system in the form:

∂ty=Φ(y)=Ay+By, (2.2)

where the mapping Φ(y) is usually a nonlinear operator and the decoupling Φ(y) =
Ay+By (or called operator-splitting) can be quite arbitrary; in particular, A and B can be
two non-commutative operators. With a given time step ∆t>0, let tn =n∆t, n=0,1,2,··· ,
and yn be the approximation of y(tn). A commonly used second-order time-splitting
integrator for (2.2), yn+1 = [Φ2(∆t)](yn), can be constructed due to the Strang formula
[39],

y(1)=exp

(
1

2
∆tA

)
yn, y(2)=exp(∆tB)y(1), yn+1=exp

(
1

2
∆tA

)
y(2), (2.3)

which is explicit and symmetric, i.e., Φ2(∆t)Φ2(−∆t)=1. A fourth-order symplectic time
integrator for (2.2), yn+1=[Φ4(∆t)](yn), is constructed as follows (cf. [9, 45]):

Φ4(∆t)=Φ2(ω∆t)Φ2((1−2ω)∆t)Φ2(ω∆t), (2.4)

where

ω=
1

3

(
2+21/3+2−1/3

)
. (2.5)

Clearly, the above fourth-order integrator is still explicit and time reversible. It is also
possible to construct higher-order symplectic integrators (cf. [45]). In general, the opera-
tors A and B may be interchanged without affecting the accuracy order of the method.
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Introducing v(x,t) = ∂tu(x,t), then (2.1) is equivalent to the following first-order-in-
time system,

∂tu(x,t)−v(x,t)=0, a< x<b, t>0, (2.6a)

ε2∂tv(x,t)−∂xxu(x,t)+
1

ε2
u(x,t)+ f (u(x,t))=0, a< x<b, t>0, (2.6b)

u(a,t)=u(b,t), ∂xu(a,t)=∂xu(b,t), v(a,t)=v(b,t), t≥0, (2.6c)

u(x,0)=φ1(x), v(x,0)=
1

ε2
φ2(x), a≤ x≤b. (2.6d)

We now rewrite the system (2.6a)-(2.6b) in the form of (2.2) with

y=

(
u
v

)
, A

(
u
v

)
=

(
0
−ε−2 f (u)

)
, B

(
u
v

)
=

(
v
ε−2∂xxu−ε−4u

)
. (2.7)

Thus, the key to an efficient implementation of the time-splitting integrator Φ2(∆t) or
Φ4(∆t) is to solve efficiently the following two subproblems:

∂tu(x,t)=0, a< x<b, t>0, (2.8a)

∂tv(x,t)+
1

ε2
f (u(x,t))=0, a< x<b, t>0, (2.8b)

and

∂tu(x,t)−v(x,t)=0, a< x<b, t>0, (2.9a)

∂tv(v,t)− 1

ε2
∂xxu(x,t)+

1

ε4
u(x,t)=0, a< x<b, t>0, (2.9b)

u(a,t)=u(b,t), ∂xu(a,t)=∂xu(b,t), v(a,t)=v(b,t), t≥0. (2.9c)

The solutions to (2.8) are trivial by noting that (2.8a) leaves u(x,t) invariant in t and
therefore (2.8b) can be integrated exactly, i.e., for t≥ ts (ts any given time),

u(x,t)=u(x,ts), v(x,t)=v(x,ts)−
1

ε2
(t−ts) f (u(x,ts)), a< x<b, t≥ ts. (2.10)

Now, the key remains to find an efficient and accurate method for (2.9). We shall solve
(2.9) below in phase space by applying the Fourier spectral or pseudospectral approxima-
tion in space discretization; and in particular, the equations about the Fourier coefficients
are linear ODEs which can be solved exactly.

Choose mesh size ∆x=(b−a)/M with M being an even positive integer, and denote
grid points as xj :=a+ j∆x, j=0,1,··· ,M. Let XM :=span{eiµl(x−a), µl=

2πl
b−a , x∈Ω, −M/2≤

l≤ M/2−1} and YM :=
{

w=(w0,w1,··· ,wM)∈R
M+1 : w0=wM

}
. For a general periodic

function w(x) on Ω = [a,b] and a vector w ∈ YM, let PM : L2(Ω)→ XM be the standard
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L2- projection operator onto XM, IM : C(Ω)→XM and IM :YM →XM be the trigonometric
interpolation operator [37], i.e.

(PMw)(x)=
M/2−1

∑
l=−M/2

ŵle
iµl(x−a), (IMw)(x)=

M/2−1

∑
l=−M/2

w̃le
iµl(x−a), x∈Ω, (2.11)

where

ŵl =
1

b−a

∫ b

a
w(x)e−iµl(x−a)dx, w̃l =

1

M

M−1

∑
j=0

wje
−iµl(xj−a), (2.12)

with wj interpreted as w(xj) for a function w. It is easy to check that PM and IM are
identity operators on XM.

The Fourier spectral method for (2.9) is to find uM(x,t)∈ XM and vM(x,t)∈ XM (cf.
[37]), i.e.,

uM(x,t)=
M/2−1

∑
l=−M/2

ûl(t)e
iµl(x−a), vM(x,t)=

M/2−1

∑
l=−M/2

v̂l(t)e
iµl(x−a), x∈Ω, t≥0, (2.13)

such that

∂tuM(x,t)−vM(x,t)=0, x∈Ω, t≥0, (2.14a)

∂tvM(v,t)− 1

ε2
∂xxuM(x,t)+

1

ε4
uM(x,t)=0, x∈Ω, t≥0. (2.14b)

Plugging (2.13) into (2.14), noticing the orthogonality of Fourier functions, we find

d

dt
ûl(t)− v̂l(t)=0,

d

dt
v̂l(t)+β2

l ûl(t)=0, l=−M

2
,··· , M

2
−1, t≥0.

where βl = ε−2
√

ε2µ2
l +1. The above system is a first-order linear ODE system, whose

analytical solutions can be obtained directly, i.e. for t ≥ ts (ts any given time) and l =
−M/2,··· ,M/2−1,

ûl(t)=cos(βl(t−ts))ûl(ts)+
sin(βl(t−ts))

βl
v̂l(ts), (2.15a)

v̂l(t)=−βl sin(βl(t−ts))ûl(ts)+cos(βl(t−ts)) v̂l(ts). (2.15b)

The above procedure for solving (2.9) is not suitable in practice due to the difficulty in
evaluating the integrals in (2.12). Thus, we shall approximate the integrals in (2.12) by a

quadrature rule on the grids
{

xj

}M

j=0
, i.e., replacing the projections by the interpolations,

which refers to the Fourier pseudospectral approximation [37].
For j= 0,1,··· ,M and n= 0,1,··· , let un

j and vn
j be the approximations of u(xj,tn) and

v(xj,tn), denote by un and vn the solution vectors with components un
j and vn

j , and choose



X. Dong, Z. Xu and X. Zhao / Commun. Comput. Phys., 16 (2014), pp. 440-466 447

u0
j =φ1(xj) and v0

j =φ2(xj)/ε2. Then the second-order time-splitting Fourier pseudospec-

tral (TSFP) discretization for the 1D KG equation (2.6) is given by

un,+
j =un

j , vn,+
j =vn

j −
∆t

2ε2
f (un

j ), (2.16a)

un+1,−
j =Lu(∆t,un,+,vn,+)j, vn+1,−

j =Lv(∆t,un,+,vn,+)j, (2.16b)

un+1
j =un+1,−

j , vn+1
j =vn+1,−

j − ∆t

2ε2
f (un+1,−

j ). (2.16c)

Here, Lu(τ,U,V)j and Lu(τ,U,V)j (j = 0,1,··· ,M) are computed from any τ ∈ R, U =

(U0,U1,··· ,UM)T and V=(V0,V1,··· ,VM)T:

Lu(τ,U,V)j=
M/2−1

∑
l=−M/2

[
cos(βlτ)Ũl+

sin(βlτ)

βl
Ṽl

]
eiµl(xj−a),

Lv(τ,U,V)j=
M/2−1

∑
l=−M/2

[
−βl sin(βlτ)Ũl+cos(βlτ)Ṽl

]
eiµl(xj−a),

Ũl =
1

M

M−1

∑
j=0

Uj e−iµl(xj−a), Ṽl =
1

M

M−1

∑
j=0

Vj e−iµl(xj−a), l=−M

2
,··· , M

2
−1.

A fourth-order TSFP discretization for (2.6) can be constructed according to (2.4) in a
similar way. We omit the details here for brevity.

The time discretization error of the TSFP discretization is only the splitting error,
which is second/fourth order in ∆t. Moreover, TSFP is explicit, time symmetric and
easy to extend to 2D and 3D. The memory cost is O(M) and computational load per time
step is O(MlnM) thanks to FFT.

Remark 2.1. Clearly, (2.16a) and (2.16c) imply that un+1,+= un+1 = uu+1,−, so the TSFP
(2.16) can be implemented according to

un+1
j =Lu(∆t,un,vn,+)j, vn+1,−

j =Lv(∆t,un,vn,+)j, (2.17a)

vn+1,+
j =vn+1,−

j −∆t

ε2
f (un+1

j ). (2.17b)

Thus, it is not necessary to output vn+1 unless it is of interests.

Remark 2.2. Note that for the special case f (u) = 0, i.e., the linear problem, the TSFP
collapses to the following one-step formula:

un+1
j =Lu((n+1)∆t,u0,v0)j, vn+1

j =Lv((n+1)∆t,u0,v0)j, n=0,1,··· , (2.18)

thereby introducing no time discretization error.
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2.2 TSFP discretization based on relativistic NLS reformulation

Classical reformulation of the KG equation into a first-order-in-time system results in a
coupled system of relativistic (i.e. fractional) NLS equations [27,28]. Also, if the unknown
u in (1.1a) is real-valued, then the system collapses to a single relativistic NLS, which is
the case considered in this work (see Remark 2.3 below for the discussion about complex-
valued unknown). Here, we shall discuss a splitting method based on this fractional NLS,
and show it is essentially equivalent to the TSFP discussed in the last subsection.

Define the positive operator

〈∆〉ε = ε−1
√
−ε2∆+1,

then the KG equation (1.1a) can be written as

ε2∂ttu(x,t)+〈∆〉2
ε u(x,t)+ f (u(x,t))=0. (2.19)

Introducing
ψ(x,t)=u(x,t)−iε〈∆〉−1

ε v(x,t), (2.20)

with v(x,t)=∂tu(x,t). Substituting (2.20) into (1.1a), a simple calculation shows that (1.1a)
is equivalent to the following relativistic NLS:

i∂tψ+
1

ε
〈∆〉εψ+

1

ε
〈∆〉−1

ε f

(
1

2

(
ψ+ψ

))
=0. (2.21)

Here and after, g denotes the complex conjugate of g. Now, a TSFP can be readily con-
structed for solving (2.21), which consists of a sequence of solving the following two
subproblems:

i∂tψ+
1

ε
〈∆〉−1

ε f

(
1

2

(
ψ+ψ

))
=0, (2.22)

and

i∂tψ+
1

ε
〈∆〉εψ=0. (2.23)

First, the fractional differential operator 〈∆〉ε can be discretized by applying Fourier spec-
tral or pseudospectral discretization in space, provided that the periodic boundary con-
ditions are posed; see, e.g. [5] for a detailed discussion about a similar operator. Next,
adding (2.22) to its complex conjugate, and taking the imaginary part, we can see it leaves(
ψ+ψ

)
unchanged in time, and therefore (2.22) is exactly integrable in time. For solving

(2.23), one can integrate the linear ODEs about Fourier coefficients exactly in phase space,
which is quite similar to the solver to (2.9) and we omit the details here for brevity.

To show the equivalence of the TSFP method for (2.6) and the one for (2.21) with peri-
odic boundary conditions, we only need to show the subproblem (2.8) (subproblem (2.9))
coincides with (2.22) ((2.23)) in terms of finding u and v, since in both cases the subprob-
lems are integrated exactly in time. This is easy to check due to a simple calculation.
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Substituting (2.20) into (2.22) or (2.8), noting that both u and v are real-valued, it is ready
to check that (2.22) essentially coincides with (2.8), and vice versa. The equivalence of
(2.9) and (2.23) can be checked in a similar way. In view of such equivalence, In the se-
quel we shall focus on the convergence and numerical resolution for oscillatory solutions
of the TSFP method (2.16).

Remark 2.3. If the KG equation (1.1a) is considered for complex-valued unknown u(x,t)
with nonlinear term f (u) satisfying gauge invariance, introducing

ψ+(x,t)=u(x,t)−iε〈∆〉−1
ε v(x,t), ψ−(x,t)=u(x,t)−iε〈∆〉−1

ε v(x,t), (2.24)

then (1.1a) is equivalent to a form of coupled relativistic NLS [27, 28]:

i∂tψ++
1

ε
〈∆〉εψ++

1

ε
〈∆〉−1

ε f

(
1

2

(
ψ++ψ−

))
=0, (2.25a)

i∂tψ−+
1

ε
〈∆〉εψ−+

1

ε
〈∆〉−1

ε f

(
1

2

(
ψ++ψ−

))
=0. (2.25b)

For this coupled relativistic NLS, a TSFP can be constructed in a similar manner as before,
which again coincides with the TSFP applied to (2.6).

2.3 Alternative approach to TSFP from trigonometric integrator

As a fact pointed out in [21, Section XIII.1.3], for the first-order-in-time evolution equa-
tions, the split-step method is reduced to a trigonometric integrator proposed by P. Deu-
flhard [16]. Here, we discuss an alternative approach to derive the proposed TSFP (2.16)
via using the Deuflhard-type trigonometric integrator with Fourier pseudospectral dis-
cretization in space, which in consequence gives rise to a simple way to analyze the con-
vergence of the splitting method.

Similar as the solver to (2.9), we seek for uM(x,t), vM(x,t)∈XM defined in (2.13) as
spatial approximations to solutions u(x,t) and v(x,t), respectively. Plugging uM(x,t) into
(2.1) and applying the L2-projection, we get

ε2∂ttuM−∂xxuM+
1

ε2
uM+PM f (uM)=0.

Noticing the orthogonality of Fourier bases, we get

ε2 d2

dt2
ûl(t)+µ2

l ûl(t)+
1

ε2
ûl(t)+ f̂ (uM)l(t)=0, l=−M

2
,··· , M

2
−1, t>0. (2.26)

By using the variation-of-constant formula and noting v=∂tu, we get for any t≥ ts ≥0,

ûl(t)=cos(βl(t−ts))ûl(ts)+
sin(βl(t−ts))

βl
v̂l(ts)−

∫ t

ts

sin(βl(t−s))

ε2βl
f̂ (uM)l(s)ds. (2.27)
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Taking derivative with respect to t on both sides of (2.27), we get

v̂l(t)=−βl sin(βl(t−ts))ûl(ts)+cos(βl(t−ts)) v̂l(ts)

−
∫ t

ts

cos(βl(t−s))

ε2
f̂ (uM)l(s)ds. (2.28)

Applying the standard trapezoidal rule to the two unknown integrations in (2.27) and
(2.28), we get

ûl(t)≈cos(βl(t−ts))ûl(ts)+
sin(βl(t−ts))

βl
v̂l(ts)−

t−ts

2ε2βl
sin(βl(t−ts)) f̂ (uM)(ts),

v̂l(t)≈−βl sin(βl(t−ts)) ûl(ts)+cos(βl(t−ts)) v̂l(ts)

− t−ts

2ε2

[
cos(βl(t−ts)) f̂ (uM)(ts)+ f̂ (uM)(t)

]
.

Replacing the above Fourier spectral approximations by pseudospectral discretization,
we obtain the following Deuflhard-type integrator Fourier pseudospectral (DIFP) method.
For j=0,1,··· ,M and n=0,1,··· , choosing u0

j =φ1(xj) and v0
j =φ2(xj)/ε2, then

un+1
j =

M/2−1

∑
l=−M/2

ũn+1
l eiµl(xj−a), vn+1

j =
M/2−1

∑
l=−M/2

ṽn+1
l eiµl(xj−a), n≥0, (2.29a)

ũn+1
l =cos(βl∆t) ũn

l +
sin(βl∆t)

βl
ṽn

l −
∆t

2ε2βl
sin(βl∆t) f̃ n

l , (2.29b)

ṽn+1
l =−βl sin(βl∆t) ũn

l +cos(βl∆t) ṽn
l −

∆t

2ε2

[
cos(βl∆t) f̃ n

l + f̃ n+1
l

]
, (2.29c)

where,

ũn
l =

1

M

M−1

∑
j=0

un
j e−iµl(xj−a), ṽn

l =
1

M

M−1

∑
j=0

vn
j e−iµl(xj−a), f̃ n

l =
1

M

M−1

∑
j=0

f (un
j )e−iµl(xj−a).

A simple calculation shows that

Proposition 2.1. The TSFP method (2.16) coincides with the DIFP method (2.29).

Proof. First, the initial choices of TSFP and DIFP methods are the same, i.e. u0
j =φ1(xj),

v0
j =φ2(xj)/ε2. From the TSFP method (2.16), plugging (2.16a) into (2.16b) and noticing

from (2.16c) that un+1=un+1,−, we get

ũn+1
l =cos(βl∆t)ũn

l +
sin(βl∆t)

βl

(
ṽn

l −
∆t

2ε2
f̃ n
l

)
, (2.30)

which is indeed (2.29b) in the DIFP method, and

ṽn+1,−
l =−βl sin(βl∆t)ũn

l +cos(βl∆t)

(
ṽn

l −
∆t

2ε2
f̃ n
l

)
. (2.31)

Plugging (2.31) into (2.16c), we are led to (2.29c) in DIFP method, which completes the
proof.
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2.4 Gautschi-type integrator Fourier pseudospectral method

For benchmark comparisons, we recall another numerical method, a Gautschi-type trigono-
metric integrator Fourier pseudospectral (GIFP) discretization for (2.6), which was pro-
posed and analyzed rigorously in [6]. The detailed method is as follows:

un+1
j =

M/2−1

∑
l=−M/2

ũn+1
l eiµl(xj−a), vn+1

j =
M/2−1

∑
l=−M/2

ṽn+1
l eiµl(xj−a), (2.32)

for j=0,1,··· ,M, n=0,1,···, with,

ũ1
l =

[
cos(β0

l ∆t)+
α0

(
1−cos(β0

l ∆t)
)

(εβ0
l )

2

]
ũ0

l +
sin(β0

l ∆t)

β0
l

ṽ0
l +

cos(β0
l ∆t)−1

(εβ0
l )

2
f̃ 0
l , (2.33)

ṽ1
l =−βl sin(βl∆t)ṽ0

l +cos(βl∆t)ṽ0
l −

sin(βl∆t)

ε2βl
f̃ 0
l , (2.34)

ũn+1
l =−ũn−1

l +2

[
cos(βn

l ∆t)+
αn

(
1−cos(βn

l ∆t)
)

(εβn
l )

2

]
ũn

l +
2
(
cos(βn

l ∆t)−1
)

(εβn
l )

2
f̃ n
l , (2.35)

ṽn+1
l = ṽn−1

l −2βl sin(βl∆t)ũn
l −2

sin(βl∆t)

ε2βl
f̃ n
l , n≥1. (2.36)

Here,

βn
l =

1

ε2

√
1+ε2(µ2

l +αn), αn =max

{
αn−1, max

un
j 6=0

f (un
j )/un

j

}
, α−1=0, n=0,1,··· ,

where αn is introduced to ensure the unconditional stability.

As it is shown in [6], the GIFP method is spectrally accurate in space, brings in no time
discretization error for linear problem and is second-order accurate in time for nonlinear
problem. Moreover, in order to capture the O(ε2)-oscillation in time when 0< ε≪1, the
meshing strategy constraint for GIFP method is ∆t=O(ε2) and ∆x=O(1) for nonlinear
problem, and ∆t=O(1) and ∆x=O(1) for linear problem.

3 Convergence analysis of TSFP

In this section, we will establish rigorously the error bounds of the TSFP method (2.16) in
the energy space H1×L2 for fixed ε=ε0=O(1) (the O(1)-speed of light regime). Without
loss of generality and for simplicity of notations, we set ε=1 in this section. The rigorous
arguments are achieved thanks to its equivalent formulation, i.e. the DIFP method (2.29).
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3.1 Main results on error bounds in energy space

Let T∗ be the maximum existence time for the solutions to the KG (2.1). In order to
establish the error estimates for the TSFP method, we make the following assumptions
on the nonlinearity and the exact solutions: for 0<T<T∗,

f ∈Ck(R), u∈C
(
[0,T];W1,∞∩Hm0+1

p

)
∩C1

(
[0,T];W1,4∩Hm0

p

)
∩C2

(
[0,T];H1

)
, (A)

for some integer k,m0 ≥2. Under assumption (A), we let

m=min{k,m0}, K1=‖u‖L∞([0,T];L∞(Ω)∩H1(Ω)), K2=‖∂tu‖L∞([0,T];L2(Ω)).

Denote the trigonometric interpolations of numerical solutions as un
I (x) := IM(un)(x),

vn
I (x) := IM(vn)(x), and define the ‘error’ functions as

en(x) :=u(x,tn)−un
I (x), ėn(x) :=∂tu(x,tn)−vn

I (x), x∈Ω, n≥0,

then we have the following main error estimate result:

Theorem 3.1. Let un and vn be the numerical approximations obtained from the TSFP method
(2.16). Under the assumption (A), there exit two constants τ0,h0 >0, independent of ∆t (or n)
and ∆x, such that for any 0<∆t<τ0, 0<∆x<h0,

‖en‖H1 +‖ėn‖L2 .∆t2+∆xm, n=0,··· , T

∆t
, (3.1a)

‖un
I ‖H1 ≤K1+1, ‖vn

I ‖L2 ≤K2+1, ‖un‖l∞ ≤K1+1. (3.1b)

3.2 Proof of Theorem 3.1

Thanks to the DIFP formulism, the error estimates can be done in analogous lines as [6]
by means of ‘energy method’. We first introduce the following notations.

Suppose u,v are exact solutions to KG equation (2.6). Denote the L2-projected solu-
tions as†

uM(x,t) :=PM(u(x,t))=
M/2−1

∑
l=−M/2

ûl(t)e
iµl(x−a),

vM(x,t) :=PM(v(x,t))=
M/2−1

∑
l=−M/2

v̂l(t)e
iµl(x−a),

x∈Ω, t≥0, (3.2)

and the projected error functions as

en
M(x) :=PM(en(x))=

M/2−1

∑
l=−M/2

ên
l eiµl(x−a),

ėn
M(x) :=PM(ėn(x))=

M/2−1

∑
l=−M/2

̂̇en
l eiµl(x−a),

n=0,··· , T

∆t
. (3.3)

†We remark that the uM defined in (3.2) is different with the one in spectral method formulation, since for
the later case uM≈PMu, and similar for vM. Here we adopt the same notations for simplicity.
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Then we should have

ên
l = ûl(tn)−ũn

l , ̂̇en
l = v̂l(tn)− ṽn

l , n=0,··· , T

∆t
. (3.4)

Based on (2.29b) and (2.29c), define the local truncation errors as

ξn(x) :=
M/2−1

∑
l=−M/2

ξ̂le
iµl(x−a), ξ̇n(x) :=

M/2−1

∑
l=−M/2

̂̇ξ le
iµl(x−a), x∈Ω, n=0,··· , T

∆t
−1. (3.5)

where

ξ̂n
l = ûl(tn+1)−cos(βl∆t) ûl(tn)−

sin(βl∆t)

βl
v̂l(tn)+

∆t

2βl
sin(βl∆t) (̂ fM)l(tn), (3.6a)

̂̇ξ
n

l = v̂l(tn+1)+βl sin(βl∆t) ûl(tn)−cos(βl∆t) v̂l(tn)

+
∆t

2

(
cos(βl∆t) (̂ fM)l(tn)+(̂ fM)l(tn+1)

)
, (3.6b)

and βl =
√

µ2
l +1, with (̂ fM)l(t) the Fourier coefficient of f (uM(x,t)). Subtracting the

local truncation errors (3.6) from the scheme (2.29b) and (2.29c), we are led to the error
equations

ên+1
l =cos(βl∆t) ên

l +
sin(βl∆t)

βl

̂̇en
l + ξ̂n

l − η̂n
l , (3.7a)

̂̇en+1
l =−βl sin(βl∆t) ên

l +cos(βl∆t)̂̇en
l +

̂̇ξ
n

l −̂̇ηn

l , (3.7b)

where

η̂n
l =

∆t

2βl
sin(βl∆t)

(
(̂ fM)l(tn)− f̃ n

l

)
, (3.8a)

̂̇ηn

l =
∆t

2

[
cos(βl∆t)

(
(̂ fM)l(tn)− f̃ n

l

)
+
(
(̂ fM)l(tn+1)− f̃ n+1

l

)]
, (3.8b)

with the nonlinear error functions defined as

ηn(x) :=
M/2−1

∑
l=−M/2

η̂l(tn)e
iµl(x−a), η̇n(x) :=

M/2−1

∑
l=−M/2

̂̇η l(tn)e
iµl(x−a), x∈Ω.

Define the error energy as

E(P,Q) :=‖P‖2
H1 +‖Q‖2

L2 , (3.9)

for two arbitrary functions P(x) and Q(x).
In order to proceed with the proof of Theorem 3.1, we give the following lemmas.

First, we have estimates for the local truncation errors, stated in the following lemma.
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Lemma 3.1. Based on assumption (A), we have estimates for the local truncation errors as

‖ξn‖H1+‖ξ̇n‖L2 .∆t3+∆t·∆xm0+1, n=0,··· , T

∆t
−1. (3.10)

Proof. Applying L2-projection on both sides of (2.1), due to the orthogonality and variation-
of-constant formula, the Fourier coefficients ûl(tn),ûl(tn) should satisfy

ûl(tn+1)=cos(βl∆t) ûl(tn)+
sin(βl∆t)

βl
v̂l(tn)−

∫ tn+1

tn

sin(βl(tn+1−s))

βl
f̂l(s)ds, (3.11a)

v̂l(tn+1)=−βl sin(βl∆t) ûl(tn)+cos(βl∆t) v̂l(tn)−
∫ tn+1

tn

cos(βl(tn+1−s)) f̂l(s)ds, (3.11b)

for n=0,··· ,T/∆t, where f̂l(t) denotes the Fourier coefficient of f (u(x,t)) for short, pro-
vided that no confusion occurs. Subtracting (3.11) from the local truncation errors (3.6),
we get

ξ̂n
l =

∆t

2βl
sin(βl∆t)(̂ fM)l(tn)−

∫ tn+1

tn

sin(βl(tn+1−s))

βl
f̂l(s)ds, (3.12a)

̂̇ξ
n

l =
∆t

2

[
cos(βl∆t)(̂ fM)l(tn)+(̂ fM)l(tn+1)

]
−
∫ tn+1

tn

cos(βl(tn+1−s)) f̂l(s)ds. (3.12b)

For a general function g(s)∈C2, we have the quadrature error for the standard trapezoidal
rule written in the second-order Peano form [11],

τ

2
(g(0)+g(τ))−

∫ τ

0
g(s)ds=

τ3

2

∫ 1

0
θ(1−θ)g′′(θτ)dθ.

Rewriting ξ̂n
l in (3.12a) as

ξ̂n
l =

∆t

2βl
sin(βl∆t) f̂l(tn)−

∫ tn+1

tn

sin(βl(tn+1−s))

βl
f̂l(s)ds

+
∆t

2βl
sin(βl∆t)

[
(̂ fM)l(tn)− f̂l(tn)

]
,

we then have
∣∣∣ξ̂n

l

∣∣∣.∆t3
∫ 1

0
θ(1−θ)

[
βl

∣∣∣ f̂l(tn+θ∆t)
∣∣∣+

∣∣∣∣
d

ds
f̂l(tn+θ∆t)

∣∣∣∣+
1

βl

∣∣∣∣
d2

ds2
f̂l(tn+θ∆t)

∣∣∣∣
]

dθ

+
∆t

βl

∣∣∣(̂ fM)l(tn)− f̂l(tn)
∣∣∣. (3.13)

Taking square on both sides of (3.13) and using the Cauchy’s inequality, we get

∣∣∣ξ̂n
l

∣∣∣
2
.∆t6

∫ 1

0

[
β2

l

∣∣∣ f̂l(tn+θ∆t)
∣∣∣
2
+

∣∣∣∣
d

ds
f̂l(tn+θ∆t)

∣∣∣∣
2

+
1

β2
l

∣∣∣∣
d2

ds2
f̂l(tn+θ∆t)

∣∣∣∣
2
]

dθ

+
∆t2

β2
l

∣∣∣(̂ fM)l(tn)− f̂l(tn)
∣∣∣
2
. (3.14)
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Multiplying both sides of (3.14) by β2
l =(1+µ2

l ) and then summing up for l=−M/2,··· ,
M/2−1, thanks to the Parseval’s identity, we get

‖ξn‖2
H1 .∆t6 · sup

0<t<T

[
‖ f (u)‖2

H2+‖∂t f (u)‖2
H1+‖∂tt f (u)‖2

L2

]

+∆t2‖ f (uM(·,tn))− f (u(·,tn))‖2
L2 .

Then based on assumption (A) and the standard projection error bounds [37], we have

‖ξn‖2
H1 .∆t6+∆t2 ·∆x2(m0+1), n=0,··· , T

∆t
−1. (3.15)

Similarly, from (3.12b) we could get

‖ξ̇n‖2
L2 .∆t6+∆t2 ·∆x2(m0+1), n=0,··· , T

∆t
−1. (3.16)

Combining (3.15) and (3.16) gives the assertion (3.10).

For the nonlinear error terms, we have estimates stated as the following lemma.

Lemma 3.2. Based on assumption (A), and assume (3.1b) holds for some 0≤n≤T/∆t−1 (which
will be given by induction later), then we have

‖ηn‖H1+‖η̇n‖L2 .∆t
(
‖en

M‖L2+‖en+1
M ‖L2

)
+∆t·∆xm . (3.17)

Proof. From (3.8), we have

|η̂n
l |≤

∆t

2βl

∣∣∣(̂ fM)l(tn)− f̃ n
l

∣∣∣, |̂̇ηn

l |≤
∆t

2

[∣∣∣(̂ fM)l(tn)− f̃ n
l

∣∣∣+
∣∣∣(̂ fM)l(tn+1)− f̃ n+1

l

∣∣∣
]

.

For the first part, similarly as before, we can get

‖ηn‖2
H1 ≤

∆t2

4
‖PM f (uM(·,tn))− IM f (un)‖2

L2 .

Under assumption (A), we should have f (uM(x,t))∈C([0,T];Hm
p ), then

‖ηn‖2
H1 ≤

∆t2

4
‖IM f (uM(·,tn))− IM f (un)‖2

L2+
∆t2

4
‖PM f (uM(·,tn))− IM f (uM(·,tn))‖2

L2

.
∆t2

4
‖IM f (uM(·,tn))− IM f (un)‖2

L2+
∆t2

4
∆x2m. (3.18)

By Parseval’s identity, together with the assumption (A) and (3.1b), we have

‖IM f (uM(·,tn))− IM f (un)‖L2 =‖ f (uM(·,tn))− f (un)‖l2

=

∥∥∥∥
∫ 1

0
f ′(suM(·,tn)+(1−s)un)ds·(uM(·,tn)−un)

∥∥∥∥
l2

.‖uM(·,tn)−un‖l2 =‖uM(·,tn)− IMun‖L2 =‖en
M‖L2 , (3.19)
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where f ′(ρ)= d
dρ f (ρ) and ‖·‖l2 denotes the standard l2-norm. Plugging the above esti-

mate back to (3.18), we get

‖ηn‖H1 .∆t‖en
M‖L2 +∆t·∆xm . (3.20)

For the second part, similarly, we can have

‖η̇n‖2
L2 ≤

∆t2

4

[
‖PM f (uM(·,tn))− IM f (un)‖2

L2+
∥∥∥PM f (uM(·,tn+1))− IM f (un+1)

∥∥∥
2

L2

]

.∆t2‖en
M‖2

L2 +∆t2 ·∆x2m+∆t2
∥∥∥IM f (uM(·,tn+1))− IM f (un+1)

∥∥∥
2

L2
. (3.21)

To carry out a similar argument as (3.19), now we only need to show the maximum value
of the numerical solution at tn+1 level, i.e. ‖un+1‖l∞ , is bounded by some generic constant
under assumption (3.1b). By the Sobolev’s inequality,

‖un+1‖l∞ ≤‖un+1
I ‖L∞ .‖un+1

I ‖H1 =

√√√√(b−a)
M/2−1

∑
l=−M/2

(1+µ2
l )|ũn+1

l |2.

From (2.29b), we get

|ũn+1
l |≤ |ũn

l |+
1

βl
|ṽn

l |+
∆t

2βl
| f̃ n

l |.

Then with ∆t≤1 similarly as before, we can get

‖un+1
I ‖H1 ≤2‖un

I ‖H1+2‖vn
I ‖L2+‖ f (un)‖l2 ≤2‖un

I ‖H1+2‖vn
I ‖L2+‖ f (un)‖l∞

≤2(K1+K2+2)+‖ f (·)‖L∞(0,K1+1).

Thus, following the argument done as (3.19), we can get a further estimate for (3.21) as

‖η̇n‖L2 .∆t
(
‖en

M‖L2 +‖en+1
M ‖L2

)
+∆t·∆xm . (3.22)

Combing (3.20) and (3.22), we finish the proof.

With the error energy functional notation (3.9), it is ready to show the following fact.

Lemma 3.3. For n=0,··· ,T/∆t−1, we have

E(en+1
M , ėn+1

M )−E(en
M, ėn

M)≤∆tE(en
M , ėn

M)+
2

∆t

[
E(ξn, ξ̇n)+E(ηn,η̇n)

]
. (3.23)

Proof. Multiplying (3.7a) with its complex conjugate, and by Cauchy’s inequality, we
have ∣∣∣ên+1

l

∣∣∣
2
≤ (1+∆t)

∣∣∣∣cos(βl∆t) ên
l +

sin(βl∆t)

βl

̂̇en
l

∣∣∣∣
2

+
1

∆t

∣∣∣ξ̂n
l − η̂n

l

∣∣∣
2
. (3.24)
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Similarly for (3.7b), we have

∣∣∣̂ėn+1
l

∣∣∣
2
≤ (1+∆t)

∣∣∣−βl sin(βl∆t) ên
l +cos(βl∆t)̂̇en

l

∣∣∣
2
+

1

∆t

∣∣∣̂̇ξ
n

l −̂̇ηn

l

∣∣∣
2

. (3.25)

Multiplying (3.24) by β2
l =1+µ2

l and then adding to (3.25), we get

β2
l

∣∣∣ên+1
l

∣∣∣
2
+
∣∣∣̂ėn+1

l

∣∣∣
2
≤ (1+∆t)

(
β2

l |ên
l |2+

∣∣∣̂ėn
l

∣∣∣
2
)
+

1

∆t

(
β2

l

∣∣∣ξ̂n
l − η̂n

l

∣∣∣
2
+
∣∣∣̂̇ξ

n

l −̂̇ηn

l

∣∣∣
2
)

.

Summing the above inequalities up for l=−M/2,··· ,M/2−1, and noticing (3.9) we get

E(en+1
M , ėn+1

M )≤ (1+∆t)E(en
M , ėn

M)+
1

∆t
E(ξn−ηn, ξ̇n− η̇n),

and then by applying Cauchy’s inequality again, we get assertion (3.23).

Now, combining the Lemmas 3.1-3.3, we give the proof of Theorem 3.1 with the help
of mathematical induction argument [6], or the so-called cut-off technique [3] for the
boundedness of numerical solutions.

Proof of Theorem 3.1. For n=0, from the scheme and assumption (A), we have

‖e0‖H1 +‖ė0‖L2 =‖φ1− IMφ1‖H1+‖φ2− IMφ2‖L2 .∆xm0 .

Then by triangle inequality,

‖u0
I‖H1 ≤‖φ1‖H1 +‖e0‖H1 ≤K1+1, ‖v0

I‖L2 ≤‖φ2‖L2+‖ė0‖L2 ≤K2+1, 0<∆x≤h1,

for some h1 > 0 independent of ∆t and ∆x, and obviously ‖u0‖l∞ ≤K1+1. Thus, (3.1) is
true for n=0.

Assume (3.1) holds for n≤ N ≤ T/∆t−1. Now we need to show the results are still
true for n=N+1. First, by triangle inequality,

‖en‖H1+‖ėn‖L2 ≤‖en
M‖H1 +‖ėn

M‖L2+‖u(·,tn)−uM(·,tn)‖H1 +‖v(·,tn)−vM(·,tn)‖L2

.‖en
M‖H1 +‖ėn

M‖L2 +∆xm0 . (3.26)

Then from Lemma 3.3, we have for n=0,··· ,N,

E(en+1
M , ėn+1

M )−E(en
M, ėn

M).∆tE(en
M , ėn

M)+
1

∆t

[
E(ξn, ξ̇n)+E(ηn,η̇n)

]
.

Since (3.1b) is assumed to be true for all n≤N, we can plug the estimates in Lemma 3.1
and Lemma 3.2 into the above estimate and get

E(en+1
M , ėn+1

M )−E(en
M, ėn

M).∆t
[
E(en+1

M , ėn+1
M )+E(en

M, ėn
M)

]
+∆t5+∆t(∆x2m+∆x2(m0+1))

.∆t
[
E(en+1

M , ėn+1
M )+E(en

M, ėn
M)

]
+∆t5+∆t·∆x2m . (3.27)
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Summing (3.27) up for n=0,··· ,N, and then by the discrete Gronwall’s inequality, we get

E(eN+1
M , ėN+1

M ).∆t4+∆x2m.

Thus, we have ‖eN+1
M ‖H1+‖ėN+1

M ‖L2 ≤∆t2+∆xm, which together with (3.26) show (3.1b)
is valid for n=N+1. Then by triangle inequality,

‖uN+1
I ‖H1 ≤‖u(·,tN+1)‖H1 +‖eN+1‖H1 ≤K1+1,

‖vN+1
I ‖L2 ≤‖v(·,tN+1)‖L2 +‖ėN+1‖L2 ≤K2+1,

0<∆t≤τ1, 0<∆x≤h2,

for some τ1,h2 >0 independent of ∆t and ∆x. Noting the Sobolev’s inequality ‖eN‖L∞ .
‖eN‖H1 , we also have

‖uN+1‖l∞ ≤‖uN+1
I ‖L∞ ≤‖u(·,tN+1)‖L∞+‖eN+1‖L∞ ≤K1+1, 0<∆t≤τ2, 0<∆x≤h3,

for some τ2,h3>0 independent of ∆t and ∆x. Therefore, the proof is completed by choos-
ing τ0=min{τ1,τ2} and h0 =min{h1,h2,h3}.

Remark 3.1. We would like to remark that although the error estimate arguments are
given for 1D, the results and proof for higher dimensions can be achieved in the same
spirit. In higher dimensional space, the Sobolev’s inequality reads ‖ρ‖L∞ . ‖ρ‖H2 , then
one only need to rise the energy space for error functions to H2×H1, under a stronger
regularity assumption than (A).

Remark 3.2. In the nonrelativistic limit regime, i.e. (2.1) with 0 < ε ≪ 1, following the
analogous procedure made in this section, one can establish an error bound of the TSFP
method (2.16) as

‖en‖H1 +ε‖∇en‖H1 +ε2‖ėn‖H1 .
∆t2

ε4
+∆xm, (3.28)

under a stronger regularity assumption than (A) and an oscillation assumption

‖u‖+ε2‖∂tu‖+ε4‖∂ttu‖.1,

for certain norms. We omit the detailed arguments here for brevity.
The error bound (3.28) is quite similar to the one obtained in [6] for GIFP, of which the

ε-dependence ∆t. ε2 has been numerically shown to be optimal for GIFP. On the other
hand, the error bound (3.28) also agrees with the expectation since the local truncation
errors mainly come from trapezoidal quadrature, which is second-order accurate with a
factor before ∆t2 of the same order as ∂ttu. However, our extensive numerical results,
presented in the forthcoming section, will show that the ε-dependence in the estimate
(3.28) is indeed not optimal for TSFP when 0< ε≪1. In fact, it suggests that the error of
TSFP would asymptotically behave like

‖en‖H1 .
∆t2

ε2
+∆xm. (3.29)

Thus, rigorous arguments towards an optimal error estimate of TSFP for 0<ε≪1 are still
absent, for which our work is still on-going.
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4 Numerical studies

We now report numerical results by using the TSFP method introduced in Section 2. We
will first test the TSFP method in the O(1)-speed of light regime to justify our theoretical
error estimate results Theorem 3.1. Then we will apply the TSFP method to solve the
KG equation (2.1) for ε ∈ (0,1), with special attention paid to its numerical resolution
capacity for the temporally O(ε2)-oscillatory solutions when 0<ε≪1, i.e., what meshing
strategy requirement should be satisfied in order to obtain ‘correct’ approximations or
the desired accurate digits in the nonrelativistic limit regime (ε-scalability). Since we are
mainly interested in its temporal resolution in this regime, 1D problem is used as test
examples.

We consider the nonlinearity as f (u) = λup+1 with p ≥ 0 and λ∈R in (2.1), i.e., the
pure power case which is the typical nonlinearity investigated in literatures [6, 10, 26–29,
33, 35, 38, 40]. We set p=2 and choose the initial conditions (2.1c) as

u(x,0)=
3sin(x)

e0.5x2+e−0.5x2 , v(x,0)=
2e−x2

√
πε2

, x∈R.

We truncate the problem onto a finite domain Ω=[−16,16], i.e. b=−a=16, which is large
enough such that the periodic boundary conditions (2.1b) do not introduce significant
aliasing errors relative to the whole space problem.

4.1 Accuracy tests for ε=O(1)

We take fixed ε=1 (i.e., the O(1)-speed of light regime). In this case, there is no analytical
solution and we let u(x,t) be the ‘exact’ solution which is obtained numerically by using
TSFP method with very fine mesh size and small time step, e.g., ∆x=1/32 and ∆t=10−5.
We solve the problem on the interval Ω = [−16,16] till time t = 2 in two cases: λ = 1
(defocusing case) and λ =−1 (focusing case). Here, we test the spatial and temporal
discretization errors separately, and then test the conservation of the conserved energy of
TSFP. To quantify the numerical results, we present the error:

e∆t,∆x(t= tn)=‖en‖H1 =‖u(·,tn)−un
I ‖H1 . (4.1)

First, we test the discretization error in space, and in order to do this we take a very
fine time step ∆t=10−5 such that the error from time discretization is negligible compared
to the spatial discretization error. Table 1 lists the errors (4.1) at time t=1 with different
mesh sizes ∆x and parameter λ. Second, we test the discretization error in time, and mesh
size is chosen as ∆x = 1/16 such that the error from space discretization is negligible.
Table 2 shows the errors (4.1) at time t = 1 with different time steps ∆t and parameter
λ. Third, we test the conservation of the conserved energy E(t) (1.2). Here we choose a
small mesh size in space such that the energy E(t=0) which is approximated spectrally
from the initial data is very close to the exact conserved energy. Table 3 lists the discrete
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Table 1: Spatial discretization errors of TSFP at time t=1 for different mesh sizes ∆x under ∆t=10−5.

e∆t,∆x ∆x=1 ∆x=1/2 ∆x=1/4 ∆x=1/8

λ=1 3.71E−2 1.70E−3 1.34E−6 2.22E−12

λ=−1 3.95E−2 1.70E−3 1.58E−6 2.53E−12

Table 2: Temporal discretization errors of TSFP at time t=1 for different time steps ∆t under ∆x=1/16 with
convergence rate.

e∆t,∆x ∆t=1/5 ∆t=1/10 ∆t=1/20 ∆t=1/40 ∆t=1/80

λ=1 1.50E−3 3.65E−4 9.06E−5 2.26E−5 5.64E−6

rate – 2.03 2.01 2.00 2.00

λ=−1 2.40E−3 6.14E−4 1.54E−4 3.84E−5 9.61E−6

rate – 1.97 2.00 2.00 2.00

Table 3: Conserved energy analysis of TSFP: ∆t=10−3 and ∆x=1/8.

E(t) t=0 t=0.5 t=1.0 t=1.5 t=2.0

λ=1 10.0957456 10.0957438 10.0957437 10.0957450 10.0957441

λ=−1 7.6534166 7.6534174 7.6534178 7.6534176 7.6534175

energy at different time points with ∆t=10−3 and ∆x=1/8. Fig. 1 shows the convergence
of the energy error as ∆t decreases. Here for the focusing case, i.e. λ=−1, the results are
only shown till T=2 because of the finite time blow up of the solution.

From Tables 1-3, Fig. 1 and additional results not shown here brevity, we can draw
the following observations:
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Figure 1: Energy error of TSFP in defocusing case (λ=1) and focusing case (λ=−1): |E(t)−E(0)| for different
∆t during the computing under ∆x=1/8 and ε=1.
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1. In the O(1)-speed of light regime, the TSFP (2.16) is of spectral-order accuracy in
space, and is of second-order accuracy in time (cf. Tables 1 and 2), which verifies
our error estimate (3.1a) and indicates the result is optimal.

2. TSFP conserves the energy very well. The energy obtained from the numerical
solution is just a small fluctuation from the exact energy during the computation (cf.
Table 3). As time step ∆t decreases to zero, the energy error during the computing
converges to zero (cf. Fig. 1).

3. Furthermore, the method is efficient, easy to implement, less memory requirement,
and easy to extended to 2D and 3D problems.

4.2 Convergence and resolution studies for 0< ε≪1

We now consider ε∈(0,1) in (2.1), with special efforts made to the regime 0<ε≪1, i.e., the
nonrelativistic limit regime. Here, we investigate the temporal and spatial errors of TSFP
under different mesh sizes and time steps as ε→0. By doing so, we mainly want to study
two questions. The first one is how do the convergence and accuracy of the numerical
method be affected as ε decays. Then within the convergence regime, how do the error
bounds depend on ε. Again, the ‘exact’ solution u(x,t) is obtained by a similar way as
before. Since the numerical results of TSFP are similar in defocusing and focusing cases,
so we here only consider a defocusing case with λ=1 as a numerical example.

The spatial error and temporal error here are computed in a similar way as before. For
error analysis in space, either from our numerical experience or from the theoretical result
(3.28) and estimates in [6], the spatial errors of TSFP and GIFP are almost the same due to
the same spectral discretization used in space. Thus here we omit the results of GIFP for
brevity and tabulate the spatial error of TSFP under different ε and mesh sizes ∆x in Table
4. Table 5 shows the temporal error of TSFP, under different ε and time steps ∆t, together
with the results of GIFP for comparisons. To study the error bounds of the numerical
methods inside the convergence regime, we plot the temporal discretization errors as a
function of ε for some fixed ∆t in log-scale. The results are shown in Fig. 2. Moreover, we

Table 4: Spatial error analysis of TSFP for different ε and ∆x at time t=1 under ∆t=10−5.

TSFP ∆x0=1 ∆x0/2 ∆x0/4 ∆x0/8

ε0=0.5 7.99E-02 4.20E-03 3.01E-06 2.78E-12

ε0/2 8.13E-02 5.40E-03 2.28E-06 2.84E-12

ε0/22 2.77E-02 1.30E-03 1.07E-06 1.75E-12

ε0/23 4.88E-02 4.60E-03 3.05E-06 1.67E-12

ε0/24 8.24E-02 4.30E-03 2.74E-06 1.72E-12

ε0/26 4.57E-02 5.00E-03 3.02E-06 1.89E-12
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Table 5: Temporal error analysis of TSFP for different ε and ∆t, and comparisons with GIFP at time t=1 under
∆x=1/16 with convergence rate.

TSFP ∆t0=0.2 ∆t0/22 ∆t0/24 ∆t0/26 ∆t0/28 ∆t0/210

ε0=0.5 1.52E-02 5.66E-04 3.49E-05 2.18E-06 1.36E-07 8.37E-09

rate – 2.37 2.01 2.00 2.00 2.01

ε0/21 1.27E-01 3.80E-03 1.97E-04 1.22E-05 7.62E-07 4.69E-08

rate – 2.53 2.13 2.00 2.00 2.01

ε0/22 1.13E-01 1.13E-01 8.93E-04 4.85E-05 3.01E-06 1.85E-07

rate – 0.00 3.49 2.10 2.01 2.01

ε0/23 1.21E-01 4.57E-02 4.52E-02 2.33E-04 1.27E-05 7.76E-07

rate – 0.70 0.01 3.80 2.10 2.02

ε0/24 1.35E-01 8.90E-03 1.02E-02 1.04E-02 6.75E-05 3.69E-06

rate – 1.97 -0.98 -0.01 3.62 2.10

ε0/26 1.38E-01 1.42E-02 3.70E-03 4.90E-04 6.70E-04 6.83E-04

rate – 1.64 0.97 1.46 -0.22 -0.01

ε0/28 8.80E-02 1.99E-02 2.10E-02 7.54E-04 2.32E-04 1.62E-05

rate – 1.07 -0.04 2.40 0.85 1.92

ε0/210 1.14E-01 5.43E-02 1.50E-03 1.00E-03 1.10E-03 3.78E-05

rate – 0.53 2.58 0.26 -0.09 2.43

GIFP ∆t0=0.2 ∆t0/22 ∆t0/24 ∆t0/26 ∆t0/28 ∆t0/210

ε0=0.5 1.96E-02 7.82E-04 4.87E-05 3.04E-06 1.90E-07 1.20E-08

rate – 2.32 2.00 2.00 2.00 1.99

ε0/2 4.37E-01 1.16E-02 6.86E-04 4.29E-05 2.68E-06 1.68E-07

rate – 2.61 2.04 2.00 2.00 2.00

ε0/22 1.19E-01 4.98E-01 1.17E-02 7.09E-04 4.43E-05 2.77E-06

rate – -1.03 2.71 2.02 2.00 2.00

ε0/23 1.68E-01 1.64E-01 4.73E-01 1.19E-02 7.06E-04 4.41E-05

rate – 0.02 -0.46 2.66 2.04 2.00

ε0/24 1.76E-01 1.85E-01 1.96E-01 6.85E-01 1.12E-02 6.63E-04

rate – -0.04 -0.04 -0.90 2.96 2.04

ε0/26 1.13E-01 2.04E-01 2.22E-01 2.17E-01 2.20E-01 8.77E-01

rate – -0.42 -0.06 0.02 -0.01 -0.99

ε0/28 1.53E-01 1.94E-01 2.01E-01 4.00E-01 2.13E-01 5.72E-01

rate – -0.17 -0.03 -0.04 0.45 -0.71

ε0/210 1.76E-01 1.99E-01 2.09E-01 2.12E-01 2.16E-01 2.14E-01

rate – -0.08 -0.04 -0.01 -0.01 0.01

study the performance of TSFP in temporal approximations in Table 6 under the meshing
strategy ∆=O(ε2), which is the exact ε-scalability of GIFP [6].

From Tables 5-6, Fig. 2 and additional results not shown here brevity, we can draw
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Table 6: ε-scalability analysis: temporal error at time t=1 with ∆x=1/16 for different ∆t and ε under meshing
requirement ∆t= c·ε2.

TSFP ε0=0.5 ε0/2 ε0/4 ε0/8 ε0/16

c=0.8 1.52E-02 3.80E-03 8.93E-04 2.33E-04 6.75E-05

c=0.4 2.40E-03 8.10E-04 1.99E-04 5.20E-05 1.52E-05

c=0.2 5.66E-04 1.97E-04 4.85E-05 1.27E-05 3.69E-06

GIFP ε0=0.5 ε0/2 ε0/4 ε0/8 ε0/16

c=0.8 1.96E-02 1.16E-02 1.17E-02 1.19E-02 1.12E-02

c=0.4 3.20E-03 2.70E-03 2.90E-03 2.90E-03 2.70E-03

c=0.2 7.82E-04 6.86E-04 7.09E-04 7.06E-04 6.63E-04
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Figure 2: Dependence of the temporal discretization error on ε (in log-scale) for different ∆t at t= 1 under
∆x=1/8: (a) for TSFP and (b) for GIFP.

the following observations:

1. TSFP has uniform spectral accuracy in space for all ε ∈ (0,1] (cf. each column in
Table 4). The spatial discretization error is totally independent of ε. Thus the spatial
resolution of TSFP is

∆x=O(1), 0< ε≪1,

i.e. the mesh size can be chosen independent of ε, which is the same as GIFP [6].

2. As ε vanishes, both TSFP and GIFP are second-order accurate in time when ∆t is
sufficiently small, i.e. within the convergence regime, e.g. ∆t . ε2, (cf. the upper
diagonal part of Table 5), and both methods either have some convergence order
reductions or lose the convergence outside the convergence regime (cf. the lower
diagonal part of Table 5). Between the two numerical methods, TSFP always offers
better temporal approximations than GIFP under the same time step, especially
when ε becomes small (cf. Table 5).
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3. The temporal discretization error bound of GIFP within the convergence regime
behaves like O(ε−4∆t2) (cf. Fig. 2(b)) and the ε-scalability is ∆t=O(ε2) which are
consistent with the results in [6]. Fig. 2(a) indicates that the temporal error bound of
TSFP would asymptotically behave like O(ε−2∆t2) within the convergence regime,
which on the other hand indicates that the estimate provided in (3.28) is not opti-
mal in time. Table 6 illustrates a clearly second convergence in terms of ε for the
temporal error of TSFP as ε → 0 under the mesh strategy ∆t =O(ε2), while GIFP
shows no convergence, which again indicate the temporal error bounds for the two
methods and shows that TSFP will dominant in the highly oscillatory regime.

5 Conclusions

A time-splitting Fourier pseudospectral (TSFP) discretization was proposed and ana-
lyzed for solving the Klein-Gordon (KG) equation in a scaling involving a dimensionless
parameter ε∈(0,1], which is inversely proportional to the speed of light. Special attention
was paid to the highly oscillatory regime, i.e., the nonrelativistic limit regime 0< ε≪ 1
or the speed of light goes to infinity. The TSFP under study was derived for a simple
equivalent first-order-in-time form of the KG equation. It was shown that this method
coincides with a splitting method applied to the classical relativistic NLS reformulation.
We also showed that the TSFP is essentially equivalent to a trigonometric integrator pseu-
dospectral method. Rigorous error estimates of the TSFP method were achieved for the
regime ε=O(1). Extensive numerical studies were carried out, which demonstrated that
the TSFP is quite effective in capturing the temporally O(ε2)-oscillatory solutions in the
nonrelativistic limit regime. When 0 < ε ≪ 1, the TSFP has uniform spectral accuracy
in spatial discretization and offers compelling better temporal approximations over the
well-established Gautschi-type pseudospectral method rigorously studied in [6]. In fact,
our numerical results suggest that the temporal discretization error of TSFP within the
convergence regime is O(ε−2∆t2), whereas that of Gautschi-type method is O(ε−4∆t2),
where ∆t denotes the time step. Rigorous arguments for optimal error bounds of the
TSFP when 0< ε≪1 are of great interests and we propose to do it in a future work.
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