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Abstract. Nonlinear filter problems arise in many applications such as communica-
tions and signal processing. Commonly used numerical simulation methods include
Kalman filter method, particle filter method, etc. In this paper a novel numerical al-
gorithm is constructed based on samples of the current state obtained by solving the
state equation implicitly. Numerical experiments demonstrate that our algorithm is
more accurate than the Kalman filter and more stable than the particle filter.
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1 Introduction

The main purpose of numerical simulations of a filtering process is to obtain, recursively
in time, a good estimate for the probability density function (pdf) of the state of a dynam-
ical system based on noisy observations. The first major breakthrough in this classical
problem of signal analysis is the landmark work of Kalman and Bucy (Kalman filter) [16]
on linear filtering (see also [9, 19, 20, 22]), under the assumption of linearity of the sys-
tem and Gaussianity of the noise, and the conditional distribution of the state, given the
observations, is Gaussian. This conditional distribution gives the best estimate of the
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statistical description of the state of the system based on all the available observation in-
formation up to the current time. Largely because of the success of Kalman filters, linear
and nonlinear filters have been applied in the various engineering and scientific areas,
including communications such as positioning in wireless networks, signal processing
such as tracking and navigation, economics and business, and many others.

In most of the practical application problems, however, linearity assumption is not
valid because of the nonlinearity in the model specification process as well as the obser-
vation process. Two of the widely used methods for nonlinear filtering problems are ex-
tended Kalman filter (EKF) [2,8,13–15] and particle filter method (PFM) [3–5,11,21,25]. In
EFK the estimation problem is linearized around the predicted state so that the standard
Kalman filter can be applied. The central idea of the particle filter method is to repre-
sent the desired pdf of the system state with a set of random samples. As the number of
samples becomes very large, PFM provides a representation of the pdf. Since the semi-
nal work of Gordon, Salmond and Smith [11], there have been significant development
in both practical applications and theoretical analysis on PFM. Other efforts of solving
nonlinear filtering problems include the Gaussian sum filter [1, 17, 24], moment methods
based on approximations of the first two moments of the density [18] and Zakai filter
which represents the pdf as the solution of a parabolic type stochastic partial differential
equation (Zakai equation) [6, 10, 12, 23, 26, 27].

While the aforementioned methods have been remarkably successful in attacking the
nonlinear filtering problem, each of them has its drawbacks and limitations. For instance,
when the state equation describing the signal process and the observation equation are
highly non-linear, the extended Kalman filter can give particularly poor performance.
PFM has a number of advantages over EFK, including its ability to represent arbitrary
densities, adaptively focus on the most probable regions of state-space. However, it also
has a number of disadvantages, including high computational complexity, degeneracy
for long period simulation and its difficulty of determining optimal number of particles.

The goal of this paper is to construct a new algorithm for numerical simulations of
nonlinear filtering problems. The general framework of our algorithm is adopted from
the Bayesian filtering theory which constructs the pdf of the state based on all the avail-
able information. We still use the general framework of Kalman filters and particle filters
which solve the problem by two stages: prediction stage and update stage. For each time
recursive step, the prediction stage gives the estimation for the prior pdf of the future
state based on the currently available observation information while update stage gives
the posterior pdf from the updated observation information and the result obtained in
the prediction stage. However, instead of attempting to search for a representation of the
pdf as in PFM, we approximate the pdf as a function over a grid in state space. Specif-
ically, at the prediction stage, we attempt to seek the predicted pdf of the future state
variable through a Monte Carlo method by evaluating the conditional expectation of the
future state with respect to the current stage. Since the sample points for the current state
is computed by solving the state equation implicitly, we name our method as an “implicit
filter method”. The following two items summarize the novelty of our approach:
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(i) We propose an accurate implicit scheme for prediction purpose. The implicit scheme
has stabilizing effect on the proposed numerical algorithm. This is verified in our
numerical experiments.

(ii) Based on the Bayesian theory, we apply a novel Monte-Carlo like method to ap-
proximate the conditional expectation in the update stage to compute the prior pdf.

The paper is organized as follows. In the next section, we describe our methodology
and the implicit filter algorithm. In Section 3, we provide the convergence analysis of our
algorithm. Finally in Section 4 we demonstrate the accuracy and long time stability of
our algorithm through numerical experiments.

2 Methodology and the implicit filter algorithm

Consider the following state and observation equations in the dynamic state-space form:

dXt

dt
= f (t,Xt;Wt), (2.1)

Yt= g(t,Xt;Vt), (2.2)

where Xt∈R
nx denotes the state vector, Yt∈R

ny denotes the measurement vector, Wt∈R
nw

is a random vector representing the uncertainties in the model, and Vt ∈R
nv denotes the

random measurement error. In many applications, the noise from measurement can be
assumed to be additive, and the problem can be formulated in a discrete manner as

Xt+1= ft(Xt,Wt), (2.3)

Yt= gt(Xt)+Vt, (2.4)

where {Wt}t∈N ∈R
nw and {Vt}t∈N\{0}∈R

nv are mutually independent white noises and
the subscript t indexes the discrete time level at which the functions are evaluated. In data
assimilation, the observation Yt arrives sequentially in time and the goal is to estimate the
state vector Xt given the information of {Ys, 0<s≤t}. In what follows, we provide a brief
review on the formulation of Bayesian optimal filter.

2.1 Bayesian optimal filter

First we introduce some notations that will be used throughout the rest of the paper.
Denote Zm:n as (Zm,Zm+1,··· ,Zn) and denote Xt ∼ p(xt) if the pdf of a random variable
Xt is p(xt). Write

Xt | (Xt−1= xt−1)∼ p(xt | xt−1), (2.5)

where Xt |Xt−1 denotes the conditional expectation. When the context is clear, notations
similar to (2.5) will be introduced without formal explanations.
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The dynamical model is Markovian such that any future Xt is independent of the past
given the present Xt−1:

p(xt|x1:t−1,y1:t−1)= p(xt|xt−1),

and the measurements are conditionally independent given xt:

p(yt|x1:t,y1:t−1)= p(yt|xt).

Denote by It
.
={y1,y2,··· ,yt} the information observed before time t. Given a prior distri-

bution p(x0), Bayesian optimal filter is to construct the distribution p(xt|It) recursively
in two stages: prediction and update.

Assume that the required pdf p(xt−1|It−1) of previous step t−1 is available. The
Chapman-Kolmogorov equation gives the prediction step of

p(xt|It−1)=
∫

Rnx
p(xt|xt−1)p(xt−1|It−1)dxt−1. (2.6)

At time t, as measurement yt becomes available, the prior distribution from (2.6) can then
be updated via Bayesian’s formula

p(xt|It)=
p(yt|xt)p(xt|It−1)

p(yt|It−1)
=

p(yt |xt)p(xt|It−1)
∫

Rnx p(yt|xt)p(xt|It−1)dxt
. (2.7)

The exact computation of (2.6) and (2.7) is generally not possible. Exception exists
where all p(xt|It) are Gaussian and the model is linear, in which case the moments can
be obtained using Kalman filter. In practically all other cases, approximate solutions are
sought by numerical methods. Traditional particle filtering methods recursively generate
samples (particles) following p(xt|It) and use these samples to approximate moments of
p(xt|It). We propose here an inverse method which generates samples from the white
noise and use them to approximate p(xt|It), by utilizing inverse solutions to discretized
stochastic differential equations.

2.2 An inverse algorithm

Our proposed method is based on the fact that

p(xt|xt−1)=
∫

Rnw
p(xt|xt−1,wt−1)·p(wt−1)dwt−1=E[p(xt |xt−1,Wt−1)],

and therefore the term p(xt|It−1) in (2.6) can be written as

p(xt|It−1)=
∫

Rnx
p(xt|xt−1)p(xt−1|It−1)dxt−1

=
∫

Rnx
E[p(xt |xt−1,Wt−1)]p(xt−1|It−1)dxt−1. (2.8)
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We assume that a compact domain, B⊂R
nx , is the region of interest. Assuming that

the pdf p(xt−1|It−1) is given, to achieve the prediction step (2.8) from time t−1 to time t:

1. Generate M particles/paths {w
(j)
t−1}j=1,···,M according to the pdf of Wt−1 and approximate p(·|Wt−1)

by its empirical pdf, denoted by

πM(·|Wt−1)
.
=

1

M

M

∑
j=1

δ·|w(j)
t−1

,

where δx denotes the delta-Dirac mass located in x. In fact, according to Bayesian formula,

p(xt|xt−1,wt−1)=
p(xt−1,wt−1|xt)

p(xt−1,wt−1)
·p(xt),

and it follows immediately that p(xt|xt−1,Wt−1) is a random variable and the randomness comes from
the white noise Wt−1, for each given xt and xt−1 ∈R

nx . Therefore the term E[p(xt|xt−1,Wt−1)] in
(2.8) can be approximated by

E[p(xt|xt−1,Wt−1)]≈E[πM(xt|xt−1,Wt−1)],

in which πM(xt|xt−1,Wt−1) has the probability distribution

Pr(πM(xt|xt−1,w
(j)
t−1))=

1

M
, j=1,··· ,M.

2. Partition region B by using N nodes: {u(i)}i=1,···,N and approximate πM(xt|·) by πM(u(i)|·). Step
1 together with (2.8) gives

p(u(i)|It−1)≈
∫

B
E[πM(u(i)|xt−1,Wt−1)]p(xt−1|It−1)dxt−1. (2.9)

3. Assume that ft is invertible. Let x
(i,j)
t−1 be the solution to the equation ft(x

(i,j)
t−1 ,w

(j)
t−1) = u(i) for

j=1,··· ,M and i=1,··· ,N. Then

E[πM(u(i)|xt−1,Wt−1)]=
1

M

M

∑
j=1

πM(u(i)|xt−1,w
(j)
t−1)

=
1

M

M

∑
j=1

δ(xt−1−x
(i,j)
t−1), i=1,··· ,N. (2.10)

Hence the integral on the right hand side of (2.9) can be simplified and gives that for each i=1,··· ,N,

p(u(i)|It−1)≈
∫

B
E[πM(u(i)|xt−1,Wt−1)]p(xt−1|It−1)dxt−1

=
1

M

M

∑
j=1

p
(

x
(i,j)
t−1 |It−1

)

. (2.11)

4. The last step of prediction is to use interpolation to construct a piecewise approximation ρ(xt|It−1)

of p(xt|It−1), from p(u(i)|It−1) obtained in step 3. Denote by T[{·}] the piecewise linear function
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that connects the points (u(i),{·}), then we obtain the approximation of p(xt|It−1) via

p(xt|It−1)≈T
[

{p(u(i)|It−1)}N
i=1

]

≈T





{

1

M

M

∑
j=1

p
(

x
(i,j)
t−1 |It−1

)

}N

i=1





.
=ρ(xt|It−1), (2.12)

where p
(

x
(i,j)
t−1 |It−1

)

is the value of the pdf p(xt−1|It−1) at the point xt−1=x
(i,j)
t−1 .

Finally in the update step, we update the prior pdf ρ(xt|It−1) at xt ∈B by using the
Bayes formula. Thus the approximation of p(xt|It), denoted by ρ(xt|It) is given as

p(xt|It)≈ρ(xt|It)=
p(yt|xt)ρ(xt|It−1)

∫

B p(yt |xt)ρ(xt|It−1)dxt
. (2.13)

In this way, we obtain the approximation of p(xt|It) on nodes {u(i)}i=1,···,N.

Remark 2.1. It is also worthy nothing that our algorithm estimates the moments based
on the information of the deterministic space points which cover all possible states in-
stead of evaluating the state density through randomly selected particles in the particle
filter method, which partially explains the fact that in the numerical experiments, our
algorithm is more stable than the standard particle filter method.

3 Weak convergence

In this section we will study the convergence of the pdf obtained by our algorithm con-
verges to the Bayesian optimal filter on B. In general, given a measure µ and a function
ϕ, we define

〈µ(·),ϕ〉=
∫

ϕ(x)µ(·) dx.

Definition 3.1. Let {µn}∞
n=1 be a sequence of probability densities on P(B), where P(B)

is the space of all probability measures over B. We say that

• µn converges to µ∈P(B) uniformly and write limn→∞ µn =µ if for any ε>0, there
exists N0, such that |µn(z)−µ(z)|< ε for all z∈B and n>N0.

• µn converges to µ∈P(B) weakly and write limn→∞ µn
ϕ
=µ if

lim
n→∞

〈µn,ϕ〉= 〈µ,ϕ〉, ∀ϕ∈Cb(B),

where Cb(B) is the set of all continuous bounded functions on B.
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We will prove the weak convergence of ρ(xt|It) to p(xt|It), i.e., the convergence of
〈ρ(xt|It),ϕ〉 to 〈p(xt|It),ϕ〉.

To guarantee that the Bayes’ formula in (2.7) is well defined and can be fulfilled in our
algorithm, we make the following standing assumptions:

(A1) For given It, the denominator in (2.7) (normalization constants) satisfies

∫

B
p(yt|xt)p(xt|It−1)dxt > ξ>0.

(A2) The conditional kernel densities p(xt|xt−1) and p(yt|xt) are uniformly continuous,
bounded and strictly positive, i.e., given It,

0< p(xt|xt−1)<1, 0< p(yt |xt)<1.

For simplicity we denote Kt|t−1 :=E[p(xt |xt−1,Wt−1)], denote the true pdf’s by

pt−1|t−1 := p(xt−1|It−1), pt|t−1 := p(xt|It−1), pt|t := p(xt|It);

and similarly denote the simulated pdf’s by

ρt−1|t−1 :=ρ(xt−1|It−1), ρt|t−1 :=ρ(xt|It−1), ρt|t :=ρ(xt|It).

We first define at :P(B)→P(B) to be the mapping

at(µ)(xt)=
∫

B
Kt|t−1µ(xt−1)dxt−1, ∀µ∈P(B). (3.1)

Then we have
〈at(µ),ϕ〉=

〈

µ,Kt|t−1ϕ
〉

, ∀ϕ∈Cb(B), (3.2)

and it holds that
at(pt−1|t−1)= pt|t−1.

It’s natural to assume that at is continuous, since in the context of filtering two realizations
of the signal that start from “close” positions will remain “close” at subsequent times.
In fact, when the transition kernel p(xt|xt−1) is Feller, i.e., p(xt|xt−1)ϕ is a continuous
bounded function for any continuous bounded function ϕ, we have according to [7] that

if limn→∞ µn
ϕ
=µ then

lim
n→∞

〈at(µn),ϕ〉= lim
n→∞

〈

µn,Kt|t−1ϕ
〉

=
〈

µ,Kt|t−1ϕ
〉

= 〈at(µ),ϕ〉, ∀ ϕ∈Cb(B). (3.3)

Define bt :P(B)→P(B) to be the mapping

bt(µ)=
p(yt |xt)µ(xt)

∫

B p(yt |xt)µ(xt)dxt
, ∀µ∈P(B). (3.4)
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Then we have

〈

bt(pt|t−1),ϕ
〉

=
〈

pt|t−1,p(yt|xt)
〉−1 ·

〈

pt|t−1,ϕp(yt|xt)
〉

, ∀ϕ∈Cb(B), (3.5)

and it holds that
bt(pt|t−1)= pt|t.

It is also natural to assume that bt is continuous, which means that a slight variation
in two distributions will not result in a large variation in the distributions when obser-
vations are taken into account. In fact, assuming that p(yt|·) is a continuous bounded

strictly positive function, we have according to [7] that limn→∞ µn
ϕ
=µ then

lim
n→∞

〈bt(µn),ϕ〉= lim
n→∞

〈µn,p(yt|xt)〉−1 ·〈µn,ϕp(yt|xt)〉

= 〈µ,p(yt |xt)〉−1 ·〈µ,ϕp(yt|xt)〉= 〈bt(µ),ϕ〉, ∀ ϕ∈Cb(B). (3.6)

We next define two approximation operators, the sampling operator, and the interpo-
lation operator that appear in the prediction step.

1. Denote by ψ a function of Wt−1 from P(B) to P(B). At each step t, we draw M

samples, w
(1)
t−1,··· ,w(M)

t−1 , which are i.i.d. random variables with common distribu-
tion Wt−1. The Monte Carlo estimate of E[ψ(Wt−1)] can be obtained to be

ψ̃(wt−1)=
1

M

M

∑
j=1

ψ(w
(j)
t−1).

Define the sampling operator sM :P(B)→P(B) to be

sM(〈E[ψ],µ〉)= 〈E[ψ̃],µ〉, ∀µ∈P(B). (3.7)

Then

sM◦at(µ)=
∫

B

1

M

M

∑
j=1

πM(xt|xt−1,w
(j)
t−1)·µ(xt−1)dxt−1, ∀µ∈P(B).

2. Given the rectangular spatial partition nodes {u(i)}N
i=1. Define TN :P(B)→P(B) to

be the interpolation operator

TN(µ)(xt)=
N

∑
i=1

ψN
i (xt)µ(u

(i)),

for each xt ∈ B, where {ψi}N
i=1 are basis functions for interpolation operator TN .

Therefore
TN◦sM◦at(pt−1|t−1)=ρt|t−1,
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where ρt|t−1 is the piecewise linear approximation of pt|t−1 satisfying

ρt|t−1(u
(i))=

1

M

M

∑
j=1

p
(

x
(i,j)
t−1 |It−1

)

, for each i=1,··· ,N.

Denote by κt
.
= bt◦at , κM,N

t
.
= bt◦TN ◦sM◦at , κ1:t = κt◦κt−1◦···◦κ1 and κM,N

1:t = κM,N
t ◦

κM,N
t−1 ◦···◦κM,N

1 , we have

κt(pt−1|t−1)= pt|t, κM,N
t (pt−1|t−1)=ρt|t, and κ1:t(p0|0)= pt|t, κM,N

1:t (p0|0)=ρt|t.

Our goal is to show that κM,N
1:t

ϕ→κ1:t. This can be done by showing κM,N
t

ϕ→κt for each step
t and induction.

Recalling that P(B) is the set of all probability measures on B, we denote by PU(B)
be the set of all uniformly continuous probability measures on B and PC(B) the set of all
a.e. continuous probability measures on B, for latter use.

Lemma 3.1. sM◦at converges to at weakly, i.e., for any µM,µ∈P(B) with limM→∞ µM
ϕ
=µ, it

holds that
lim

M→∞
sM◦at(µM)

ϕ
= at(µ). (3.8)

Proof. For any t∈N, by the Strong Law of Large Numbers,

lim
M→∞

1

M

M

∑
j=1

πM(xt|xt−1,w
(j)
t−1)=E[p(xt |xt−1,Wt−1)], a.s. (3.9)

Therefore, for any ϕ∈Cb(B) we have
〈

sM◦at(µM),ϕ
〉

−〈at(µ),ϕ〉

=
〈

sM◦at(µM),ϕ
〉

−〈at(µM),ϕ〉+〈at(µM),ϕ〉−〈at(µ),ϕ〉

≤
∫

B

(

1

M

M

∑
j=1

πM(xt|xt−1,w
(j)
t−1)µM(xt−1)dxt−1−E[p(xt |xt−1,Wt−1)]

)

µM(xt−1)ϕdxt−1

+〈at(µM),ϕ〉−〈at(µ),ϕ〉. (3.10)

It then follows directly from Eqs. (3.9) and (3.3) that

lim
M→∞

sM◦at(µM)
ϕ
= at(µ).

The proof is complete.

Lemma 3.2. Assume that {µM,N}∞
M,N=1 ∈PC(B) and µM ∈PU(B) with limN→∞ µM,N=µM

for each M∈N. Then, limN→∞ sM◦at(µM,N)= sM◦at(µM) for each M∈N. Moreover, if there
exists λ>0 such that

∥

∥

∂
∂x f−1

t

∥

∥<λ, then sM◦at(µM,N)∈PC(B) and sM◦at(µM)∈PU(B).



F. Bao, Y. Cao and X. Han / Commun. Comput. Phys., 16 (2014), pp. 382-402 391

Proof. For any x∈B, by the definition of sM and at we have

sM◦at(µM,N)(x)=
1

M

M

∑
j=1

µM,N

(

x
(x,j)
t−1

)

and

sM◦at(µM)(x)=
1

M

M

∑
j=1

µM

(

x
(x,j)
t−1

)

.

Since limN→∞ µM,N=µM for each M∈N, given any ε>0, there exists N0, such that for all
z∈B, |µM,N(z)−µM(z)|< ε for each M∈N. Therefore, for all x∈B,

∣

∣

∣
sM◦at(µM,N)(x)−sM◦at(µM)(x)

∣

∣

∣
=

∣

∣

∣

∣

∣

1

M

M

∑
j=1

(

µM,N

(

x
(x,j)
t−1

)

−µM

(

x
(x,j)
t−1

))

∣

∣

∣

∣

∣

≤ 1

M

M

∑
j=1

∣

∣

∣

(

µM,N

(

x
(x,j)
t−1

)

−µM

(

x
(x,j)
t−1

))∣

∣

∣

<
1

M

M

∑
j=1

ε= ε.

This proves that limN→∞ sM◦at(µM,N)=sM◦at(µM) for all M∈N.

We next prove that sM◦at(µM,N) ∈ PC(B). In fact, for any ε > 0 and z0 ∈ B, since
µM,N ∈PC(B), there exists δ>0 such that when |z−z0|<δ,

|µM,N(z)−µM,N(z0)|< ε.

Fix arbitrary x0 ∈B, for any x∈B satisfying |x−x0|< δ/λ, using that ft(x
(x,j)
t−1 ,w

(j)
t−1)= x

and ft(x
(x0,j)
t−1 ,w

(j)
t−1)= x0 we have

∣

∣

∣
x
(x,j)
t−1 −x

(x0,j)
t−1

∣

∣

∣
= | f−1

t (x,w
(j)
t−1)− f−1

t (x0,w
(j)
t−1)|≤

∥

∥

∥

∥

∂

∂x
f−1
t

∥

∥

∥

∥

·|x−x0|<δ,

and thus

∣

∣

∣
sM◦at(µM,N)(x)−sM◦at(µM,N)(x0)

∣

∣

∣
≤ 1

M

M

∑
j=1

∣

∣

∣
µM,N

(

x
(x,j)
t−1

)

−µM,N

(

x
(x0,j)
t−1

)
∣

∣

∣
< ε.

It remains to show that sM◦at(µM)∈PU(B). In fact, given any x1,x2∈B,

sM◦at(µM)(x1)−sM◦at(µM)(x2)=
1

M

M

∑
j=1

(

µM

(

x
(x1,j)
t−1

)

−µM

(

x
(x2,j)
t−1

))

.
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For any ε> 0, from the uniformly continuity of µM, there exists δ> 0, such that for any
z1,z2∈B with |z1−z2|<δ, |µM(z1)−µM(z2)|< ε. Let δ̃= δ

λ , then |x1−x2|< δ̃ implies that

∣

∣

∣
x
(x1,j)
t−1 −x

(x2,j)
t−1

∣

∣

∣
=
∣

∣

∣
f−1
t (x1,w

(j)
t−1)− f−1

t (x2,w
(j)
t−1)

∣

∣

∣
≤
∥

∥

∥

∥

∂

∂x
( f−1

t )

∥

∥

∥

∥

·|x1−x2|<δ.

Hence

∣

∣

∣
sM◦at(µM)(x1)−sM◦at(µM)(x2)

∣

∣

∣
=

∣

∣

∣

∣

∣

1

M

M

∑
j=1

(

µM

(

x
(x1,j)
t−1

)

−µM

(

x
(x2,j)
t−1

))

∣

∣

∣

∣

∣

< ε.

The proof is complete.

Lemma 3.3. For {νM,N}∞
M,N=1 ∈ PC(B) and νM ∈ PU(B) with limN→∞ νM,N=νM for each

M∈N, it holds that
lim

N→∞
TN(νM,N)=νM, ∀M∈M. (3.11)

Proof. For any xt∈B,

∣

∣

∣
TN(νM,N)(xt)−νM(xt)

∣

∣

∣
≤
∣

∣

∣
TN(νM,N)(xt)−TN(νM)(xt)

∣

∣

∣
+
∣

∣

∣
TN(νM)(xt)−νM(xt)

∣

∣

∣
. (3.12)

Since limN→∞ νM,N=νM, for any ε>0, there exists N1=N1(M)>0 such that when N>N1,

|νM,N(xt)−νM(xt)|<
ε

2
.

Thus because of the linearity of TN we have

∣

∣

∣
TN(νM,N)(xt)−TN(νM)(xt)

∣

∣

∣
=
∣

∣

∣
TN(νM,N−νM)(xt)

∣

∣

∣
<

ε

2
. (3.13)

For the second term on the right hand side of inequality (3.12), since TN is the linear
interpolation operator and νM is uniformly continuous, for any ε> 0, there exists N2 =
N2(M)>0 such that when N>N2 we have

∣

∣

∣
TN(νM)(xt)−νM(xt)

∣

∣

∣
<

ε

2
. (3.14)

In summary letting N0 = max{N1,N2} we have by (3.12), (3.13) and (3.14) that for any
ε>0,

∣

∣

∣
TN(νM,N)(xt)−νM(xt)

∣

∣

∣
< ε, ∀N>N0, ∀xt∈B, ∀M∈N. (3.15)

The proof is complete.

We next prove the weak convergence of the operator κM,N
t to κt. Letting κM,N

t and κt

be the composition operators defined as above, we have the following theorem.
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Theorem 3.1 (Local convergence). Assume that the transition kernel p(xt|xt−1) is Feller and
p(yt|xt) is bounded, uniformly continuous, and strictly positive. Also assume that

∥

∥

∂
∂x f−1

t

∥

∥ is
bounded. Then, for any {µM,N}∞

M,N=1∈PC(B) and µM,µ∈PU(B) with limN→∞ µM,N=µM for

each M∈N and limM→∞ µM
ϕ
=µ, it holds that

lim
M→∞

lim
N→∞

κM,N
t (µM,N)

ϕ
=κt(µ). (3.16)

Proof. Given limM→∞ µM
ϕ
=µ, by Lemma 3.1,

lim
M→∞

sM◦at(µM)
ϕ
= at(µ). (3.17)

Given limN→∞ µM,N=µM for each M ∈ N, by Lemma 3.2 we have limN→∞ sM◦
at(µM,N)=sM◦at(µM) and sM◦at(µM,N)∈PC(B), sM◦at(µM)∈PU(B). Thus by letting
νM,N

.
= sM◦at(µM,N) and νM

.
= sM◦at(µM) in Lemma 3.3 we get

lim
N→∞

TN◦sM◦at(µM,N)=sM◦at(µM). (3.18)

Eqs. (3.17) and (3.18) together give

lim
M→∞

lim
N→∞

TN◦sM◦at(µM,N)
ϕ
= at(µ).

Therefore it follows directly from (3.6) that

lim
M→∞

lim
N→∞

bt◦TN ◦sM◦at(µM,N)
ϕ
=bt◦at(µ).

The proof is complete.

To prove the global weak convergence result, we also need the following lemma.

Lemma 3.4. Assume p(yt|xt) is bounded, uniformly continuous, and strictly positive. For
{γM,N}∞

M,N=1 ∈ PC(B) and γM ∈ PU(B) with limN→∞ γM,N=γM for each M ∈ N, if there

exists a ξ0>0 such that
∫

B p(yt|xt)γM(xt)dxt ≥ ξ0, then we have

lim
N→∞

bt(γM,N)=bt(γM)∈PU(B), ∀M∈N.

Proof. Since limN→∞ γM,N=γM for each M ∈N, then for any 0< ε< ξ0

2 , there exists N0,
such that when N>N0,

|γM,N(xt)−γM(xt)|< ε, ∀xt∈B and ∀M∈N.

It then follows that
∣

∣

∫

B p(yt |xt)(γM,N(xt)−γM(xt))dxt

∣

∣< ε and

∫

B
p(yt|xt)γM,N(xt)dxt >

∫

B
p(yt|xt)γM(xt)dxt−ε>

ξ0

2
.
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Thus for any xt∈B when N>N0 we have

|bt(γM,N)(xt)−bt(γM)(xt)|

=p(yt |xt)·
∣

∣

∣

∣

∣

γM,N(xt)·
∫

B p(yt |xt)γM(xt)dxt−γM(xt)·
∫

B p(yt |xt)γM,N(xt)dxt
∫

B p(yt|xt)γM,N(xt)dxt ·
∫

B p(yt|xt)γM(xt)dxt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

B p(yt|xt)(γM(xt)−γM,N(xt))dxt
∫

B p(yt|xt)γM,N(xt)dxt ·
∫

B p(yt|xt)γM(xt)dxt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

γM(xt)−γM,N(xt)
∫

B p(yt|xt)γM(xt)dxt

∣

∣

∣

∣

∣

<

(

4

ξ2
0

+
2

ξ0

)

ε. (3.19)

Therefore limN→∞ bt(γM,N)=bt(γM). It remains to show that bt(γM)∈PU(B). In fact, by

the definition of bt, we have for any x
(1)
t ,x

(2)
t ∈B,

∣

∣

∣
bt(γM)(x

(1)
t )−bt(γM)(x

(2)
t )
∣

∣

∣
≤ 2

ξ0

∣

∣

∣
p(yt|x(1)t )γM(x

(1)
t )−p(yt|x(2)t )γM(x

(2)
t )
∣

∣

∣
.

From the uniformly continuity property and the boundedness of γM and p(xt|xt−1) that

for any ε>0, there exists δ>0, such that when x
(1)
t ,x

(2)
t ∈B with |x(1)t −x

(2)
t |< δ, we have

|γM(x
(1)
t )−γM(x

(2)
t )|< ε

2 and |p(x
(1)
t )−p(x

(2)
t )|< ε

2 . Thus,
∣

∣

∣
bt(γM)(x

(1)
t )−bt(γM)(x

(2)
t )
∣

∣

∣
<Cε.

This completes the proof.

Note 3.1. When the standing assumption (A1) holds, it follows immediately by the def-
inition of sM that there exists a ξ0 > 0 such that

∫

B p(yt|xt)sM◦p(xt|It−1)dxt > ξ0 for M
sufficient large.

Applying Theorem 3.1 to the context of filtering problems, we can obtain the weak
convergence of our implicit filtering simulation to the Bayesian optimal filter. Our main
result of this work is stated in the following theorem. For simplicity, we define two new
operators θM

t and θM
1:t to be

θM
t =bt◦sM◦at and θM

1:t= θt◦θt−1◦···◦θ1.

Theorem 3.2 (Global convergence). Assume that the transition kernel p(xt|xt−1) is Feller and
p(xt|xt−1) is bounded, uniformly continuous, and strictly positive. Also assume that

∥

∥

∂
∂x f−1

t

∥

∥ is
bounded. Then

lim
N→∞

κM,N
1:t (p0|0)= θM

1:t(p0|0) ∀M∈N, and lim
M→∞

θM
1:t(p0|0)

ϕ
=κ1:t(p0|0),

which implies that

lim
M→∞

lim
N→∞

ρt|t
ϕ
= pt|t.
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Proof. To prove Theorem 3.2, we use induction method.

(1) t=1: choose µM,N =µM =µ= p0|0 in Eq. (3.16). It is obviously that

lim
N→∞

µM,N=µM, lim
M→∞

µM
ϕ
=µ,

and µM = p0|0 is uniformly continuous. By Lemmas 3.2, 3.3 and 3.4 and Note 3.1,

lim
N→∞

κM,N
1 (p0|0)= θM

1 (p0|0)∈PU(B), ∀M∈N.

By Lemma 3.1 and the continuity of bt, we have

lim
M→∞

θM
1 (p0|0)

ϕ
=κ1(p0|0)= p1|1.

It then follows from Theorem 3.1 that

lim
M→∞

lim
N→∞

κM,N
1 (p0|0)

ϕ
=κ1(p0|0)= p1|1.

(2) Assume that

lim
N→∞

κM,N
1:t−1(p0|0)= θM

1:t−1(p0|0)∈PU(B) ∀M∈N, and lim
M→∞

θM
1:t−1(p0|0)

ϕ
=κ1:t−1(p0|0).

We choose µM,N=κM,N
1:t−1(p0|0) and µ=κ1:t−1(p0|0)=pt−1|t−1 in Eq. (3.16) and µM=θM

1:t−1(p0|0)
in Theorem 3.1. From the assumption,

lim
N→∞

µM,N=µM and lim
M→∞

µM
ϕ
=µ.

By Lemmas 3.2, 3.3 and 3.4 and Note 3.1 that

lim
N→∞

κM,N
1:t (p0|0)= lim

N→∞
bt◦TN ◦sM◦at(κ

M,N
1:t−1(p0|0))=θM

1:t(p0|0)∈PU(B). (3.20)

By Lemma 3.1 and the continuity of bt we have

lim
M→∞

θM
1:t(p0|0)

ϕ
= pt|t. (3.21)

Therefore it follows from Theorem 3.1 that

lim
M→∞

lim
N→∞

κM,N
t (κM,N

1:t−1(p0|0))
ϕ
=κt(pt−1|t−1)=κ1:t(p0|0)= pt|t.

The proof is complete.
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4 Numerical experiments

In this section, we present two numerical examples to demonstrate the efficiency of our
method. The first example involves a one dimensional nonlinear system and measure-
ment equation while the second is a 2-D bearing-only tracking problem. We shall com-
pare our method with the standard EKF and particle filter. In the particle filter method
we use sequential important sampling with resampling (SIR) and the Newton’s method
as the nonlinear solver in our implicit filter method.

Example 4.1. In this example, we consider the following nonlinear model

xk =40·tan(xk−1+10)+50wk−1, (4.1a)

yk =40· xk

2000+xk
+vk, (4.1b)

where wk and vk are two independent zero-mean white noise processes with variance 1.0,
yk is the noise perturbed observation of xk. The initial position is taken to be x0 = 2 and
Fig. 1 shows a 50 step realization of the state equation in model (4.1).

0 5 10 15 20 25 30 35 40 45 50
−600

−400

−200

0

200

400

600

800

1000

k

X
k

Figure 1: Original position.

Figs. 2, 3 and 4 are the simulation results obtained by using EKF and particle filter
and our implicit particle filter method, respectively. The true state is represented by blue
diamonds while simulation results are given as red “stars” and connected by solid lines.
The prior pdf p(x0) is initialized with the standard normal distribution with the mean
value x0 and the variance 1.0.

In particle filter method, we use 500 particles (sample points) to represent the
pdf and the running time is 1.711293 seconds with an Intel(R) Core(TM)2 Duo CPU
P8700@2.53GHZ 2.53Ghz. In our implicit filter, we use 100 nodes to partition the re-
gion and the number of Monte-Carlo samples is M=10. The running time of the implicit
algorithm is 1.130215 seconds.

Form the three figures, one can see that when the variation between two consecutive
points is not very large, all three methods produce very accurate approximations to the
true state. On the other hand, when the true state has very large variations at some time
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Figure 2: Extended Kalman filter.
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Figure 3: Particle filter.
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Figure 4: Implicit algorithm.

steps, i.e., the state variable has a large jump from its previous state, both EKF and particle
filter fail to produce accurate approximations. However, our implicit particle algorithm
still produces accurate estimations at these points.



398 F. Bao, Y. Cao and X. Han / Commun. Comput. Phys., 16 (2014), pp. 382-402

Example 4.2. In this example, we consider the following bearing-only tracking problem

dX1(t)=−αX2(t)dt+β
X1(t)

(X1(t))2+(X2(t))2
+σ1dW1(t), (4.2a)

dX2(t)=αX1(t)dt+β
X2(t)

(X1(t))2+(X2(t))2
+σ2dW2(t), (4.2b)

where W1(t) and W2(t) are two independent Brownian Motions. This stochastic dynam-
ical system may serve to model the motion of a ship which moves with a constant radial
and angular velocity, perturbed by a white noise. The observations are collected by a de-
tector located at a platform with time intervals of length ∆=0.05 and the data are angular
measurements corrupted by noise.

To approximate the state variables X=(X1,X2), we discretize the dynamical system
(4.2) in time and obtain a discrete nonlinear filtering problem. Let xk =(x1

k ,x2
k). We have

the discrete system model

x1
k = x1

k−1−α∆·x2
k−1+β∆· x1

k−1

(x1
k−1)

2+(x2
k−1)

2
+σ1

√
∆·w1

k−1, (4.3a)

x2
k = x2

k−1+α∆·x1
k−1+β∆· x2

k−1

(x1
k−1)

2+(x2
k−1)

2
+σ2

√
∆·w2

k−1. (4.3b)

The mathematical formula for the measurement equation is given by

yk =arctan

( x2
k−x2

plat f orm

x1
k−x1

plat f orm

)

+
√

∆vk, (4.4)

where xplat f orm = (x1
plat f orm,x2

plat f orm) is the location of the platform where a detector is

placed.
In the numerical simulations the model parameters are chosen as α = 5, β = 2 and

σ1 = σ2 = 8. Fig. 5 gives the target path in the x-y plan, with the position of the target at
each time step shown by a diamond. The location of the detector platform is chosen as
xplat f orm=(−15,−15), marked by a red box.

The problem is initialized with a best guess of the target position at the initial time,
which is (x1

0,x2
0) = (0.5,0.5). In this example, we use 8000 particles (sample points) to

represent the pdf in the particle filter method and the running time is 45.7266 seconds.
In the implicit filter, we use 1600 nodes to partition the region and the number of Monte-
Carlo samples is M=10. The running time of the implicit algorithm is 41.8192 seconds.
Fig. 6 shows the simulation results of observation angle using EKF, particle filter and our
implicit particle filter method. From this figure, one can see that both particle filter and
the implicit particle filter produce good approximation for the relative observation angle
of the target. Although the EKF provides the trend of the movement of the target, the
estimation is a few steps delayed from the true target observation angle.
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Figure 5: Target positions.
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Figure 6: Comparison result for the observation angle.

Fig. 7 shows the results of system state simulations using EKF while Fig. 8 compares
the performance between particle filter and the implicit particle filter. Clearly both the
particle filter and implicit particle filter outperform EKF. While the accuracy of the parti-
cle filter and the implicit particle filter are very close to each other at the initial stage, the
implicit particle filter becomes more accurate at the final stage of time interval.

5 Concluding remarks

We have developed an implicit filter algorithm for nonlinear filtering problems. The es-
sential idea is to evaluate the probability distribution of the current state in the prediction
step by evaluating the previous state through the state equation, given the valuate of the
current state and a sample of the noise. Through rigorous analysis we proved the con-
vergence of the algorithm. Our numerical experiments indicate that our method is more
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Figure 7: Simulation result of EKF.
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Figure 8: Comparison result between particle filter and implicit algorithm.

accurate than the standard Kalman filter. The numerical experiments also show that as
an implicit scheme, our method is more stable than the standard particle filter method
for long term simulations. Finally it needs to be pointed out that our method is a grid
method in which the probability distributions are evaluated at all grid points. As such,
the computing cost will increase exponentially as the dimension increases. Thus our
method at the current form is suitable for only low dimension problems such as target
tracking problems. In future research, we plan to improve the algorithm by adding an
adaptive mechanism to it so that fewer grid points will be selected adaptively.
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