
Commun. Comput. Phys.
doi: 10.4208/cicp.300313.130114a

Vol. 16, No. 2, pp. 287-306
August 2014

Simulation with Fluctuating and Singular Rates

Farzin Barekat1 and Russel Caflisch1,∗

1 Mathematics Department, University of California at Los Angeles, Los Angeles,
CA 90095-1555, USA.

Received 30 March 2013; Accepted (in revised version) 13 January 2014

Communicated by Bo Li

Available online 17 April 2014

Abstract. In this paper we present a method to generate independent samples for a
general random variable, either continuous or discrete. The algorithm is an extension
of the Acceptance-Rejection method, and it is particularly useful for kinetic simulation
in which the rates are fluctuating in time and have singular limits, as occurs for exam-
ple in simulation of recombination interactions in a plasma. Although it depends on
some additional requirements, the new method is easy to implement and rejects less
samples than the Acceptance-Rejection method.

AMS subject classifications: 65C05, 82B80, 82D10

Key words: Sampling, Monte Carlo, Acceptance/Rejection method, plasma, recombination.

1 Introduction

Kinetic transport for a gas or plasma involves particle interactions such as collisions, ex-
citation/deexcitation and ionization/recombination. Simulation of these interactions is
most often performed using the Direct Simulation Monte Carlo (DSMC) method [1] or
one of its variants, in which the actual particle distribution is represented by a relatively
small number of numerical particles, each of which is characterized by state variables,
such as position x and energy E. Interactions between the numerical particles are per-
formed by random selection of the interacting particles and the interaction parameters,
depending on the interaction rates. Correctly sampling these interactions involves sev-
eral computational challenges: First the number N of particles can be large (e.g., N=106)
and the number of possible interaction events can be even larger (e.g., Nk for k=2 or 3).
Second, the interaction probabilities vary throughout the simulation since interactions

∗Corresponding author. Email addresses: fbarekat@math.ucla.edu (F. Barekat), caflisch@math.ucla.edu
(R. Caflisch)

http://www.global-sci.com/ 287 c©2014 Global-Science Press

288 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

Figure 1: This figure illustrates the computational challenges involved in sampling interactions of numerical
particles, and how different methods can handle them. Broken line represents challenges for which the method
becomes computationally inefficient, whereas, the solid line represents the challenges for which the method is
still computationally efficient.

change the state of the interacting particles. These two difficulties are routinely overcome
using Acceptance-Rejection sampling. Third, the interaction rates can be nearly singu-
lar, for example in a recombination event between an ion and two electrons (described
in more detail in Section 5). This creates a wide range of interaction rates that makes
Acceptance-Rejection computationally intractable. Fig. 1 illustrates these challenges and
how different methods can handle them. The sampling method presented here, which
we call Reduced Rejection, was developed to overcome the challenges of a large number
of interaction events with fluctuating and singular rates.

Simulation of kinetics requires sampling methods that generate independent samples.
This rules out Markov Chain Monte Carlo schemes, such as Metropolis-Hastings, Gibbs
sampling, and Slice sampling. Although these methods are very powerful and are used
very often, this paper focuses on sampling methods that generate independent samples.

There are several efficient algorithms for simulation of discrete random variables,
notably Marsaglia’s Table method [11] and the Alias method [19, 20]. However, these
methods require pre-processing time and, therefore, are not efficient for sampling from a
random variable whose probability function changes during the simulation. For contin-
uous random variables there are several different algorithms; nevertheless, each of these
algorithms has its own constraints. For example, Inverse Transform Sampling method
requires knowledge of the cumulative distribution function and evaluation of its inverse,
Box-Muller only applies to a normal distribution, and Ziggurat algorithm [12] can be
used for random variables that have monotone decreasing (or symmetric unimodal) den-
sity function.

The algorithm of choice for general (both continuous and discrete) random vari-

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 289

ables that generates independent samples and does not require preprocessing time is
Acceptance-Rejection method (see for example [3]). Let q(x) be a real-valued function
on the sample space. Let I[q] denote the expectation of function q(x). By sampling ac-
cording to function q(x) we mean to sample using the probability distribution function
q(x)/I[q]. We say function q(x) encloses function p(x) if p(x)≤ q(x) for all x in the sam-
ple space. The idea of Acceptance-Rejection method is to find a proposal function q(x)
that encloses function p(x). Suppose we already have a mechanism to sample according
to q(x), then Acceptance-Rejection algorithm enables us to sample according to p(x). In
most cases the constant function is used as the proposal function q(x). The main draw-
back of Acceptance-Rejection method is that it might reject many samples. Indeed the
ratio of the number of rejected samples to the number of accepted samples is approxi-
mately equal to the ratio of the area between curves q(x) and p(x) to the area under the
curve p(x).

For many given distributions, finding a good proposal function that encloses it with-
out leading to many rejected samples is difficult. One extension to Acceptance-Rejection
method is Adaptive Rejection Sampling [8]. The basic idea of Adaptive Rejection Sam-
pling is to construct proposal function q(x) that encloses the given distribution by con-
catenating segments of one or more exponential distributions. As the algorithm pro-
ceeds, it successively updates the proposal function q(x) to correspond more closely to
the given distribution. Another extension to Acceptance-Rejection method is Economical
method [5]. This method is basically a generalization of Alias method for continuous
distributions. In this method, one needs to define a specific transformation that maps
{x : p(x)>q(x)} to {x : p(x)≤q(x)}. Although this method produces no rejection, finding
the required transformation is difficult in general.

In the Reduced Rejection method we sample according to a given function p(x) based
on a proposal function q(x). In contrast to the Acceptance-Rejection method, Reduced
Rejection sampling does not require q(x) to enclose p(x) (i.e. it allows p(x)> q(x) for
some x). On the other hand, Reduced Rejection sampling requires some extra knowledge
about the functions p(x) and q(x).

The Reduced Rejection sampling method can be applied to a wide range of sampling
problems (for both continuous and discrete random variables) and in many examples
is more efficient than customary methods (three examples are provided in Sections 4, 5
and 6). In particular, Reduced Rejection sampling requires no pre-processing time and
consequently is suitable for simulations in which p(x) is changing constantly (see Section
3 for an elaboration on this point and Sections 5 and 6 for examples of simulations with
fluctuating p(x)). Also in situations where p(x) has singularities or is highly peaked in
certain regions, Reduced Rejection sampling can be very efficient.

The next section describes the Reduced Rejection sampling and proves its validity.
Section 3 compares Reduced Rejection sampling to other methods (including other gen-
eralizations of Acceptance-Rejection), highlights advantages of Reduced Rejection sam-
pling in comparison to other methods, and points out some of the challenges in applying
Reduced Rejection sampling. In Section 4, Reduced Rejection sampling is demonstrated

290 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

on a simple example. In Section 5, Reduced Rejection sampling is applied to an example
motivated from plasma physics, for which other sampling methods cannot be used effi-
ciently. In Section 6, we make some comments on how to apply Reduced Rejection in the
context of stochastic chemical kinetics. In the appendix, we provide flow charts for the
Reduced Rejection algorithm.

2 Reduced Rejection sampling

Consider a sample space Ω with Lebesgue measure µ on Ω, and two functions q,p:Ω→R.
Denote

I[q]=
∫

Ω
q(x)dµ(x), I[p]=

∫

Ω
p(x)dµ(s).

By sampling from Ω according to p(x) we mean sampling from Ω using probability dis-
tribution function p(x)/I[p]. Partition sample space Ω into two sets S and L:

L={x∈Ω : p(x)>q(x)}, S={x∈Ω : p(x)≤q(x)}.

Reduced Rejection sampling is a method for sampling from Ω according to p(x) using an
auxiliary function q(x). It depends on the following:

• The values of I[q], I[p] and
∫

L(p(x)−q(x))dµ(x). Note that the last value is needed
only for “Algorithm II”, see Subsection 2.1.

• A mechanism to sample from Ω according to q(x).

• A mechanism to sample from L according to p(x)−q(x).

Whereas the Acceptance-Rejection method for sampling from p(x) requires a function
q(x) that encloses p(x) (i.e., 0≤ p(x)≤q(x) for all x∈Ω), the Reduced Rejection sampling
algorithm is a generalization of the Acceptance-Rejection method, that allows p(x)>q(x)
for some x. The Reduced Rejection sampling algorithm is detailed in Section 2.1, and its
validity as a method for sampling from Ω according to p(x) is demonstrated in Section
2.2.

2.1 The Reduced Rejection sampling algorithm

The Reduced Rejection sampling method consists of two algorithms (i.e., two different
algorithms) depending on the relative values of I[p] and I[q]. The outcome of each algo-
rithm is a value z that is an independent sample from Ω according to p(x).

Algorithm I: I[p]≥ I[q].

Perform the following steps:

i) With probability (I[p]−I[q])/I[p], sample x0 from L according to p(x)−q(x) and accept z=x0.

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 291

ii) Otherwise (with probability (I[q]/I[p]), sample x0 from Ω according to q(x).

a) If x0∈L, accept z=x0.

b) If x0∈S, accept z=x0 with probability p(x0)/q(x0).

iii) If x0 was not accepted, then sample a new value of x1 from L according to p(x)−q(x) and
accept z=x1.

Algorithm II: I[p]< I[q].

Perform the following steps until a value z is accepted:

i) Sample x0 from Ω according to q(x).

ii) If x0∈L, accept z=x0.

iii) If x0∈S, accept z=x0 with probability pa= p(x0)/q(x0),

iv) If x0 was not accepted, then

a) With probability pa select x1 from L according to p(x)−q(x) and accept z=x1, in which

pa=

∫

L(p(x)−q(x))dµ(x)
∫

S (q(x)−p(x))dµ(x)

=

∫

L(p(x)−q(x))dµ(x)

I[q]− I[p]+
∫

L(p(x)−q(x))dµ(x)
. (2.1)

b) Otherwise (i.e., with probability 1−pa), return to (i) without accepting a value of z.

Figs. 5 and 6 in Appendix 7 illustrate flow charts of Algorithms I and II.
As described in Algorithms I and II, Reduced Rejection samples from p through the

following steps: On L, treat p as a mixture p = q+(p−q) and sample from q and p−q
with the correct probabilities; and on S , sample from p by sampling from q and accept
the sample with probability p/q. Rejected samples in S correspond to the region B in
Fig. 2, and the region A is where q does not enclose p. If |A|> |B| (i.e., Algorithm I) then

Figure 2: This figure illustrates the Reduced Rejection method. Region A is where q does not enclose p, and
region B is where samples are rejected. Rejected samples from region B can be replaced by samples from region
A if |A|> |B|; otherwise (if |A|< |B|), some of the rejected samples lead to repetition of the algorithm.

292 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

all of the rejected samples can be replaced by samples from A; if |A|< |B| (i.e., Algorithm
II) then a portion of the rejected samples can be replaced by samples from A, and for the
remainder, the algorithm is repeated as in Acceptance-Rejection.

2.2 Validity of Reduced Rejection sampling

In this subsection we show the correctness of the Reduced Rejection sampling method.
As the method is different for Algorithms I and II, we prove the correctness for each
algorithm separately.

Proof for Algorithm I: For each z∈Ω, show that the algorithm of Algorithm I returns z
with probability p(z)dµ(z)/I[p].

If z∈S , then part (ii) must have been selected, z must have been sampled in (ii) and
it must have been accepted in case (ii.b). Therefore, the probability of returning z is

Pr[(ii) selected] Pr[z sampled in (ii)] Pr[z accepted in (ii.b)]

=
I[q]

I[p]
× q(z)dµ(z)

I[q]
× p(z)

q(z)
=

p(z)dµ(z)

I[p]
. (2.2)

Also note that for every x0∈S , after x0 is selected in (ii.b) with probability
q(x)
I[q] dµ(x), the

probability of reaching (iii) is
q(x0)−p(x0)

q(x0)
. Thus the total probability of reaching (iii) after

selecting (ii) is

Pr[reaching (iii) | (ii) selected]=
∫

S

q(x)−p(x)

q(x)

q(x)

I[q]
dµ(x)

=

∫

S (q(x)−p(x))dµ(x)

I[q]
. (2.3)

Next suppose that z∈L. The probability that z is returned from (i) is

Pr[z returned from (i)]=Pr[(i) selected] Pr[z sampled in (i)]

=
(I[p]− I[q])

I[p]
× (p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)
. (2.4)

The probability that z was returned from (ii.a) is

Pr[z returned from (ii.a)]=Pr[(ii) selected] Pr[z sampled in (ii.a)]

=
I[q]

I[p]
× q(z)dµ(z)

I[q]
=

q(z)dµ(z)

I[p]
. (2.5)

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 293

Also, using Eq. (2.3), the probability that z was returned from (iii) is

Pr[z returned from (iii)]

=Pr[(ii) selected] Pr[reaching (iii) | (ii) selected] Pr[z sampled from L in (iii)]

=
I[q]

I[p]
×
(

∫

S (q(x)−p(x))dµ(x)

I[q]

)

× (p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)

=

∫

S (q(x)−p(x))dµ(x)

I[p]

(p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)
. (2.6)

Finally, using Eqs. (2.4), (2.5), and (2.6), the probability of returning z is

Pr[z returned from (i)]+Pr[z returned from (ii.a)]+Pr[z returned from (iii)]

=
(I[p]− I[q])

I[p]

(p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)
+

q(z)dµ(z)

I[p]

+
(p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)

∫

S (q(x)−p(x))dµ(x)

I[p]

=
(p(z)−q(z))dµ(z)

I[p]
∫

L(p(x)−q(x))dµ(x)

(

I[p]− I[q]+
∫

S
(q(x)−p(x))dµ(x)

)

+
q(z)dµ(z)

I[p]

=
(p(z)−q(z))dµ(z)

I[p]
∫

L(p(x)−q(x))dµ(x)

(

∫

L
(p(x)−q(x))dµ(x)

)

+
q(z)dµ(z)

I[p]

=
p(z)dµ(z)

I[p]
. (2.7)

Hence, by (2.2) and (2.7), whether z∈S or z∈L, the probability of returning z is equal
to p(z)dµ(z)/I[p]. This completes the proof for Algorithm I.

Proof for Algorithm II: For each z∈Ω, show that the algorithm in Algorithm II returns z
with probability p(z)dµ(z)/I[p]. The algorithm consists of some number of cycles, each
consisting of steps (i)-(iv), until a value z is accepted. We first calculate the probability
that z is accepted within one of the cycles.

Suppose that z ∈ S . Then z must be sampled in (i) and accepted in (iii). Thus, the
probability of returning z in (iii) is

Pr[z returned from (iii)]=Pr[z sampled in (i)] Pr[z accepted in (iii)]

=
q(z)dµ(z)

I[q]
× p(z)

q(z)
=

p(z)dµ(z)

I[q]
. (2.8)

Also note that for every x0∈S ,which is chosen with probability
q(x0)dµ(x0)

I[q]
, the probability

that it is not accepted in (iii) is
q(x0)−p(x0)

q(x0)
. Thus the total probability of not returning an

294 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

element of S in (iii), which is the same as the probability of reaching (iv), is

Pr[reaching (iv)]=
∫

S

q(x)−p(x)

q(x)

q(x)

I[q]
dµ(x)=

∫

S

q(x)−p(x)

I[q]
dµ(x). (2.9)

Next suppose that z∈L. The probability that z is accepted in (ii) is

Pr[z returned from (ii)]=
q(z)dµ(z)

I[q]
. (2.10)

For z to be returned from (iv.a), the algorithm must reach (iv), then go to (iv.a) and then
select z in (iv.a). This has probability

Pr[z returned from (iv.a)]

=Pr[reach (iv)] Pr[go to (iv.a)] Pr[z sampled in (iv.a)]

=

(

∫

S

q(x)−p(x)

I[q]
dµ(x)

)

×
∫

L(p(x)−q(x))dµ(x)
∫

S (q(x)−p(x))dµ(x)
× (p(z)−q(z))dµ(z)
∫

L(p(x)−q(x))dµ(x)

=
(p(z)−q(z))dµ(z)

I[q]
. (2.11)

Now using Eqs. (2.10) and (2.11), the probability of returning z in a cycle is

Pr[z returned]=Pr[z returned from (ii)]+Pr[z returned from (iv.a)]

=
q(z)dµ(z)

I[q]
+
(p(z)−q(z))dµ(z)

I[q]
=

p(z)dµ(z)

I[q]
. (2.12)

Eqs. (2.8) and (2.12) imply that, whether z∈S or z∈L, the probability that z is returned
in a cycle is p(z)dµ(z)/I[q]. Integrating over all the samples in Ω, we deduce that the
probability that a sample is returned in a cycle is I[p]/I[q]. Consequently, probability that
no sample point is returned in a cycle is 1− I[p]/I[q]. Because the cycle is repeated until
a sample point is returned, we conclude that the probability that the algorithm returns z
is equal to

∞

∑
k=1

(1− I[p]

I[q]
)k−1 p(z)dµ(z)

I[q]
=

p(z)dµ(z)

I[p]
.

This completes the proof for Algorithm II.

Note that the efficiency of Algorithm II is nominally the same as acceptance rejection,
i.e. the probability of a rejection is 1− I[p]/I[q]. Actually it can be significantly better
because I[q] can be smaller, since q < p is allowed. Also, note that if I[p] = I[q], then
Algorithms I and II are the same.

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 295

3 Comparison of Reduced Rejection and other sampling

methods

One of the important features of Reduced Rejection sampling is that it requires no prepro-
cessing time. This is particularly useful for dynamic simulation; i.e., simulation in which
the probability distribution function p(x) may change after each sample (see Section 5 for
an example from plasma physics). For dynamic simulation, fast discrete sampling meth-
ods such as Marsaglia’s Table method or the Alias method, are not suitable as they re-
quire preprocessing time after each change in p(x). Although, the Acceptance-Rejection
method requires no preprocessing time and can be used for dynamic simulation, it may
require changes in q(x) if p(x) changes, which is usually not difficult, and it becomes
very inefficient when the ratio of the area under function p(x) to the area under proposal
function q(x) is small. Moreover, Adaptive Rejection sampling is not efficient, because
the process of adapting q(x) to p(x) starts over whenever p(x) changes.

The Reduced Rejection sampling method can be thought as an extension of the
Acceptance-Rejection method. In particular when the proposal function q(x) encloses
p(x) (i.e., q(x)≥ p(x) for all x∈Ω so that L=∅) the Reduced Rejection sampling method
reduces to Acceptance-Rejection method. The advantage of Reduced Rejection sampling
over Acceptance-Rejection method is that the proposal function q(x) does not need to
enclose function p(x); i.e., it allows q(x)< p(x) for some x. This is very useful in dy-
namic simulation as it can accommodate changes in p(x) without requiring changes in
q(x). Moreover, Reduced Rejection sampling may result in less unwanted samples than
Acceptance-Rejection does, especially if p(x) has singularities or is highly peaked.

There are several challenges in implementing the Reduced Rejection sampling
method. The main challenge is the need to sample from set Ω according to q(x) and from
set L according to p(x)−q(x), which can be performed by various sampling methods.
Another challenge in using Reduced Rejection sampling is the need to know the values
of I[q], I[p] and

∫

L(p(x)−q(x))dµ(x) (but note that the last value is only for Algorithm
II). In many situations, these values are readily available or can be calculated during the
simulation.

4 Example 1: Reduced Rejection sampling for a random variable

with singular density

In this section, Reduced Rejection sampling method is applied to a simple problem. Let
Ω=(0,1) and sample according to

p(x)=
1√
x
+

1
5
√

1−x
(4.1)

which has singularities at 0 and 1. Using Inverse Transform sampling, it is easy to sample
according to 1/

√
x or 1/ 5

√
1−x, but Inverse Transform cannot be easily applied to (4.1)

296 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

as it requires finding the root of a eighth degree polynomial. We apply Reduced Rejec-
tion sampling to this problem by setting q(x) = 1/

√
x. Observe that L=Ω= (0,1). As

mentioned earlier, Inverse Transform sampling is easily used to sample according to q(x)
and according to p(x)−q(x). The Reduced Rejection sampling is very fast and yields no
unwanted sample points. This example is equivalent to sampling from a mixture and can
be extended to sampling from a probability density p(x) that is a sum p=p1+p2+···+pn,
if there is a method for sampling from each pk separately and the integrals I[pk] are all
known.

5 Example 2: Reduced Rejection sampling for a stochastic

process with fluctuating and singular rates

In this section, we apply Reduced Rejection sampling to an idealized problem motivated
by plasma physics. As discussed in Subsection 5.5, the unique features of this problem
makes other sampling methods inefficient to use.

5.1 Statement of the stochastic process and the simulation algorithm

The example presented here is a simplified version of simulation for recombination by
impact of two electrons with an ion, in which one of the electrons is absorbed into the
atom and the other electron is scattered. For incident electron energies E1 and E2, the
recombination rate is proportional to (E1E2)−1/2 [15, 21], which can become singular if
electrons of low energy are present. This is an obstacle to kinetic simulation of recombi-
nation by electron impact in a plasma.

Our goal is to simulate the evolution of the following system: Consider N particles
labeled 1,··· ,N. To each particle i we associate a number xi ∈ (0,1), called the state of
particle i (and corresponding to electron energy in the recombination problem). Occa-
sionally, where it does not cause confusion, we use xi to refer to particle i. We refer to the
set Γ={x1,··· ,xn} as the configuration of the system. For every pair of states xi and xj, Ti,j

is a random variable with an exponential distribution with parameter (xixj)
α, in which α

is a fixed constant between 0 and 1. Ti,j is the time for interaction between particle i and
j which randomly occurs with rate 1/(xixj)

α. After an interaction occurs, say for the pair
{k,l}, the values of states xk and xl are replaced by new values x′k and x′l; consequently,
the distribution of Ti,j changes if either of i and j is equal to k or l.

We will consider a simple updating mechanisms for the states after each interaction.
In the simulations presented below, the updated values of x′k and x′l are chosen inde-
pendently and uniformly at random from (0,1), without dependence on xk and xl . This
choice has been made for simplicity and because the stationary distribution can be cal-
culated for this choice (see Section 5.2), but we expect that Reduced Rejection sampling
would work equally well for more complex interaction rules. Indeed the Algorithm 5.1
described below and the more detailed algorithm presented in Section 5.4 do not depend

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 297

on the interaction rules.
First we make some notation and observations. Set si = 1/xα

i and s=∑i si. Let T(λ)
denote an exponential random variable with parameter λ (with rate 1/λ); then T(λ) =
µT(µλ) for any scalar µ. We will use

si

s

sj

s
T(1/s2)=T(1/(sisj))

in the following algorithm, which is a variant of the Kinetic Monte Carlo (KMC) algo-
rithm (also known as the Residence-Time Algorithm or the N-Fold Way or the Bortz-
Kalos-Lebowitz (BKL) algorithm [2]), that simulates the system described above. This
algorithm chooses interactions, by choosing two particles separately out of the N num-
ber of particles, rather than choosing a pair of particles out of the N2 number of pairs.

Algorithm 5.1. 1. Start from t=0.

2. Choose time ∆t by sampling from an exponential distribution with rate s2.

3. Choose index k with probability sk/s.

4. Choose index l with probability sl/s.

5. At time t+∆t interaction between particles k and l occurs.

6. Update states xk and xl according to the updating mechanism and update the value of s.

7. Set t= t+∆t and start over from 2.

We use Reduced Rejection sampling in Subsection 5.5 to perform steps 3 and 4 in the
above algorithm. We also explain why other methods of sampling would be inefficient in
these circumstances. To verify that our simulation is working properly, we perform the
following test.

Let g(x1,··· ,xN) be a real-valued function on configuration space, with expectation
E[g] of g over configurations of the system. For a simple interaction rule and some func-
tions g we can find the value of E[g] analytically, as shown in Subsection 5.2. Conse-
quently, the difference between the numerical and analytic results provides a measure of
the accuracy of the simulation as discussed at the end of Subsection 5.5.

5.2 Theoretical results

Think of the system’s evolution as a random walk over the configurations of the system.
Suppose the updating process is that if states xk and xl interact, then states x′k and x′l
are chosen, independently, uniformly at random from (0,1). In this section, we find the
stationary distribution for this random walk and the value of E[g] for two functions g.

Let P(Γ′|Γ) denote the probability of going from configuration Γ to configuration Γ′,
and P(x′k,x′l|xk,xl) as the probability of going from values xk,xl to values x′k,x′l in an inter-
action. These satisfy

P(x′k,x′l|xk,xl)=P(xk,xl|x′k,x′l), (5.1)

298 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

that is, the probability of getting x′k and x′l after xk and xl interact, is the same as probabil-
ity of getting xk and xl after x′k and x′l interact. Furthermore, for this updating mechanism,
the random walk is completely mixing; that is, it can go from any configuration to any
other configuration (If for example the updating mechanism had additional constraints,
such as x′k+x′l = xk+xl , then we would not have a mixing random walk since we could
reach only those configurations that have the same sum of states as the starting configu-
ration).

For every configuration Γ={x1 ··· ,xN}, set

πΓ :=
(x1 ···xN)

α

Z

(

∑
i,j

1

(xixj)α

)

,

where Z is the normalizing constant so that ∑Γ πΓ =1.
Suppose the current configuration of the system is Γ={x1,··· ,xN}. According to steps

3 and 4 in Algorithm 5.1, the probability of interaction occurring between states xk and
xl is proportional to sksl =1/(xkxl)

α. Let Γ′={x′k,x′l}∪Γ\{xk ,xl}. Then

P(Γ′|Γ)= 1/(xkxl)
α

∑i,j 1/(xixj)α
P(x′k,x′l |xk,xl).

For the ease of explanation, relabel the states of Γ′ so that Γ′= {x′1,··· ,x′N} where x′i = xi

for i 6= k,l. Similarly,

πΓ′ =
(x′1 ···x′N)α

Z

(

∑
i,j

1

(x′ix
′
j)

α

)

, and P(Γ|Γ′)=
1/(x′kx′l)

α

∑i,j1/(x′i x
′
j)

α
P(xk,xl|x′k,x′l).

Because of (5.1) and since x′i = xi, for i 6= k,l, it is straightforward to verify the detailed
balance equation

πΓP(Γ′|Γ)=πΓ′P(Γ|Γ′).

Therefore, πΓ is the (unique) stationary distribution of the random walk. Since the up-
dating mechanism is completely mixing, the normalizing constant Z for distribution πΓ

is the integral

Z=
∫

(0,1)N
(x1 ···xN)

α

(

∑
i,j

1

(xixj)α

)

dx1 ···dxN =
(N

2)

(α+1)N−2
.

Hence for any function g(x1,··· ,xN),

E[g]=
(α+1)N−2

(N
2)

∫

(0,1)N
g(x1,··· ,xN)(x1 ···xN)

α

(

∑
i,j

1

(xixj)α

)

dx1 ···dxN .

Some tedious algebra leads to the following proposition:

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 299

Proposition 5.1. Using the above notations and assumptions:

a) E[g]= α+1
α+2(N−2)+1 when g(x1,··· ,xN)= x1+···+xN .

b) E[g]= α+1
α+3(N−2)+ 2

3 when g(x1,··· ,xN)= x2
1+···+x2

N .

5.3 Simulation issues

In this section we make some remarks about the challenges involved in simulating this
system.

The main challenge of sampling in this dynamic simulation is that the si’s are chang-
ing after each interaction. Consequently, the sampling method should require small or
zero preprocessing time. For this reason, discrete sampling methods such as Marsaglia’s
Table method or the Alias method are not very efficient for this problem.

Next consider using Acceptance-Rejection method based on uniform sampling from
1 to n for the proposal distribution (i.e., q constant). As mentioned earlier, the changing
distribution property of the problem is not very detrimental for Acceptance-Rejection.
On the other hand, the singularity in the rates at xi =0 can lead to a large constant for q,
for which there will be many rejected samples, so that the method is inefficient. More-
over, there seems to be no other clear choice for the proposal distribution q other than
a constant. Note that the sampling is from a discrete set of probabilities si/s with little
control over their values; for example the si’s are not monotonically ordered. This is quite
different from sampling a single random variable from the density p(x)= x−α.

5.4 Use of the Reduced Rejection algorithm

In this section we explain how to use Reduced Rejection Sampling to perform steps 3
and 4 in Algorithm 5.1. Reduced Rejection sampling can be readily used in this dynamic
simulation. Even though the values of the si’s change after each interaction, they do not
change drastically; in each interaction at most two of the si’s change. Starting at time 0,
we set qi = pi = si. After each interaction, we update the values of pi’s to pi = si, but do
not change the values of qi’s. Note that we can easily update the value of I[p] after each
interaction and keep track of set L={i : pi > qi} by comparing the updated values of pi’s
to their corresponding values of qi’s. Moreover, the size of set L changes by at most 2
after each interaction (but it can also decrease after some interactions).

We use Marsaglia’s Table method to sample according to qi’s. Since we do not update
qi’s after each interaction, the preprocessing time in Marsaglia’s Table method is only
required for the first sampling and not for the subsequent samplings. To sample from
set L according to pi−qi, we use Acceptance-Rejection with uniform distribution for the
proposal distribution. As long as the size of set L is not too big, the sampling from L is
not very time consuming. To prevent L from getting too large, we reset the values of qi’s
to qi = pi = si, which sets L to be empty, whenever the size of L exceeds a predetermined
number M.

300 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

The size of M is important for the performance of the algorithm. If M is too small,
then there are many updates of the qi’s, each of which requires preprocessing time for
Marsaglia’s Table method. On the other hand, if M is too big, then L is large and costly to
sample from by Acceptance-Rejection. Our computational experience shows that setting
M equal to a multiple of

√
N is a good choice. It might be better for the reinitialization

criterion to be based on the efficiency of the sampling from L (i.e., the fraction of rejected
samples when using acceptance rejection on L), rather than the size of L.

5.5 Numerical result

We simulated the evolution of the system under the conditions outlined in Subsection
5.2 with N = 104, and α= 0.5. We start with a random configuration at time t= 0. The
simulation is based the Reduced Rejection sampling method, using Marsaglia’s Table
method and the Acceptance-Rejection method as described above. After each interac-
tion, we evaluate function g(x1,··· ,xN)= x1+···+xN and take the average to get an es-
timate for E[g]. Each result is produced by taking an average of five independent runs.
Fig. 3 compares the results for E[g] from Reduced Rejection sampling with those from the
Acceptance-Rejection method. The results of Fig. 3 show excellent agreement between
the values of E[g] as a function of the number of interactions from the two methods,
which provides a validity check for Reduced Rejection sampling.

The advantage of Reduced Rejection sampling is demonstrated in Fig. 4 which shows
a log-log plot of the processing time, as a function of the number of interactions, for
Reduced Rejection sampling and Acceptance-Rejection. The results show that Reduced
Rejection sampling is much faster than the Acceptance-Rejection method. In fact, for n
interactions, the computational time scales like O(n) for Reduced Rejection sampling,
and like O(n3/2) for Acceptance-Rejection, in the range 104 ≤ n≤ 106. For small values
of n, the initial pre-processing step of Marsaglia’s Table method dominates the compu-
tational time. For n>104, however, the pre-processing time (including the multiple pre-
processing steps due to reinitialization) is not a significant part of the computational time.
The average number of reinitializations for Reduced Rejection sampling is (0,0,0,3.7,53.1)
for n=(102,103,104,105,106), respectively. Another interesting advantage of the Reduced
Rejection sampling is that the variance of the processing time for independent runs is
much smaller in the Reduced Rejection sampling than it is in the Acceptance-Rejection
method.

6 Example 3: Stochastic simulation of chemical kinetics

In this section we describe how we can use Reduced Rejection in the context of stochas-
tic chemical kinetics. Stochastic simulation in chemical kinetics is a Monte Carlo pro-
cedure to numerically simulate the time evolution of a well-stirred chemically reacting
system. The first Stochastic Simulation Algorithm, called the Direct Method, was pre-
sented in [10]. The Direct Method is computationally expensive and there have been

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 301

10
2

10
3

10
4

10
5

5000

5200

5400

5600

5800

6000

of interaction

 E
[g

]

 Reduced Rejection
 Acceptance−Rejection

Figure 3: Theoretical (dashed line) and estimated values (solid lines) of E[g] using different number of inter-

actions. Here g(x1,··· ,xN) = x1+ ···+xN , N = 104, and α= 0.5. Also M = 4000 for the Reduced Rejection

sampling. The theoretical value of E[g] is 5999.8. The estimated value of E[g] after 106 interactions using
Reduced Rejection sampling and Acceptance-Rejection methods were, respectively, 5994.59 and 5996.35. The
reported result is the average of 5 independent runs.

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

of interaction

 P
ro

ce
ss

in
g

tim
e

 Reduced Rejection
 Acceptance−Rejection

Figure 4: Loglog plot of the processing time for Acceptance-Rejection and Reduced Rejection sampling. Here
g(x1,··· ,xN) = x1+ ···+xN , N = 104 and α= 0.5. Also M = 4000 for the Reduced Rejection sampling. The
reported processing time is the average of 5 independent runs.

many adaptations of this algorithm to achieve greater speed in simulation. The first-
reaction method, also in [10], is an equivalent formulation of the Direct Method. The next-
reaction method [6] is an improvement over the first-reaction method, using a binary-tree
structure to store the reaction times. The Modified Direct Method [4] and Sorting Direct

302 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

Method [14] speed up the Direct Method by indexing the reactions in such a way that
reactions with larger propensity function tend to have a lower index value. Recently,
some new Stochastic Simulation Algorithms, called Partial-Propensity methods, were in-
troduced that work only for elementary chemical reactions (i.e. reactions with at most
two different reactants) (see [16–18]). Nevertheless, note that it is possible to decompose
any non-elementary reaction into combination of elementary reactions. There are also ap-
proximate Stochastic Simulation Algorithms, such as Tau-Leaping and Slow-Scale, that
provide better computational efficiency in exchange for sacrificing some of the exactness
in the Direct Method (see [9] and the references therein for more details).

Next we give a brief review of stochastic simulation in chemical kinetics. An excellent
reference with more detailed explanation is [9]. Using the same notation and terminology
as in [9], consider a well-stirred system of molecules of N chemical species {S1,··· ,SN},
which interact through M chemical reactions {R1,··· ,RM}. Let Xi(t) denote the number
of molecules of species Si in the system at time t. The goal is to estimate the state vector
X(t)≡ (X1(t),··· ,XN(t)) given the system is initially in state X(0)=x0.

Similar to Section 5, when the system is in state x, the time for reaction Rj to occur is
given by an exponential distribution whose rate is the propensity function aj(x). When
reaction Rj occurs, the state of the system changes from x to x+(v1j,··· ,vNj), where vij is
the change in the number of Si molecules when one reaction Rj occurs.

Estimating the propensity functions in general is not an easy task. As noted, the
value of the propensity functions depend on the state of the system. For example, if
Ri and Rj are, respectively, the unimolecular reaction S1 → product(s) and bimolecular
reaction S1+S2 → product(s), then ai(x) = cix1 and aj(x) = cjx1x2 for some constants ci

and cj. Therefore, the propensity functions of the reactions are changing throughout the
simulation. Moreover, if for some chemical species the magnitude of their population
differ drastically from others, we expect the value of propensity functions to be very
non-uniform.

For every state x, define

a(x)=
M

∑
i=1

ai(x).

To simulate the chemical kinetics of the system the following algorithm is used, which
resembles Algorithm 5.1 in Section 5.

Algorithm 6.1. 1. Start from time t=0 and state x=x0.

2. Choose time ∆t by sampling from an exponential distribution with rate a(x).

3. Choose index k with probability ak(x)/a(x).

4. At time t+∆t reaction Rk occurs.

5. Update time t= t+∆t, state x=x+(v1k,··· ,vNk) and start over from 2.

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 303

In the original Direct Method [10], step 3 in the above Algorithm 6.1 is performed by
choosing number r uniformly at random in the unit interval and setting

k= the smallest integer satisfying
k

∑
i=1

ai(x)> ra(x). (6.1)

However, when we have many reactions with a wide range of propensity function values
presented in the system, a scenario that is very common in biological models, the above
procedure of using partial sums becomes computationally expensive. As noted earlier,
some methods, such as the Modified Direct Method [4] and Sorting Direct Method [14],
index the reactions in a smart way so that they can save on the average number of terms
summed in Eq. (6.1) and consequently achieve computational efficiency.

We propose a different approach to performing step 3 in Algorithm 6.1 using the
Acceptance-Rejection or Reduced Rejection method. The approach is very similar to what
was done in Section 5. To be specific, we can use Acceptance-Rejection for step 3 in the
following way: let

ā(x)=max
i

ai(x).

Until an index is accepted, select index k uniformly at random from {1,··· ,N} and accept
it with probability ak(x)/ā(x); otherwise, discard k and repeat. When an index is accepted
step 3 in Algorithm 6.1 is completed. Typically for chemical reactions Rj, most of vij’s are
zero; therefore, we can efficiently update the value of ā(x) at each iteration of Algorithm
6.1.

However, as in Section 5, if the values of ai(x)’s are very non-uniform (for exam-
ple, when the population of some chemical species differ drastically from that of other
species in the system) the Acceptance-Rejection method becomes inefficient due to rejec-
tion of many samples. In these circumstances, the Reduced Rejection algorithm can be
readily used in a very similar way as it was used in Section 5. We expect that the use
of the Reduced Rejection algorithm in these circumstances would greatly improve the
computational efficiency of the exact Stochastic Simulation Algorithms.

7 Conclusions and future directions

In this paper we introduce a new Reduced Rejection sampling method that can be used to
generate independent samples for a discrete or continuous random variable. The strength
of this algorithm is most evident for applications in which Acceptance-Rejection method
is inefficient; namely, the probability distribution of the random variable is highly peaked
in certain regions or has singularities. It is also useful when the probabilities are fluctu-
ating, so that discrete methods that requiring preprocessing are inefficient. In particular,
the Reduced Rejection sampling method is expected to perform well on kinetic simula-
tion of electron-impact recombination in a plasma, which is difficult to simulate by other
methods.

304 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

The preliminary examples in this paper are meant to illustrate these advantages of the
Reduced Rejection sampling method. They provide evidence of improvement in compu-
tation time using the Reduced Rejection sampling versus Acceptance-Rejection method.
These examples also provide some insights on implementation of the method.

One possible direction for future research is the nested use of Reduced Rejection sam-
pling methods. For the most difficult step – sampling from L according to p(x)−q(x) –
we propose to apply the Reduced Rejection sampling method again using a new proposal
function. In essence, this would use one Reduced Rejection sampling method inside an-
other Reduced Rejection sampling method.

Acknowledgments

The research of F. Barekat and R. Caflisch is supported by DOE grant DE-FG02-
05ER25710.

Appendix A: Flow charts of the Reduced Rejection algorithm

Figure 5: Flow chart of Algorithm I of the Reduced Rejection sampling method attributing to the case I[p]≥ I[q].

F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306 305

Figure 6: Flow chart of Algorithm II of the Reduced Rejection sampling method attributing to the case I[p]< I[q].

References

[1] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Claredon,
Oxford (1994).

[2] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of
Ising spin systems, J. Comp. Phys., 17 (1975), 10–18.

[3] R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7 (1998), 1–49.
[4] Y. Cao, H. Li, and L.R. Petzold, Efficient formulation of the stochastic simulation algorithm

for chemically reacting systems, J. Chem. Phys., 121 (2004), 4059–4067.
[5] I. Deak, An economical method for random number generation and a normal generator,

Computing, 27 (1981), 113–121.
[6] M.A. Gibson and J. Bruck, Exact stochastic simulation of chemical systems with many

species and many channels, J. Phys. Chem., 105 (2000), 1876–1889.
[7] W.R. Gilks, N.G. Best, and K.K.C. Tan, Adaptive rejection metropolis sampling, Applied

Statistics, 44 (1995), 455–472.
[8] W.R. Gilks and P. Wild, Adaptive rejection sampling for Gibbs sampling, Applied Statistics,

41 (1992), 337–348.
[9] D.T. Gillespie, Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58

(2007), 35–55.

306 F. Barekat and R. Caflisch / Commun. Comput. Phys., 16 (2014), pp. 287-306

[10] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403–434.

[11] G. Marsaglia, W.W. Tsang, and J. Wang, Fast generation of discrete random variables, Jour-
nal of Statistical Software, 11(3) (2004), 1–11.

[12] G. Marsaglia and W.W. Tsang, A fast, easily implemented method for sampling from de-
creasing or symmetric unimodal density functions, SIAM J. Sci. Stat. Comput., 5(2) (1984),
349–359.

[13] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, 8(14) (2003), 1–9.
[14] J.M. McCollum, G.D. Peterson, C.D. Cox, M.L. Simpson, and N.F. Samatova, The sorting

direct method for stochastic simulation of biochemical systems with varying reaction exe-
cution behavior, Comput. Bio. Chem., 30 (2006), 39–49.

[15] J.T. Oxenius, Kinetic Theory of Particles and Photons, Springer-Verlag, Berlin (1986).
[16] R. Ramaswamy, N. Gonzalez-Segredo, and I.F. Sbalzarini, A new class of highly efficient

exact stochastic simulation algorithms for chemical reaction networks, J. Chem. Phys., 130
(2009), 244104.

[17] R. Ramaswamy and I.F. Sbalzarini, A partial-propensity variant of the composition-
rejection stochastic simulation algorithm for chemical reaction networks, J. Chem. Phys.,
132 (2010), 044102.

[18] R. Ramaswamy and I.F. Sbalzarini, A partial-propensity formulation of the stochastic sim-
ulation algorithm for chemical reaction networks with delays, J. Chem. Phys., 134 (2011),
014106.

[19] M.D. Vose, A linear algorithm for generating random numbers with a given distribution,
IEEE Transaction and Software Engineering, 17(9) (1991), 972–975.

[20] A.J. Walker, An efficient method for generating discrete random variables with general
distributions, ACM TOMS, 3 (1977), 253–256.

[21] Y.B. Zeldovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrody-
namic Phenomena, Dover, Mineola, NY (2002).

