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Abstract. We develop a family of characteristic discontinuous Galerkin methods for
transient advection-diffusion equations, including the characteristic NIPG, OBB, IIPG,
and SIPG schemes. The derived schemes possess combined advantages of Eulerian-
Lagrangian methods and discontinuous Galerkin methods. An optimal-order error
estimate in the L? norm and a superconvergence estimate in a weighted energy norm
are proved for the characteristic NIPG, IIPG, and SIPG scheme. Numerical experi-
ments are presented to confirm the optimal-order spatial and temporal convergence
rates of these schemes as proved in the theorems and to show that these schemes com-
pare favorably to the standard NIPG, OBB, IIPG, and SIPG schemes in the context of
advection-diffusion equations.
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1 Introduction

Transient advection-diffusion equations admit solutions with moving steep fronts and
complicated structures. Classic numerical methods tend to generate numerical solutions
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with spurious oscillations, excessive numerical diffusion, or a combination of both. Since
their introduction in 1970s [3, 18, 30], discontinuous Galerkin methods have become a
topic of extensive research on numerically solving differential equations. These methods
use piecewise polynomial trial and test functions which may be discontinuous across cell
boundaries in their weak formulations and are locally mass conservative. They are inher-
ently adaptive to local high order approximations and can capture moving steep fronts
and shock discontinuities in the solution to advection-diffusion equations via the use of
discontinuous approximating spaces. They are well suited for handling unstructured
meshes and nonmatching grids for multidimensional problems.

Optimal-order convergence in the energy norm has been proved for a variety of pri-
mal discontinuous Galerkin methods for elliptic and parabolic differential equations [7,
17,20,22,23]. Optimal 12 convergence has been established [22,23] for the symmetric inte-
rior penalty Galerkin (SIPG) method [30]. However, numerical experiments [7,23] reveal
that the nonsymmetric discontinuous Galerkin methods, including the Oden-Babuska-
Baumann (OBB) formulation [7,17], the nonsymmetric interior penalty Galerkin (NIPG)
method [19], and the incomplete interior penalty Galerkin (IIPG) method [12,22,23], are
generally not optimal in the L> norm. An optimal-order error estimate in the L> norm
has been proved for the NIPG and IIPG methods with odd degree polynomials for one-
dimensional elliptic problems with a uniform partition [16].

In this paper we develop a family of characteristic discontinuous Galerkin meth-
ods for one-dimensional transient advection-diffusion equations by using an Eulerian-
Lagrangian approach within a primal discontinuous Galerkin framework [4,9] (instead of
the dual formulation [10,11]). These include the characteristic SIPG method, the charac-
teristic NIPG method, the characteristic IIPG method, and the characteristic OBB method.
The developed methods retain the numerical advantages of the discontinuous Galerkin
methods. Further, they stabilize the numerical approximations and generate accurate nu-
merical solutions, even if large time steps and coarse spatial grids are used. In this paper
we prove an optimal-order L? error estimate and a superconvergence estimate for the
characteristic NIPG, SIPG, and IIPG methods. Numerical results are presented to show
the convergence behavior of the proposed schemes.

The rest of the paper is organized as follows: In Section 2 we derive a reference equa-
tion satisfied by the true solution to problem (2.1). In Section 3 we develop a family of
characteristic discontinuous Galerkin methods. In Section 4 we present the preliminaries
used in the error analysis. Section 5 contains the main error estimate of this article. In
Section 6 we present preliminary example runs to show the performance of the scheme.
Section 7 contains summary and conclusions. Finally, we present the proof of auxiliary
lemmas in the appendix.

2 A cell-based characteristic reference equation

We consider the initial-boundary value problem
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ui+(Vu)y—(Duy)x=f(x,t), x€(ab), te(0,T],
Vu(a,t)—Duy(a,t)=g(t), —Duy(b,t)=h(t), t€(0,T], (2.1)
u(x,0)=up(x), x€(ab).

Here V(x,t) is the velocity field; f(x,t), uo(x), g(t), and h(t) are the prescribed source
and sink term, the initial data, and the inflow and outflow boundary data, respectively.
The diffusion coefficient D satisfies

0< Dimin < D(x,) < Dinax < +09.

To show the treatment of general inflow and outflow flux boundary conditions, we as-
sume that V(a,t) and V(b,t) are positive so that x=a and x=b are the inflow and outflow
boundaries, respectively.

Define a quasiuniform space-time partition a=xy <x; <xp; <---<xy=band 0=ty <t; <
bh<---<ty=Twithh;j=x;—x;_1, h :maxlgiglhi, Aty =t, —t,_1 and At=maxi<,<NAt,
being the sizes of spatial mesh and time steps. For simplicity we drop the subscripts
when it is clear from the context. Note that for a general velocity field, the initial-value
problem dx /dt=V (x,t) with x(f) =% cannot be solved analytically. Thus, we use an Euler
quadrature to define the approximate characteristic that passes through ¥ at f by

r(s;x,)=x—V(x,I)(F—s). (2.2)

From now on, we shall assume that the curve r(s;%,f) is defined by Eq. (2.2).

2.1 A reference equation on an interior control volume

In this subsection we derive a reference equation for the true solution u(x,t) to the prob-
lem (2.1), on the following space-time control volume

QF ={(x,t):r(t;xi—1,tn) <x<r(Exi,tn), tho1 <t <tp},

which is aligned with the characteristic curve defined by (2.2). Note that the lateral
boundary of (! is determined by the characteristic curves r(t;x;_1,t,) and r(;x;,t, ) from
t=t, tot=t,_1. Welet x* be the foot of the characteristics at time step t,_; with head x
at time ¢, and % be the head of the characteristics at time step t, with the foot x at time
tyh_q,1e., x* =r(t,_;xt,) and x=r(t,_1;%,t,).

To derive a cell-based reference equation, we choose the space-time test functions
w(x,t) to be smooth within () and to vanish outside ()} in the weak formulation. Due to
the use of characteristics, the test functions w(x,t) are not necessarily continuous across
the time steps t, and t,,_1. In the formulation, we require the test functions to be left-
continuous with respect to time. Namely, the test functions w(x,t) satisfy

w(x,ty)= tliwrrlow(x,t) but w(x,t,_1)# t_}ltinrir}ww(x,t)
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in general. We use the notation w(x,t;_l) =lim;_,_,row(x,t) to account for the possi-
ble discontinuity of w(x,t) in time at time ¢,_;. We multiply the governing equation in
(2.1) by w(x,t) and integrate the resulting equation by parts over ()} to obtain a weak
formulation

Xi
/ u(x,tn)w(x,tn)dx—l-/ Du,wydxdt
Xi-1

ty ty
_ / (Dusw) (r(Exi ), )di+ [ (Dutyeo) (F(Exi1,00), 1)t
n 1
—/ (x,tp_1)w(x,th 4 dx+/ fwdxdt— E( ) (u,w). (2.3)

Here Efl) (u,w) is defined by

EM (u,w) =— / " (uw) (r(:xi-1,t0),8) (V (r(Exi21,80),£) — 1 (55X, t0) )t

tp—1

+/ttn (uw)(r(t}xi/tn)/t)(V(r(t}xi/tn)/t)—T’t(t}xi,tn))dt—/ u(wi+Vw,)dxdt.

We define the test functions to be constant along the characteristics [8,24], i.e.,
wi(r(t;x,ty), ) +V(x,ty)we(r(Ex,t,),6) =0, tE€[ty_1,tn], XE[xi_1,%]. (2.4)

In the evaluation of source and diffusion terms we reserve x for points in [x;_1,%;] at
time f, representing the heads of characteristics. We use the variable y = r(t;x,t,) to
represent the spatial coordinate of an arbitrary point at time t € (t,_1,t,). We apply Euler
quadrature to evaluate the source and sink term in Eq. (2.3) to obtain

tn
/ fy,t)w(y,t)dydt —/ / flr(tx,ty), w(r(tx,ty), b)re(Ex,t,)dtdx
Xi—1J b1
:At/ Flat)w(x,t)dx—ES) (w),
Xi-1
with the local truncation error E(f )( ) for the source term being given by

Ei(f)(w):/%i w(x,tn)/:n {/: %( (0:3,12),0)d0-+ £ (r(21), ) Vi (3, ) (0 —1) bt

In the derivation we have used the fact r(t;x,t,) =1—Vy(x,t,)(t, —t). We evaluate the
diffusion term similarly as

/ D(y,t)u, (y,t)wy,(y,t dydt—/ / r(tx,t,), ) uy (r(tx,t,),t)wy (X, b, )dtdx
Xi—1Jtp—1
—At/ (2, b )ty (X, )W (x, 1, )dx (2.5)

i tn tn
—/ Wy (x,t, / Duy)( r(0;x,t,),0)d0dtdx.
Xi—1 b1 de
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Here we have used the fact that w(y,t) =w(x,t,) for y=r(t;x,t,) and so

dx  wy(x,ty,)

w]/(y,t) :ZUy(x,tn) :wx(x,tn)@ = m

Next we evaluate the two inter element diffusive flux terms in Eq.(2.3) as
Ey

/ " (Dity ) (r(£5 1, b))t — / (Dity ) (r(Ex5 b, £)dt

b1 b1

= AH(Duy) (X1, )W (X b)) — A(Duy) (xi b )w(x7 b)) +EP (). (2.6)

Here E i(2) (u,w) is defined by
@ PN L
EP (w)=w(x; ) [ [ 2 (D) (r(0ixi k), 0)doat
n—1

bt d
—w(x; |, t) —(Duy ) (r(0;xi_1,t,),0)d0dt.
toaJt A6

We incorporate the preceding terms into Eq. (2.3) to obtain

Xi Xi

/ u(x,tn)w(x,tn)dx—l—At/ D(x,t)uy(x,t)wy(x,t,)dx
x .

i-1 Xi-1

+ AtDuy (xi—1,tn)w (X 1, tn) — AtDuy (x5t )w (X, ty)

x; Xi
= / u(x,tn,1)w(x,t;ll)dx—|—At/ Fletn)w(x,ty)dx+E;(u,w). (2.7)
x4 Xi-1

Here the local truncation error E;(u,w) is given by

Xi

te by
Ei(nw)= [ o) [ %(Duy)(r(G;x,tn),G)dOdtdx
Xi-1 n—-1

—Efl) (u,w) —Efz) (u,w) —Eff) (w).

2.2 Treatment of boundary condition

When the space-time prism () under consideration intersects the inflow boundary x =
a during the time period [t,_1,t,], we use t;(x) to denote the time instant if r(6;x,t,)
intersects the boundary x=a, i.e.,

a=r(t;(x);x,t,) and t;(x)=t,_1 otherwise.

Welet t;, | = t*(x;_1). However, the curve r(6;x;,t,) could either intersect the inflow
boundary x =a (see Fig. 1(a)) or falls inside the domain [a,b] at time t,,_; (see Fig. 1(b)).
Without loss of generality, we assume that the approximate characteristic curve r(6;x;,t,)



208 K. Wang et al. / Commun. Comput. Phys., 6 (2009), pp. 203-230

X. 1 X
[ | thtn Dt:tn
t*ni 1 n
&
tn,ifl
t X X
ni i i t=t
I%l I% > t= tn—l a X* P> n-1
X=a :
(a) r(t*(x;);x;,t,) meets the boundary (b) x; falls inside [a,b]

Figure 1: lllustration on control volumes O} intersecting inflow boundary.

backtracks to the inflow boundary x =a during [t,_1,t,]. We then evaluate each term in
Eq. (2.3) in parallel to what we did earlier to obtain

Xi Xi
/ u(x,tn)w(x,tn)dx—i—/ At(x)D(x,ty )1y (Xt )wy(x,b,) dt
X Xi-1

i—1
+ At(xj_1) Duy(xi—1,tn)w(x;" | ty) — At(x;) Dux (it )w(x; 1)
o

1

Xi
— / M) f (b (x| 7 g (8ol i+ Ei(u,w). 2.8)
Xi—1 Z,i
The local truncation error E;(u,w) is defined similarly to that in Eq. (2.7), with the lower
limit t,_; in the first integral being replaced by ¢} (x), the lower limit ¢,_1 in inter-element
advective and diffusive fluxes being replaced by t;, ;| and t;, ;, and At(x) =t, —t;(x).
Next we consider the outflow boundary. At the space-time outflow boundary
{(b,t);t € [ty_1,t4]}, we define the space-time prism Q°) by the characteristics 7(t;b,t,),
[ta—1,t,] and [b*,b]. We now define the test functions w on this control volume as follows:

w(r(s;b,t),s)=w(b,t), se(ty_1,t], tE[th_1,tn]. (2.9)

Thus, once the test functions w(b,t) are specified for t € [t,_1,t,], they are determined
completely within the control volume Q) by the constraint (2.9).

We integrate (2.1) multiplied by w over Q(°) and approximate the relevant temporal
integrals by an Euler quadrature to obtain

tn
/ Viu(b,t)w(b, t)dt +AtDity (b, ) w (b, £
tp—1
b tn
— u(x,tn,l)w(x,t;l)dx—i—/ (t—ta 1)V F(b,D)w(b t)dt
b* tp—1

_/t h(t)w(b,t)dt—/tn (t=tu—1)h(t)w (b, t)dt —E ) (u,w). (2.10)

tn—1 [
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Here E o) (u,w) = —Egg (u,w) +E® (u,w) +E®) (u,w) +E§({))(w), with

tn
E(y) (u,w) = / (uw) (r(£:0,62),8) (V (r(£:b,t),£) — 12 (£:D, 1) )t + / e+ Vo) dadt,
th1 Qo
@) A
E (u,w):—w(b,tn)/ / — (Duy ) (r(t;b,t,),T)d7dt,
(0) ty_1Jt dT

E® A N I T b,t),7)dtdod
Dww)= [ by [ [ [ (D) vdrdod

+0(At)(Duy)(r(e;b,t),e)} dedt,

EEQ(W) I/tt"1w<b,t)v(b,t)/tt] /Gt%(r(r;b,t),r)drdedt
<[ w(b,t)wb,t)/t (t—0) f(r(6;b,t),0)dbdt.

Fn foe

In (2.10) we approximate the diffusion term by its value at the outflow boundary. More-
over, wy is now a normal derivative and needs to be replaced by the time derivative.

/Q(O)Duy(y,t)wy(y,t)dydt
te ot
— / / Duuy (r(0;,£),0)w, (r(6:D,t),0)r, (6;b, £ d6dt
tp—1Jty—1
ty t
— / wi(b,1) / Du, (r(8;b,t),0) (1+O(AL))dodt
t fu1

n—1 n—
tn
:/ (t—tn-1)(E)0r (b, )dt+EQ) ().
fp—1

3 A family of characteristic discontinuous Galerkin methods

3.1 A global reference equation

We begin by formulating a reference equation for the true solution u to problem (2.1).
Note that the test functions w(x,t) in Egs. (2.7), (2.8), and (2.10) are smooth only within
each space-time control volume ()7 and could be discontinuous across each node x; for
i=1,2,---,1—1. On the other hand, the inter-element diffusive flux should be continu-
ous. Introduce the average {z}(x;,t,) = % (z(x; ,tx)+z(x;",t4)) and the jump [[z]] (x;,t,) =
z(xi*,tn) —z(x; ,t,) ati=1,2,---,1—1 for any function z(x,t, ).

We sum Egs. (2.7), (2.8) (for i =1,---,I), and (2.10) and express the diffusive flux
term in the form {Du,}(x;,t,)[[w]](xi,tn) [4,17]. We then use the idea in [17,19] to
add an asymmetric term [[u]](x;,t,){Dwy }(x;,t,) to the inter-element diffusive flux. Fi-
nally, we utilize the continuity of u(x;,t,) to introduce an inter-element penalty term
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ai[[u]] (xi,t0) [[w]] (xi,t,) to derive the following characteristic NIPG formulation

b I x;
/a u(x,tn)w(x,tn)dx—l—Z;/x. At(x)D(x,ty )y (x, 1, )Wy (X, b, )dx

i—1

+/ ¥ Vu(b,t)w(b,t)dt-l—i:ai[[u]](xi,tn)[[w]](xi,tn)

fr—1 i=1

+z%At(xi>({Dux}<xl~,tn>[[w]](xi,tn>—nuﬂ(xi,tn>{Dwx}<xi,tn>)

b b
:/a u(x,tn_l)w(x,t,f_l)dx—i—/a At(x) f (x,tn)w(x,t, )dx
+/ttn (t—tn_l)Vf(b,t)w(b,t)dt-i—/ttn g(t)w(a,t)dt

ty ty

—/ h(t)w(b,t)dt—/ (t—tu1)h(£)a0s (b t)dt +E (u,w). (3.1)
th_1 fp—1

Here E(u,w)=Y""_, Ei(u,w) +E (o) (#,w), and the term At(a)(Duy)(a,t,)w(a™,t,) vanishes

due to At(a) =0. Because w(x,t,) may be discontinuous across inter-element boundary,

the summation of the element integrals cannot be simply written as an integral on the

entire domain.

3.2 Characteristic NIPG schemes

Let the finite element space S, consist of piecewise polynomials of degree up to m(>1)
with respect to the spatial partition in [a,b]. Furthermore, each function in Sy, is constant
in the time interval [t,_1,t,] at x=b. If we replace the true solution u and the test function
w in (3.1) by their corresponding approximations in S; and drop the local truncation error
term E(u,w) in (3.1), we obtain a family of characteristic NIPG schemes: find uj €Sy, such
that Vw € Sj, the following equation holds

b I Xi
/uh(x,tn)w(x,tn)dx—l-Z/ AH)D (b it (3 b )0 (3, B ) dx
a i=17%i

i—1

—|—/tn V(b,t)uh(b,t)w(b,t)dt—l—Zai[[uh]](xi,tn)[[w]](xi,tn)

tp1 i=1

I
+ ) ({ Dtk (i ) []] (i ) =[] G fr) { D0 (3 )

b - b
:/ uh(x,tn,l)w(x,tzfl)dx—i—/ At(x) f (x,tn)w(x,t, )dx

[ b VD fb Db+ [ g(Ew(at)dt— / " o (32)

ty—1 b1 tn-1
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Here «; is a parameter for the interior penalty term, which can be prescribed independent
of the problem (refer to Theorem 5.1). In (3.2) we have used the fact that all the functions
in Sy, are constant in time at the outflow boundary x =0 so that the sixth term on the right
side of (3.1) vanishes. Recall that the test function w is defined on [a,b] at time step ¢,
and at the outflow boundary x=0 for t € [t,_1,t,] and is extended by constant along the
characteristics (2.4). Hence, a characteristic tracking from t,_; (or the inflow boundary
x =a) to t, (or the outflow boundary x = b) needs to be used in the evaluation of the
test function w in the first and fourth terms on the right side of (3.1). To insure that the
characteristics do not intersect with each other, we impose the constraint |Vy(x,t)|At <1
on the time step At [15,27]. Finally, since the penalty term and the diffusion term in
this scheme are of the same order, the introduction of the penalty term will not hurt the
condition number of the characteristic NIPG scheme.

3.3 Characteristic OBB, SIPG, and IIPG schemes

Choosing «; =0 in the characteristic NIPG scheme (3.2) yields the characteristic OBB
scheme. On the other hand, if we do not add the term [[u]|(x;,t,){Dwy}(x;,t,) to the
inter-element diffusive flux in (3.1) and (3.2), we end up with the following characteristic
IIPG scheme:

b I Xi
[ ety dr+ Y [ AOD b e b eox ()
a i=17%i

i—1

+ / ¥ V(b,t)uh(b,t)w(b,t)dt—l-iai[[uh]](xi,tn)[[w]](xi,tn)

th—1 =1

+ L8t ) (D i) 2] (i )

b b
:/a uh(x,tn,l)w(x,tifl)dx—l—/a At(x) f (x,tn)w(x, b, )dx

b b b
+ / (F—ty 1)V (D,8) F(b, ) (b, £)dt + / (D)w(a,b)dt— / nHwb,Hdt.  (33)
fn—1 fn—1 th—1
Finally, if we add a symmetric term [[u]](x;,t,){ Dwx } (x;,t,) to the inter-element diffusive
flux in (3.1) and (3.2), we obtain the following characteristic SIPG scheme:

b I Xi
/uh(x,tn)w(x,tn)dx—l-z AHX)D (% b )it (%, b Y (3, £ )

i=1Y%i-1

tn I
+/ V(b,t)u,(b,t)w(b,t)dt+ Z“i[[“h]] (xi,tn) [[w]] (x,t0)

tp1 i=1

1
+ 3 A#(xs) ({ D} o) [00]) i ) + [10]] i ) { Do} (i ) )

i=1
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b
—/ up(x,t,-1) 7171)dx—|—/ At(x) f(x,ty)w(x, by )dx

[ b VD fbDwb e+ [ g(Ew(a)dt— / " ot (34)

tn 1 Fp—1 tn—l

4 Preliminaries
Let W} (a,b) be the Sobolev spaces consisting of functions whose derivatives up to order-

m are p-th integrable on (a,b), equipped with their standard norms; and H” =Wj". For
any Banach space X, we introduce Sobolev spaces involving time

W;”(tl,tz;X).—{fxt Hatk t)H eLP(tl,tz),ogkgm,1gpgoo},

m t k
B LIl s
o = ot
HfHWg’(tl,tz;X) = akf
[nax essSup(, 1) W(',t)‘ o PEe

When it is clear from the context, we use |||, ||-||g=, and ||-|lwz to denote |- ||12(4p),
|- 1tz (a,6), and. ||| w (4,5, Tespectively. We also introduce the discrete (semi-) norms

1

I£1ln= 2 [ A i)
COIRE | /t sz(b,t)dt) ”
HfHLZ 0,T;HL) ZZ Atn (x tn)f:%(x/tn)dx

n=1i=1"%i-1

-l-Atn(Xi)h_1D<xirtn)[[f]]z(xi’t”))) /

||f||io°(o,T;L2) _OlgliXNHf(x tn)HLZ ab):

NI—=

Let I1p € S;, be the interpolation of p € H" 2. The following estimates hold
HHp_pHHk(x,,l,x,)SChlikaHH’(x,,l,xl)l Oékgz’ k§l§m+1’

- (4.1)
H(PHW&(Xi,],Xi)SCh 1/2||¢HW§(X,',1,X,') vcpesh’ k:0’1'
Furthermore, we have the following superconvergence [29,31-33] for all ¢ €Sy,:
I x
%[ Dt (Tlp—p)a(x)gu(x)da
i=17%i1
! !
<O |p ooy [ L / ()dx) "+ 9] (4.2)

i=1
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When the finite element space S; consists of piecewise polynomials of m >3, we can
choose Ilp to interpolate p and p, at the nodes x;_; and x; on each interval [x;_1,x;], e.g.,
(ITp—p)(x;) = (IIp—p)x(x;) =0. Then for x € [x;_1,x;], we have

p=p)x)== [ Wp=ply)y=[ " [ (Tp-p)=(lazdy. @3
Then we introduce the following notations:
e(x,ty) =up(x,ty) —u(x,ty), $(x,tn)=up(x,t,)—Tlu(x,t,), x€la,b),
n(x,t)=TTu(x,t)—u(x,t), (xt)€[ab)x (ty_1,ta], (4.4)
e(b,t)=uy(b,t;;)—u(b,t), &(b,t)=uy(b,t,)—TIu(b,t,), n(bt)=TTu(bt,)—u(b,t).

In this paper, we use ¢ to denote an arbitrary small positive number, and C to denote a
general positive constant that could be assumed different values at different occurrences.

5 Optimal-order L? estimates and superconvergence estimates

In this section we derive optimal-order error estimates in the L> norm and superconver-
gence estimates in the discrete energy norm for the characteristic NIPG scheme (3.2), the
characteristic I[IPG scheme (3.3), and the characteristic SIPG scheme (3.4).

Theorem 5.1. Let u be the solution to problem (2.1) and uy, be the solution of the characteristic
NIPG scheme (3.2) with a;=wD (x;,t,)At(x;)h~L. Further, the spatial partition is uniform for
m=1. The following optimal-order L? estimate and superconvergence estimate hold for any w >0,
except for m=2 when a suboptimal-order estimate holds with the " in (5.1) replaced by h?

ot =8l 70 1= 20 ) + ) = 10) (0D 13,01

du
< vt (o ey + (8 ) 20+ 120070 | | o e

d
o+ 2 vora) O (i@ el o ). G

Proof. We subtract Eq. (3.1) from Eq. (3.2) and use the fact w¢(b,t) =0 to obtain an error
equation on e=1uy, —u

/be(x,tn)w(x,tn)dx—l-zl:/Xi M) D (%, b )ex (X, b Ya0x (0 )dx
a i=1

—|—/tn Ve(b,t)w(b,t)dt—i—iAt(xi)h1D(xi,tn)[[e]](xi,tn)[[w]](xi,tn)

th—1 i=1

I
YA D i) (e () [10] (i) = ] (o ) {0} (3 10))

i=1

:/be(x,tn1)w(x,tj{1)dx—E(u,w). (5.2)
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We decompose the error e=1uj, —u as e=¢-+1. Since the estimate for 7 is known, we need
only to derive an error estimate for . We choose w = ¢ and use the fact that #(x;,t,) =0
and 7y (x;,t,)=0fori=1,2,---,I to rewrite Eq. (5.2) in terms of ¢ and 5

1

18 Cetu) 1P+ 18 e ta) [EHNEBAT2 g + 2o AT D (i ) []]2 (i)

i=1

b b b
:/a C(x,tn,l)(f(x,tifl)dx—i—/ n(x,tn,l)é(x,tifl)dx—/a 17(x,t,)E(x,t, )dx

_/t Vi (b,t)E(b,t) dt—Z/ (2, b)) (%, t0) Ex (x,tn )dx — E(u,€). (5.3)
fp—1 Xi-1

Now we estimate the right-hand side of (5.3) term by term. We begin by bounding a
shifted L?>-norm of &(x,t, ;) =&(X,t). We use y =r(t,_1;x,t,) to denote the variable at
time step t,_1 and x to denote the variable at time step t,,.

b
/ gZ(y’t dy / CZ x tn rx( n—1,%,ty dx+/ bt T’t( n—1,b, t)dt
a
< (LHCAN ([8G0 k) [y HIEBD R ) 54
Then, the first term on the right-hand side of (5.3) can be bounded as follows:
b
/C(x,tn,l)é(x,ttl)dx‘

< 16Cota D2+ 304080 (1600t oy GO, 1) 69)

We use Cauchy inequality to bound the fourth term on the right side of (5.3) by

ty ty
/ Vn(b,t)é(b,t)dtgs/ Véz(btdt—i—C/ Vi (b,t)dt
fp—1

fn—1

<e||E(b, t)HLz bt TC At) [Ju(b, t)HHl (bn1,ta)"

The estimates of the remaining terms on the right-hand side of (5.3) are lengthy and will
be presented in Lemmas A.1-A.3 in the Appendix.

b b
‘/ (x,tp—1)E(x b )dx—/ n(x,tn)é(x,tn)dx‘
<e]|g(x,tn) [+ CAL|E(x,t,) || > +CAL|E(D, f)HLz
+CH" 2 (||ul 3

tn ]tn)

(b stustin sty T O o 7))+ CAD N1l o 7112) (5.6)
I x

X[ AHED G b E (5 k)

i=1"%

i—1

< e}& ) [+ CALE () [P+CAD 1B g ey +CAIP™ 2 ]2y iy, B7)
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and

|E(u,8)| < CAHIE (xtn) P +el12 (x, tu) [[5 + CALIE(B,A)172 ltn)

+E;At(xi)h_lD(xi/tn)HCH (xiytn) +C(AL) (H

L2 fp— 1th1)

21, i) (5:8)

+||u||L2 (tu—1,tnsWE) H L2(ty-1,tn;L?)

We incorporate Egs. (5.5)-(5.8) into Eq. (5.3) to obtain
I
16 e, ta) 1P+ 15 e ta) [+ GBI,y + 2o A (i)™ D (i ) [[2]1% (i )
i=1

1 1
< (5+Cat) (I2Ce b P+ 160 ) 1)+ (5 +e+CA) (20D 6, o)

I
+el|C0xtn) 17 +e ) At (i)™ D (i, ta) [[11% (i, tn)

i=1

+Ch2m+2 (AtHuHZoo(O,T;H"’”) + HuH%p (tn—]rtn'Hm+])>

+C(At) Z(Atl\ul\zw(o;ﬂzfrIIM(b D, ltn sl )

We choose 82% and sum the resulting inequality on n to rewrite the proceeding inequality
as (N1 <N)

B sy

LZ tn 1t W] L2 tn 1tn; L2)>

16 Ce, b2+ 112112, Oy, st1b) TS (L, DIz (0xy)

Ni—1
<C) AtnHé(x,tn)H2—|-Ch2m+2(H”H%M(O,T;H"’H)+HuH%—Il(O,T;H"’“))
n=0

+c<At>2(uuu% oty 400 2 12 0 ans

We apply Gronwall’s inequality to obtain
||CHE°°(0,T;L2) + ||CHE2(0,T,~H%)) +1[¢(b,t) HL%,(O,T)

du
<Ct(llull o rm) +Hu<b,t>qu<o,T>+HuHLz(o,T;WmHE B

(5.9)

a0z + |2

L2(0,T;WL) LZOTLZ))

) +Chm+1 (Hu HLoo (O,T;H"HZ) + Hu HHl (O,T;H"’+1)) . (510)

+fllr2(0,7;2) +H dt ll12(0,1;12)
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We combine (5.10) with the estimate for # to finish the proof for (5.1). Note that we used
the condition {7, (x;,t,)} =0 before (5.3), which requires the auxiliary function ITu to
interpolate u and u, at the nodes x;_; and x; on each interval [x;_1,x;], i.e., m > 3.

For m = 1 or 2, we have to choose Ilu to be the Lagrange interpolation of the true
solution u and so have the following extra term to bound since {#, }(x;,t,) } #0 in general

I-1
— 2 At(ax) D (aci ) {17} e b ) [[€]) (i ). (5.11)
i=1

We use the Peano kernel theorem to get

X; ( ) m+1u
]:/ G" (y;x)w(.‘/,tn)d% 1<i<I, m=1,2 (5.12)
Xi—1,Xi Xi 1

17(x,t)

Here Gfl) (y;x)=(xi—x)(y—xj_1)/h; for y€[x;_1,x] or (x—x;_1)(x;—y)/h; otherwise. We
differentiate this expression with respect to x to obtain the following expansion for a
uniform spatial partition

1 [Yivixig—y (Y 1 % y—x;_q (Y
{17,6}(x,‘,tn):E : %y/x uzzz(z)dzdy—i ’ Y hl l/x Uzzz(2)dzdy. (5.13)
i i i—1 i

1

We use this estimate to bound (5.11) by

-1 -1 X
ey At h D (xi b [E]12 (i) +C Y At(xi) D (i) / 2, (xt)dx.  (5.14)
i=1 i=1 Yi1
The rest can be estimated as before and we finish the proof for the case m=1. For the case
of m=2, Gl.(z) (y;x) is of the form
(2 2 2
i (i) (x=xia) (x=xi-1/2) = (x )

4
iz (xii12—y)*(x—xi1)(x—x;),  y€(xii1,%), x<xi_1/2,

2

@) p(xi—y)z(x—xi—l)(x—xzel/z)

G;7 (yix) = 4 (5.15)
_h_z(xi—l/z_]/)2<x_xi—l)(x_xi)/ ye(x,xi-1/2),

2
72 (i —y)?(x—xi1)(x—xi212) = (x=¥)%,  yE(xii1/2,%),

2
[ 2 (i —y) 2 (x—xi1)(x—xi_172),  yE(xX), x> X170,

We differentiate #(x,t, ) with respect to x in (5.12) incorporated with (5.15) on intervals
[xi—1,x;] and [x;,x;+1] and use the decomposition uy,, (y,t,) = iy, (xi,tn) + (thyyy (V. 1) —
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yyy(xi,tn)) to compute the average {1, }(x;,t,) to obtain

{2} (xistn)
1 Xi-1/2 5 Xi
=T (/xl (xim1=y) sty (v, tn)dy+ x;m(xi_y) (By —2xi—1—x;)uyyy (y,tn)dy
Xit+1/2 Xi+1 5
‘|‘/x (y—2xi) (21 4% =3y ) yyy (v, tn ) dy + ; (xiy1—Y) “yyy(yrtn)dy)
i i-1/2
h2
= —@uxxx(xi,tn)—k(’)(h:%).
This expansion is of the same order as (5.13), so (5.14) and hence a suboptimal-order
estimate holds for m=2. O

Remark 5.1. The suboptimal-order L? estimate proved for m =2 coincides with the nu-
merical observations [7,23]. The Peano kernel approach (5.12) would prove an optimal-
order L? estimate only for the odd-order NIPG schemes under the assumption of a uni-
form spatial partition. We alleviate these restrictions via the use of the Hermite interpo-
lation in the proof.

Remark 5.2. Theorem 5.1 holds for any fixed w > 0 with the generic constant C in the
theorem depending on w. However, the theorem does not cover the characteristic OBB
scheme, even though numerical results show that this is the case. The current proof will
lead to a suboptimal-order error estimate for the characteristic OBB schemes.

Theorem 5.2. Assume that the condition of Theorem 5.1 holds. Let uy be the solution
of the characteristic IIPG scheme (3.3) or the characteristic SIPG scheme (3.4) with «; =
wD(x;,ty)At(x;)h~1. Further, the spatial partition is uniform for m =1. Then there exists a
sufficiently large constant wqy >0 such that for any w > wy, the optimal-order L? estimate and the
superconvergence estimate (5.1) hold, except for m =2 when a suboptimal-order estimate holds
with the W1 in (5.1) replaced by h?.

Proof. 1f we compare the characteristic NIPG scheme (3.2) with the characteristic IIPG
scheme (3.3) and the characteristic SIPG scheme (3.4), we see that we need only to bound
one extra term as follows in addition to those in (5.3)

!

AR Dt {6} () (1) 1)

I

<EQAHTID (xiba) (S0 ) + 82067 ) +%EAt(xohD(xi,tn)ugmxi,tn)

i= i=1
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I

i 2 Cy -1 2
Seg/x{]At(x)D(x,tn)éx(x,tn)dx—i—E :1At(xi)h D (xi ) [E]12 (%1 £)-

1

If we choose e=1/4 and wy = C/¢, we manage to hide these two terms in (5.9). The rest
of proof in Theorem 5.1 goes through. O

Remark 5.3. Theorems 5.1 and 5.2 give the optimal-order L? estimates for the standard
NIPG, IIPG, and SIPG schemes for parabolic equations, since (2.1) reduces to a parabolic
problem and the characteristic DG schemes reduces to the standard DG schemes in the
case of V=0 1in (2.1). Furthermore, a similar argument gives an optimal-order estimate
and superconvergence estimate for the DG schemes for elliptic problems.

6 Numerical experiments

We carry out numerical experiments to illustrate the performance of the characteristic
NIPG scheme, the characteristic OBB scheme, the characteristic IIPG scheme, and the
characteristic SIPG scheme developed in this paper. In Section 6.1 we conduct numer-
ical experiments to investigate the spatial and temporal convergence rates of the cubic
characteristic NIPG scheme as a representative of high-order characteristic DG schemes,
as well as the linear characteristic NIPG, OBB, IIPG, and SIPG schemes. In Section 6.2
we compare the performance of the characteristic DG scheme with some well-received
standard DG schemes.

6.1 Spatial and temporal convergence rates of the characteristic DG schemes

We carry out numerical experiments to observe the spatial and temporal convergence
rates of the characteristic discontinuous Galerkin schemes. We present the numerical
results only for the cubic characteristic NIPG scheme (3.2) with w=1 in the Theorem 5.1,
a representative of the characteristic DG schemes developed in this paper.

We use a standard test problem of the transport of a Gaussian pulse subject to Eq.
(2.1) with the initial configuration being given by

Uy (x) =exp <_(x—7xc)2>, (6.1)

202

where x, and ¢ are the centered and standard deviations of the Gaussian pulse. In the
numerical experiments the data are chosen as follows: (a,b) =(0,2), (0,T)=(0,1), D=
0.0001, x,=0.5, and ¢ =0.05. In addition,

V(x,t)=140.01x

is used. We use a linear regression to fit the convergence rates and the associated con-
stants in the error estimates

1 (x,T) =14 (%, T) | Ly (a,p) < Cah™ +Cp(AH)P, with p=1, 2, c0. (6.2)
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Table 1: Spatial convergence rate of the cubic characteristic NIPG scheme.

h At L, Error Lq Error Lo Error
1/16 1/300 8.9974e-004 4.3598e-004 6.7663e-003
1/18 1/300 5.0648e-004 2.2985e-004 4.3117e-003
1/20 1/300 3.1483e-004 1.3775e-004 2.8747e-003
1/22  1/300 2.1907e-004 9.5743e-005 1.9954e-003
1/24 1/300 1.7160e-004 7.6409e-005 1.4363e-003
1/26 1/300 1.4861e-004 6.8708e-005 1.0688e-003

a=4.10 a=4.30 x«=3.90
cx=79 Cy =68 Cy =274

Table 2: Temporal convergence rate of the cubic characteristic NIPG scheme.

h At L, Error L1 Error Lo Error
1/500 1/10 3.9124e-003 1.9239e-003 1.0957e-002
1/500 1/14 2.7960e-003 1.3746e-003 7.8319e-003
1/500 1/18 2.1753e-003 1.0693e-003  6.0939e-003
1/500 1/22 1.7801e-003 8.7496e-004 4.9872e-003
1/500 1/26 1.5064e-003 7.4041e-004 4.2207e-003
1/500 1/30 1.3057e-003 6.4172e-004 3.6584e-003

B=1.00 B=1.00 B=1.00
cp=0.04 cp=0.02 cp=0.11

Table 3: Spatial convergence rates for the linear characteristic NIPG scheme.

h At L, Error L1 Error Lo Error
1/50 1/500 7.9383e-003 3.7963e-003  3.2820e-002
1/60 1/500 4.7482e-003 2.2328e-003 2.0341e-002
1/70  1/500 3.0434e-003 1.4169e-003  1.3335e-002
1/80 1/500 2.0700e-003 9.4668e-004 9.1807e-003
1/90 1/500 1.4808e-003 6.7164e-004 6.5899e-003

1/100 1/500 1.1051e-003 4.9861e-004 4.8990e-003
a=2.85 =294 a=275
ca =560 ca =376 ca =1568
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We perform two kinds of computations. The first tests the spatial convergence rate
of the characteristic NIPG scheme, where we fix a small time step At and compute the
constant C, and the rate a with respect to h; the other tests the temporal convergence
rate, where we choose a small grid size i and calculate the constant Cg and the rate 8
with respect to At. The results are presented in Tables 1 and 2, fitting the pairs (Cy,, @) and
(Cg, B)- These results show that the characteristic NIPG scheme possesses the optimal-
order spatial and temporal convergence rates as predicted by Theorem 5.1. Moreover
we notice that the generic constant Cy of the temporal error is much smaller than the
generic constant C, of the spatial error. This reflects the strength of the characteristic

discontinuous Galerkin schemes.
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Table 4: Temporal convergence rates for the linear characteristic NIPG scheme.

h At L, Error L, Error Lo Error
1/500 1/10 2.0074e-003 9.8546e-004 6.9558e-003
1/500 1/20 1.0200e-003 5.0028e-004 3.5064e-003
1/500 1/30 6.7832e-004 3.3321e-004 2.3336e-003
1/500 1/40 5.2975e-004 2.6052¢-004 1.7940e-003
1/500 1/50 4.1509e-004 2.0295e-004 1.4284e-003
1/500 1/60 3.7114e-004 1.8186e-004 1.2480e-003

B=1.00 B=1.00 B=1.00
cp=0.02 cp=0.01 cp=0.06
Table 5: Spatial convergence rates for the linear characteristic OBB scheme.
h At L, Error L1 Error L Error
1/50 1/500 7.9758e-003 3.8167e-003 3.2908e-002
1/60 1/500 4.7769e-003 2.2469e-003  2.0414e-002
1/70 1/500 3.0656e-003 1.4274e-003  1.3390e-002
1/80 1/500 2.0875e-003 9.5484e-004 9.2220e-003
1/90 1/500 1.4950e-003 6.7856e-004 6.6201e-003
1/100 1/500 1.1171e-003 5.0464e-004 4.9210e-003
a=2.84 x=2.93 a=2.75
cy =544 cy =365 cy =1557

Table 6: Temporal convergence rates for the linear characteristic OBB scheme.

h At L, Error Lq Error Lo Error
1/500 1/10 8.5102e-004 3.3275e-004 5.0638e-003
1/500 1/20 4.1470e-004 1.6647e-004 2.3398e-003
1/500 1/30 2.8711e-004 1.1569e-004 1.6001e-003
1/500 1/40 2.2931e-004 1.0072e-004 1.2024e-003
1/500 1/50 1.6627e-004 6.7155e-005 9.3844e-004
1/500 1/60 1.8144e-004 8.2453e-005 8.8697e-004

B=0.95 $=0.90 5=1.00
cp=0.007 cp=0.002 cp=0.048

We present the spatial and temporal convergence rates of the linear characteristic
NIPG, OBB, IIPG, and SIPG schemes with v =1 in Tables 3-10. The numerical results
with other values of y are similar and are skipped. We observe that the linear charac-
teristic NIPG, OBB, IIPG, and SIPG schemes possess second-order convergence rate in
space and first-order convergence rate in time in the norms of L', 2, and L®. We notice
again that the generic constant Cg of the temporal error is much smaller than the generic
constant C, of the spatial error. Even though these schemes are second order in space and
first order in time, the absolute errors with At =1/10 are much smaller than those with
h=1/50. This reflects the strength of the characteristic discontinuous Galerkin schemes
developed in this paper.
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Table 7: Spatial convergence rates for the linear characteristic SIPG scheme.

h At L, Error L, Error Lo Error
1/50 1/500 8.2680e-003 3.9794e-003  3.4553e-002
1/60 1/500 4.9673e-003 2.3583e-003 2.1548e-002
1/70 1/500 3.1745e-003 1.4813e-003 1.4149e-002
1/80 1/500 2.1350e-003 9.9393e-004 9.7213e-003
1/90 1/500 1.4980e-003 6.8884e-004 6.9443e-003

1/100 1/500 1.0890e-003 4.9792e-004 5.1291e-003
x=2.93 «=3.00 x=2.76
Ccx =796 cy =511 c,=1711

Table 8: Temporal convergence rates for the linear characteristic SIPG scheme.

h At L, Error Lq Error Lo Error
1/500 1/10 2.2614e-002 8.4221e-003 1.2922e-001
1/500 1/20 4.9750e-003 1.9266e-003 2.7681e-002
1/500 1/30 6.0566e-003 2.2704e-003  3.4917e-002
1/500 1/40 1.5927e-003 6.5884e-004 8.5701e-003
1/500 1/50 1.5539e-003 6.1899e-004 8.4374e-003
1/500 1/60 8.1026e-004 3.6274e-004 3.9055e-003

=175 p=1.67 =182

Table 9: Spatial convergence rates for the linear characteristic IIPG scheme.

h At L, Error L, Error Lo Error
1/50 1/500 8.0790e-003 3.8667e-003  3.3670e-002
1/60 1/500 4.8288e-003 2.2862¢-003  2.0928e-002
1/70 1/500 3.0769e-003 1.4341e-003 1.3727e-002
1/80 1/500 2.0690e-003 9.5176e-004 9.4387e-003
1/90 1/500 1.4558e-003 6.6580e-004 6.7571e-003

1/100 1/500 1.0647e-003 4.8202e-004 5.0062e-003
x=2.93 «=3.01 x=2.76
ca=778 ca=>514 ca =1649
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6.2 Comparison of the characteristic DG schemes with standard DG schemes

In this subsection we compare the performance of the characteristic DG scheme with
some well-received standard DG scheme to gain better understanding of the proposed
characteristic DG scheme. We carry out the comparison of the characteristic DG scheme
with the third-order Runge-Kutta DG scheme with piecewise linear polynomials in space
for the case of D =0. This is what the original Runge-Kutta DG schemes were developed
for. Moreover, in this case all the four characteristic DG schemes reduce to one scheme.
We present the results in Tables 11-13. Table 11 contains the numerical results of the pop-
ular third-order Runge-Kutta DG scheme with piecewise linear finite elements in space,
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Table 10: Temporal convergence rates for the linear characteristic IIPG scheme.

h At L, Error L, Error Lo Error
1/500 1/10 2.1693e-003 1.0380e-003  8.6592e-003
1/500 1/20 1.1047e-003 5.3002e-004  4.3450e-003
1/500 1/30 7.4032e-004 3.5499e-004 2.9679¢-003
1/500 1/40 5.8580e-004 2.8325e-004 2.2498e-003
1/500 1/50 4.4944e-004 2.1543e-004 1.7729e-003
1/500 1/60 4.1314e-004 2.0011e-004 1.5400e-003

$=0.95 =10 =10
cg=0.02 cg=0.01 cp=0.08

Table 11: Spatial convergence rate of the 3rd-order Runge-Kutta DG scheme with linear elements in space for

the pure advection problem.

h At L, Error Lq Error Lo Error
1/50 1/500 1.0167e-002 4.8793e-003 4.0606e-002
1/60 1/500 6.2777e-003 3.0331e-003 2.5697e-002
1/70 1/500 4.1156e-003 1.9574e-003 1.7040e-002
1/80 1/500 2.8377e-003 1.3477e-003 1.1779e-002
1/90 1/500 2.0414e-003 9.7044e-004 8.4417e-003

1/100 1/500 1.5223e-003 7.3032e-004  6.2422¢-003
x=2.75 x=2.76 =271
ca =475 ca =239 ca =1655

Table 12: Spatial convergence rate of the linear characteristic NIPG scheme for the pure

advection problem.

h At L, Error Ly Error Lo Error
1/50 1/500 5.6355e-003 2.5936e-003 2.4644e-002
1/60 1/500 3.1874e-003 1.4355e-003 1.5356e-002
1/70 1/500 2.0352e-003 9.0762e-004 1.0256e-002
1/80 1/500 1.4110e-003 6.2098e-004 7.2776e-003
1/90 1/500 1.0349e-003 4.5520e-004 5.4093e-003

1/100 1/500 7.8998e-004 3.4526e-004 4.1625e-003
x=2.83 x=2.90 «=2.55
Cy =348 =213 ca =533

which demonstrates the optimal spatial convergence rates of the scheme. We present
the numerical results generated by the linear characteristic NIPG scheme in Table 12 to
test the spatial convergence rate of the linear characteristic DG scheme. We observe that
the linear characteristic DG scheme generates comparable results with the third-order
Runge-Kutta DG scheme when very fine time steps are used.

Because the Runge-Kutta DG scheme is explicit and requires the Courant number to
be less than one [11], we cannot test the temporal convergence rates unless we use a much
higher-order finite elements in space. Hence we skip the test for temporal convergence
rate of the Runge-Kutta DG scheme. Table 13 contains the numerical results, which test
the temporal convergence rates of the linear characteristic NIPG scheme. These results
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Table 13: Temporal convergence rate of the linear characteristic NIPG scheme for the pure advection problem.

h At L, Error L1 Error Leo Error
1/500 1/10 4.2599e-003 2.0346e-003  1.2220e-002
1/500 1/15 2.8396e-003 1.3563e-003 8.1472e-003
1/500 1/20 2.1296e-003 1.0172e-003  6.1114e-003
1/500 1/25 1.7036e-003 8.1370e-004  4.8900e-003
1/500 1/30 1.4197e-003 6.7808e-004 4.0758e-003
1/500 1/35 1.2169e-003 5.8121e-004  3.4949e-003
1/500 1/40 1.0648e-003 5.0856e-004 3.0596e-003
1/500 1/45 9.4647e-004 4.5205e-004 2.7209e-003
1/500 1/50 8.5184e-004 4.0685e-004 2.4499e-003
1/500 1/55 7.7442e-004 3.6987e-004 2.2283e-003
1/500 1/60 7.0992e-004 3.3905e-004 2.0439e-003

£=1.00 5=1.00 5=1.00
cp=0.04 cp=0.02 cp=0.12

show that the characteristic DG scheme generates accurate numerical solutions even if
very large time steps are used (the Courant number is greater than 50 in this example).
This justifies the development of the proposed characteristic DG schemes, i.e., which
allow the use of large time steps in generating stable and accurate numerical solutions.

7 Concluding remarks

In this article we develop a family of characteristic discontinuous Galerkin meth-
ods for one-dimensional transient advection-diffusion equations by using an Eulerian-
Lagrangian approach within a primal discontinuous Galerkin framework. These include
the characteristic SIPG method, the characteristic NIPG method, the characteristic IIPG
method, and the characteristic OBB method. The developed methods retain the numeri-
cal advantages of the discontinuous Galerkin methods as well as characteristic methods.
Further, we prove an optimal-order error estimate in the L> norm and a superconver-
gence estimate in a weighted energy norm for the characteristic NIPG, SIPG, and IIPG
methods. Numerical experiments confirm the optimal-order convergence rates in the L?
norm as proved in the main theorems.

The preliminary comparison of these characteristic DG schemes with the well re-
ceived Runge-Kutta DG schemes lead to the following observations as anticipated: (i)
These methods generate comparable results when very fine time steps are used. (ii) The
characteristic DG schemes generate stable and accurate solutions even if a large time step
(e.g., a Courant number > 50) is used. In addition, we emphasize that the Runge-Kutta
DG schemes are very flexible and can apply to virtually any applications. The character-
istic DG schemes require a well defined velocity field to carry out a characteristic tracking
and generate accurate solutions without requiring high-order regularity of the exact solu-
tions. These methods are particularly suited for such applications as subsurface porous
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medium flow and transport, in which the exact solutions do not typically have high-
order regularity due to the heterogeneity of the porous media. On the other hand, the
transport equation in porous medium flow and transport never exhibit shock disconti-
nuities because the governing equations are upscaled on the macroscopic representative
elementary volume scale that is larger than the microscopic continuum scale.

The developed characteristic discontinuous Galerkin methods can achieve high-order
spatial accuracy (with high-order elements) but has only first-order temporal accuracy
along the characteristics. A high-order temporal accuracy can be handled in a straight-
forward manner in the context of Eulerian methods, but it is delicate in the context of
characteristic methods due to the application of a characteristic tracking. A second-
order-in-time characteristic finite element method was developed in [2], a predict-correct
approach can also be employed to develop a high-order-in-time schemes which will be
investigated in the near future.

Even though the development and the analysis in this paper are for a simple transient
linear advection-diffusion equation in one space dimension, our goal is to develop and
analyze these methods for more realistic problems in applications. One important area
of applications is the coupled system of partial differential equations arising in porous
medium flow such as petroleum reservoir simulation and environmental modeling. In
this context, the velocity in the transient advection-diffusion equation is determined from
an associated pressure equation that is derived from the continuity equation for the fluid
mixture and Darcy’s law. On the other hand, the viscosity in the pressure equation
depends on the concentration that is the solution to the transient advection-diffusion
equation for the concentration [5]. Different characteristic finite difference or finite ele-
ment methods were developed for the simulation of these systems [1,13] and were ana-
lyzed [14]. A characteristic discontinuous Galerkin method is desired partly due to the
following reasons: (i) It could resolve the moving steep fronts between different fluids
more effectively; (ii) it is locally mass conservative; and (iii) it can handle physical inter-
faces between different subdomains with different permeabilities more effectively. This
will be investigated in the near future.
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Appendix: Auxiliary estimates

In this appendix we prove auxiliary estimates on # that were used in the main error
analysis in Section 4.
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Lemma A.1. Under the assumption of Theorem 5.1, the estimate (5.6) holds.

Proof. Let Cr=maX x )e(ab]x [, 1t,] |V (X,1)| At/ be the Courant number. We first consider
the case Cr >1/2, which implies i < CAt. We use (4.1) to bound the left side of (5.6) by

‘/abﬂx,tnl)é(x,t;l) dx_/ubn<x,tn)€(x,tn) dx‘

< I Ceta) 13 2+ I Cetn)l] 16 60)]
< CAHE () [P+ CAHEBIRs )+ CAD e o) (A1)

In the case Cr<1/2, we decompose the left-hand side as follows
[ net e d- [ paEt)d
_/b* (%t 1) (E(F ) —E(x, 1)) dx—l-/b (X tn1)E(x bF)dx
_/b 171(x, g1 )E (2 b ) A — / /:"lm X )t (x, by ) dx (A2)

The last term on the right-hand side is bounded in a standard manner

tn

e (x,t)dte(x,ty )dx‘

fp—1

< (A)Y2{|gell 2 s,y 1) |
< CAHIE(x,t) 24+ CH™ 22,y g (A3)

The first term on the right-hand side of (A.2) requires careful analysis. As the function ¢
exhibits discontinuity in space, one cannot simply integrate this term by parts as in the
analysis for the ELLAM type of schemes [25,27,28]. Instead, we decompose this term as
two sums of terms such that {(X,t,) and ¢(x,t,) are continuous within each integral

/b*iﬂx tn— 1)(6(55 tn) é(x,tn))dx
_Z/X (x,tn—1)(E(X tn)—C(x,tn))dx+féjfn(x,tn—1)(C(J?,tn)—C(x,tn))dx. (A.4)

As x € [x;_1,x]], X € [x;_1,;] is in the same interval. The first term is bounded by

\Z/x (1) (GBS
:‘E/Xiil’?<x,fn1)/x Cy(y't”)dydx‘

<ell S tu) I+ CAIP" 2 ]| o 7, (A.5)
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For x € [x},x;], X € [x;,x;i+1]. Namely, there is one jump discontinuity between ¢(x,t,) and
¢(X,ty) in the second term on the right side of (A.4). Therefore, we rewrite this sum as

=1 ,x;
Y [ et ) @) ~ 8t x
i=1

i [ 10t (€60 =87 )+ [ )+ (7 )= E ) ) (46)

We use the fact |x; —x| = O(At) for x € [x},x;] and (4.3) to bound the jump term by

Z/ | (x,ty—1) [ | [[E]] (i ) |

C(At) 22/ Hx (2, tn—1) | doc | [[E]] (xi,t0) |
< CAE () [P +C(A? Huuzw(o,m). (A7)

Here we have used the inverse inequality. On the other hand, we know
-1 B
L [ ot (@) = E0x )+ (E x5 ) — G )|
i=1"%

-1 Xi X Xi
=X [t ([ sty 8ty )dx
i=1"%i X x
< el b 24+CAH 2 ]2 g 1 gy (A8)

We use (4.3) to bound the second and third terms on the right-hand side of (A.2) by
b b
‘/b*iy(x,tn_l)é(x,tn) dx—/b*n(x,tn_l)g(x,t,j_l) dx‘

_ 1/ b/ b/ bnzxz,tn_l)dzdy(é(x,tn)—s’<xffi—1>>dX(

< CAH|E(xtn) |2+ CAHIE B2 1y TCADP [ulF ,1,112)- (A9)

ba b
We combine these estimates to conclude the proof. O
Lemma A.2. Under the assumption of Theorem 5.1, the estimate (5.7) is valid.

Proof. In the case Cr>1/2 we have

‘i/xj At(x)D(xrtn)ﬂx(x,tn)gx(X,tn)dx‘
i=17%

i—1

<ellE(xtu) I3+ COIP [ulFe o 112y SellE () I +CAD [l fw o 1y (A10)
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When Cr<1/2, d—a<h/2. Thus, At(x) =At on [d,x1] and [x;_1,x;] for i=2,3,---,1. Con-
sequently,
I
Z/X At(x)D(x, )12 (%, 80 Ex (X, £, ) dx
i=17%i-1

I X;
-y / AED (%, b ) 172 (%, 1) Ex (3, £ )dx
i—=17%i-1

_ / (1) = by 1) D (b )11 () e (2, ) . (A11)

We utilize the superconvergence (4.2) to bound the first term on the right-hand side by

I
2/ AtD (x, b )7y (%, ) Ex (%, )dx
i=17%i1

& t)dx) 18 m) ]

<el| St tu) I+ CALIE (e ) I+ CAP" 2 1] 7, pyra)- (A12)
We bound the second term on the right-hand side of (A.11) by

a

1 Xi
< CAth™+1 H“sz(o,T;H’"”) [Z (/

i=1 Xi—1

()t ICTRTNEERINETMYE

X
=| / X) =t )D (k) [y (vt yEs (k)
X1/2
<el|g( xrtn)Hh‘i’C At) H”HZW((),T;HZ)- (A.13)
Combining these results concludes the proof. O

Lemma A.3. Under the assumptions of Theorem 5.1, the estimate (5.8) is valid.

Proof. Egs. (2.7), (2.8), (2.10), and the fact that & is constant in Q(°) concludes that E (u,¢)
has the form
I

()= I Cxha) [ o000V i) =V (11533, 0)

1:1 n,a
ty tn
+2 (xi, b / o (Duy) (65,1, 0) ol

ty l‘n
—Z/ &b / (D) (r(853,12),0)d0ddx
Xi—1

+Z/ /t ”x)u(ét—I-V(fr)(r(t;x,tn),t)rx(t;x,tn)dtdx_ZEi(f)(C) “EN)

Xi-1 jz( =1
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The first term on the right-hand side of (A.14) is bounded by

|l it |

.
n,i

tn

-

Il
—_

u(r(tii,ta), ) (V (1620 80),8) =V (30 1) )

1

[ ty
< C e o) | (e (b Odt)
I
SsZaiHCHz(xi’t”)"'C(At) H”HLZt CtL®) (A.15)

I
—_

1

The second term on the right-hand side of (A.14) is bounded by
I th rta d
\Z[m](xi,ta N E(Dur)(r(G;xi,tn),G)det

<820¢1 2(xi,tn) +C(AL) (H

2
L2(ty_1,t;WL) + ||u||L2(tn71,tn;Wgo)) . (A16)

The third term on the right-hand side of (A.14) is bounded by

‘szi :ilCX(x’tn)/:n /tn%<Dur)<r<9;x,tn),9)d9dtdx‘

<ell&(x fn)Hh‘i‘C (At) (H

ula, o)) (A.17)

The fifth and sixth terms on the right side of (A.14) are bounded by

L2 [ ltnl_l1

1iE§f (@) +E) ()| < Catla(ta) I2+Cat|(b,t)

=~ HLZ tu_1,tn)

+ 0 (1 By oo+ | 5 (A18)

As for the fourth term on the right-hand side of Eq. (A.14), we note that the test function
satisfies the approximate adjoint equation

Cr(r(tx,ty), )+ V (x,t,)E (r(t;x,t,),t) =0.

We subtract this equation from the adjoint term to bound this term as follows:

L2(t,_ 1t,,L2)

| ZI; [ ”(CH‘VCr)(T(t;X,tn),t)rx(t;x,tn)dtdx‘

) 1/xl / (5% ba) )= V ()8 (£, x|

<el[¢(x, tn)l\h+C(At) 11T e, p,512) (A.19)
This completes the proof. O



K. Wang et al. / Commun. Comput. Phys., 6 (2009), pp. 203-230 229

References

[1] M. Al-Lawatia, K. Wang, A. S. Telyakovskiy and H. Wang, An Eulerian-Lagrangian method
for porous medium flow, Int. J. Comput. Sci. Math., 1 (2007), 467-479.

[2] M. Al-Lawatia, R. C. Sharpley and H. Wang, Second-order characteristics methods for
advection-diffusion equations and comparison to other schemes, Adv. Water Resources, 22
(1999), 741-768.

[3] D. N. Arnold, An Interior Penalty Finite Element Method with Discontinuous Elements,
Ph.D. Thesis, The University of Chicage, Chicago, IL, 1979.

[4] D. N. Arnold, E Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(5) (2002), 1749-1779.

[5] J. Bear, Dynamics of Fluids in Porous Materials, Elsevier, New York, 1972.

[6] ].P. Boris and D. L. Book, Flux-corrected transport. . SHASTA, A fluid transport algorithm
that works, J. Comput. Phy., 135 (1997), 172-186.

[7] C. E. Baumann and ]. T. Oden, Discontinuous hp finite element method for convection-
diffusion problems, Comput. Meth. Appl. Mech. Engrg., 175 (1999), 311-341.

[8] M. A. Celia, T. F Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian localized
adjoint method for the advection-diffusion equation, Adv. Water Resources, 13 (1990), 187-
206.

[9] B. Cockburn, G. Karniadakis and C.-W. Shu (Eds.), Discontinuous Galerkin Methods: The-
ory, Computation, and Applications, Lecture Notes in Computational Science and Engineer-
ing, 11, Springer Verlag, Berlin, 2000.

[10] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems, SIAM J. Numer. Anal., 35(6) (1998), 2440-2463.

[11] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems, J. Sci. Comput., 16 (2001), 173-261.

[12] C. Dawson, S. Sun and M. E Wheeler, Compatible algorithms for coupled flow and trans-
port, Comput. Meth. Appl. Mech. Engrg., 193 (2004), 2565-2580.

[13] R. E. Ewing, T. F. Russell and M. F. Wheeler, Simulation of miscible displacement using
mixed methods and a modified method of characteristics, SPE 12241, 7th SPE Symposium
on Reservoir Simulation, (1983), 71-81.

[14] R. E. Ewing, T. F. Russell and M. E Wheeler, Convergence analysis of an approximation of
miscible displacement in porous media by mixed finite elements and a modified method of
characteristics, Comput. Meth. Appl. Mech. Engrg., 47 (1984), 73-92.

[15] R.E.Ewing and H. Wang, An optimal-order error estimate to Eulerian-Lagrangian localized
adjoint method for variable-coefficient advection-reaction problems, SIAM J. Numer. Anal.,
33 (1996), 318-348.

[16] M.-G. Larson and A. J. Niklasson, Analysis of a family of discontinuous galerkin methods
for elliptic problems: the one dimensional case, Numer. Math., 99(1) (2004), 113-130.

[17] J. T. Oden, 1. Babuska and C. E. Baumann, A discontinuous hp finite element method for
diffusion problems, J]. Comput. Phys., 146 (1998), 491-519.

[18] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation,
Technical report, Los Alamos Scientific Laboratory, 1973.

[19] B. Riviere, M. E. Wheeler and V. Girault, A priori error estimates for finite element methods
based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal.,
39(3) (2001), 902-931.

[20] B. Riviére and M. F. Wheeler, Non conforming methods for transport with nonlinear reac-



230 K. Wang et al. / Commun. Comput. Phys., 6 (2009), pp. 203-230

tion, Contemporary Mathematics, 295 (2002), 421-432.

[21] C.-W. Shu, Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes
for Hyperbolic Conservation Laws, in: B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor
(Eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume
1687 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1998,
pp. 325-432.

[22] S. Sun, Discontinuous Galerkin Methods for Reactive Transport in Porous Media, Ph.D.
Thesis, The University of Texas at Austin, 2003.

[23] S. Sun and M. E. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods
for reactive transport in porous media, SIAM J. Numer. Anal., 43(1) (2005), 195-219.

[24] H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley and S. Man, An EL-
LAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput.,
20 (1999), 2160-2194.

[25] H. Wang, R. E. Ewing and T. F Russell, Eulerian-Lagrangian localized methods for
convection-diffusion equations and their convergence analysis, IMA ]. Numer. Anal., 15
(1995), 405-459.

[26] H. Wang, D. Liang, R. E. Ewing, S. L. Lyons and G. Gin, An approximation to miscible fluid
flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized
adjoint method and mixed finite element methods, SIAM J. Sci. Comput., 22 (2000), 561-581.

[27] H. Wang and K. Wang, Uniform estimates for Eulerian-Lagrangian methods for singularly
perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 1305-1329.

[28] K. Wang, A uniformly optimal-order error estimate of an ELLAM scheme for unsteady-state
advection-diffusion equations, Int. J. Numer. Anal. Model., 5 (2008), 286-302.

[29] L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Springer Lecture
Notes in Mathematics 1605, Springer-Verlag, New York, 1995.

[30] M. E. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J.
Numer. Anal., 15 (1978), 152-161.

[31] N. Yan, Superconvergence Analysis and a Posteriori Error Estimation in Finite Element
Methods, Science Press, Beijing, China, 2008.

[32] Z. Zhang, Finite element superconvergent approximation for one-dimensional singularly
perturbed problems with graph, Numer. Methods Part. Diff. Eq., 18 (2002), 374-395.

[33] Q. Zhu and Q. Lin, Superconvergence Theory of Finite Element Methods, Hunan Science
Press, China, 1989.



