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Abstract. A kind of compressible miscible displacement problems which include molec-
ular diffusion and dispersion in porous media are investigated. The mixed finite ele-
ment method is applied to the flow equation, and the transport one is solved by the
symmetric interior penalty discontinuous Galerkin method. Based on a duality ar-
gument, employing projection estimates and approximation properties, a posteriori
residual-type hp error estimates for the coupled system are presented, which is often
used for guiding adaptivity. Comparing with the error analysis carried out by Yang
(Int. J. Numer. Meth. Fluids, 65(7) (2011), pp. 781–797), the current work is more
complicated and challenging.
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1 Introduction

We consider the following single-phase, miscible displacement problem of one compress-
ible fluid by another in porous media:

d(c)
∂p

∂t
+∇·u=d(c)

∂p

∂t
−∇·(a(c)∇p)=q, (x,t)∈Ω× J, (1.1a)

φ
∂c

∂t
+b(c)

∂p

∂t
+u·∇c−∇·(D(u)∇c)=(ĉ−c)q, (x,t)∈Ω× J, (1.1b)

u·n=0, (x,t)∈∂Ω× J, (1.1c)

D(u)∇c·n=0, (x,t)∈∂Ω× J, (1.1d)
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p(x,0)= p0(x), x∈Ω, (1.1e)

c(x,0)= c0(x), x∈Ω, (1.1f)

where Ω is a polygonal and bounded domain in R
d (d = 2 or 3) with the boundary

∂Ω, J = (0,T], n denotes the unit outward normal vector to ∂Ω; u(x,t) represents the
Darcy velocity of the mixture and p(x,t) is the fluid pressure in the fluid mixture; c(x,t)
is the solvent concentration of interested species measured in amount of species per
unit volume of the fluid mixture, φ(x) is the effective porosity of the medium and is
bounded above and below by positive constants, D(u) denotes a diffusion or disper-
sion tensor which has contributions from molecular diffusion and mechanical dispersion.
D(u)=dm I+|u|

(
αlE(u)+αt(I−E(u))

)
, where E(u) is the tensor that projects onto the u

direction, whose (i, j) component is (E(u))i,j = uiuj/|u|
2; dm is the molecular diffusiv-

ity and is assumed to be strictly positive; αl and αt are the longitudinal and transverse
dispersion respectively, and are assumed to be nonnegative. The imposed external total
flow rate q is a sum of sources and sinks. That is to say, q=q++q−, where q+=max(q,0),
q−=min(q,0). The notation ĉ denotes the specified cw at source (q>0) and the resident
concentration at sinks (q<0). It is supposed that a(c), b(c) and d(c) are bounded.

Discontinuous Galerkin method (DG) belongs to a class of non-conforming meth-
ods (see [9, 12, 13, 15–19] ) and they solve the differential equations by piecewise poly-
nomial functions over a finite element space without any requirement on inter-element
continuity-however, continuity on inter-element boundaries together with boundary con-
ditions is weakly enforced through the bilinear form. DG methods are very attractive for
practical numerical simulations because of their physical and numerical properties.

For the compressible miscible displacement problems, there are some literature about
the DG approximations. In [4,6,7], a priori error for the compressible problem of dispersion-
free (D(u)=dm I) has been analysed. The authors have derived a priori error estimates of
a discontinuous Galerkin approximation and a combined mixed finite element and dis-
continuous Galerkin method for a kind of compressible miscible displacement problems
in [20, 21], respectively. But they only deal with a priori errors for the miscible displace-
ment problem. Comparatively, the literature about a posteriori error for the miscible
displacement problem is even scare. A posteriori error indicator is useful for adaptivity.
A posteriori error of a discontinuous Galerkin scheme for the compressible miscible dis-
placement problems with molecular diffusion and dispersion is presented in [22]. In this
paper, a combined mixed finite element and symmetric interior penalty discontinuous
Galerkin method is used to solve the completely compressible case with no restrictions
on the diffusion/dispersion tensor. Based on a duality argument, employing projection
estimates and approximation properties, a posteriori residual-type hp error estimates are
obtained. Comparing with the error analysis of [22], the current work is more compli-
cated and challenging.

The paper is organized as follows. In Section 2, we introduce a combined mixed finite
element and discontinuous Galerkin method. Explicit a posteriori error estimates are
presented in Section 3.
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2 A combined mixed finite element and discontinuous

Galerkin method

2.1 Notations

Let Th be a family of quasi-uniform and possibly non-conforming finite element parti-
tions of Ω composed of triangles or quadrilaterals if d= 2, or tetrahedra, prisms or hex-
ahedra if d= 3. Let hE be the diameter of the element E and Γh be the set of all interior
edges or faces for Th. We denote by h=maxE∈Th

hE the maximal element diameter over
all elements with the common edge or face γ=∂Ei∩∂Ej ∈Γh.

Throughout the paper, we denote by K, K0, K1 generic positive constants that are
independent of h, r and k, but might depend on the solution of PDEs. The usual Sobolev
inner product (·,·) and the norm ‖·‖m,Ω on Ω are used. Similar notations are applied for
the element E and face or edge γ. For the sake of convenience, we denote ‖·‖= ‖·‖0,Ω

and ‖·‖g = ‖·‖0,g (g=E,γ). The notations dx and dt in
∫
·dx and

∫
·dt are omitted. That

is to say, we use
∫

g
· (g=E,γ,Ω) and

∫ t
0
· to represent the integral in space

∫
·dx and the

time integral
∫
·dt, respectively. We also introduce the notation LI(LI(·)) := LI(J;LI(·)),

where I maybe takes 2, ∞, etc.

For s≥0, we define the following broken Sobolev space

Hs(Th)=
{

v∈L2(Ω) : v|E ∈Hs(E), E∈Th

}
.

Let Ei ∈Th, Ej ∈Th and γ=∂Ei∩∂Ej ∈Γh with n exterior to Ei. For v∈Hs(Th), s>1/2, the
average {v} of v on γ and the jump [v] of v across γ are defined as follows:

{v}=
1

2

(
(v|Ei

)|γ+(v|Ej
)|γ

)
, [v]=(v|Ei

)|γ−(v|Ej
)|γ.

We set the discontinuous finite element space:

Dr(Th)≡
{

v∈L2(Ω) : v|E ∈Pr(E), E∈Th

}
,

where Pr(E) denotes the space of polynomials of total degree less than or equal to r on E.

Next, define the spaces

V≡H(div;Ω)≡
{

u∈ (L2(Ω))d :divu∈L2(Ω)
}

,

V0=H0(div;Ω)=
{

u∈H(div;Ω), u·n|∂Ω =0
}

,

W≡ L2(Ω).

Let the approximation subspace Vk(Th)×Wk(Th) of V×W be the kth (k≥0) order Raviart-
Thomas space (RTk) [11] of the partition Th. We set V0

k (Th)=Vk(Th)∩V0.
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2.2 A combined MFE/DG scheme

Define the bilinear form B(u;c,ψ) and the linear functional L(c,ψ) as follows:

B(u;c,ψ)= ∑
E∈Th

∫

E
D(u)∇c·∇ψ− ∑

γ∈Γh

∫

γ
{D(u)∇c·n}[ψ]

− ∑
γ∈Γh

∫

γ
{D(u)∇ψ·n}[c]+ ∑

E∈Th

∫

E
(u·∇c)ψ+ Jσ

0 (c,ψ),

L(c,ψ)=
∫

Ω
(ĉ−c)qψ.

Here,

Jσ
0 (c,ψ)= ∑

γ∈Γh

r2σγ

hγ

∫

γ
[c][ψ]

is the interior penalty term, where σγ is a constant value on the edge or face γ and is
bounded below by σ∗>0 and above by σ∗, hγ denotes the size of γ.

A combined MFE/DG approximating to (1.1a)-(1.1f) which solves the flow equation
by the mixed finite element method and the concentration one by a symmetric interior
penalty discontinuous Galerkin method, is written as follows: finding U∈L∞(J;V0

k (Th)),
P∈L∞(J;Wk(Th)) and C∈L∞(J;Dr(Th)), s.t.

(
d(C)

∂P

∂t
,w

)
+(∇·U,w)=(q,w), ∀w∈Wk(Th), (2.1a)

(α(C)U,v)−(∇·v,P)=0, ∀v∈V0
k (Th), (2.1b)

(
φ

∂C

∂t
,ψ
)
+
(

b(C)
∂P

∂t
,ψ
)
+B(U;C,ψ)= L(C,ψ), ∀ψ∈Dr(Th), (2.1c)

(C0,ψ)=(c0,ψ), ∀ψ∈Dr(Th), (2.1d)

(∇·v,P0)=(∇·v,p0), ∀v∈V0
k (Th), (2.1e)

where α(C)=1/a(C).

Lemma 2.1 (Consistency). If (p, c, u) is the solution to the Eqs. (1.1a)-(1.1f) and is essentially
bounded, then for ∀t∈ J, the following equalities are satisfied

(
d(c)

∂p

∂t
,w

)
+(∇·u,w)=(q,w), ∀w∈Wk(Th), (2.2a)

(α(c)u,v)−(∇·v,p)=0, ∀v∈V0
k (Th), (2.2b)

(
φ

∂c

∂t
,ψ
)
+
(

b(c)
∂p

∂t
,ψ
)
+B(u;c,ψ)= L(c,ψ), ∀ψ∈Dr(Th). (2.2c)

3 Error estimates of a combined MFE/DG approximation

At first, we make the following assumptions:
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Assumption 3.1. Let the integers λ and ω be the regularity orders of functions c and p
and they take values λE and ωE on the element E, respectively. λ≥2 and ω≥2. Let (p,u,c)
be the solution of (1.1a)-(1.1f) which satisfies the following regularity requirements: p∈
L2(J;Hω(Th)), ∂p/∂t ∈ L2(J;Hω−1(Th)), u ∈ L2(J;Hω−1(Th)), c ∈ L2(J;Hλ(Th)), ∂c/∂t ∈
L2(J;Hλ−1(Th)), p0∈Wk(Th) and c0∈Dr(Th).

Assumption 3.2. Functions p, ∇p, c and ∇c are essentially bounded.

Then, we shall introduce the following residuals

RI1=α(C)U+∇P, RI2=q−d(C)
∂P

∂t
−∇·U,

RI3=q(Ĉ−C)−b(C)
∂P

∂t
−φ

∂C

∂t
−U∇C+∇·

(
D(U)∇C

)
,

RB0= p0−P0, RB1= c0−C0,

RB2=

{
[C], x∈Γh,

0, x∈∂Ω,
RB3=

{
[D(U)∇C ·n], x∈Γh,

−D(U)∇C ·n, x∈∂Ω.

3.1 The projection estimates and approximation properties

Two projections shall be introduced, which are crucial in establishing the error estimates
for the flow equation. The first one is the standard L2 projection Ph :Hω(Ω)→Wh, defined
by

(p−Ph p,w)=0, ∀w∈Wk(Th).

It is obvious that

(∇·v,p−Ph p)=0, ∀v∈V0
k (Th).

The error of the projection satisfies

‖p−Ph p‖≤K ∑
E∈Th

hmin(k+1,ωE)

kωE
‖p‖ωE ,E, (3.1)

where k is the order of the RTk spaces.
The second projection Πh : (Hω−1(Ω))d→V0

k (Th) is the usual Raviart-Thomas projec-
tion [3]. It is defined by

(∇·(u−Πhu),w)=0, ∀w∈Wk(Th),

∇·Πhu=Ph∇·u.

It preserves the discrete normal trace ((u−Πhu)·n,χ)γ=0, ∀χ∈Pk(γ) and its error satisfies

‖u−Πhu‖≤K ∑
E∈Th

hmin(k+1,ωE−1)

kωE−1
‖u‖ωE−1,E, (3.2)
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where k is the order of the RTk spaces.
We assume that the following approximation properties hold, which can be proved

using the techniques in [1, 2]. For E∈Th, c∈Hλ(Th), there exists a constant K depending
on λ but independent of c, r, and hE, and there exist c̃ ∈ Pr(E) (where Pr(E) denotes
the polynomial of degree less than or equal to r on E), such that for 0 ≤ j ≤ λ and for
µ=min(r+1,λ),

‖c− c̃‖j,E ≤K
h

µ−j
E

rλ−j
‖c‖λ,E, λ≥0, (3.3a)

‖c− c̃‖δ,∂E ≤K
h

µ−δ−1/2
E

rλ−δ−1/2
‖c‖λ,E, λ>

1

2
+δ, δ=0,1. (3.3b)

And we shall also use the following inverse inequalities, which can be derived by the
method in [10, 12].

Lemma 3.1. Let E∈Th, v∈Pr(E). Then there exists a constant K independent of v, r and hE,
such that

‖v‖∂E ≤Krh−1/2
E ‖v‖E ,

‖∇v·n‖∂E ≤Krh−1/2
E ‖∇v‖E .

3.2 A posteriori error estimate for the pressure in the flow equation

Denote Eu = u−U, Ep = p−P, Ec = c−C. Subtracting (2.1a)-(2.1b) from (2.2a)-(2.2b) re-
spectively, we get

(
d(c)

∂p

∂t
−d(C)

∂P

∂t
,w

)
+(∇·Eu,w)=0, ∀w∈Wk(Th), (3.4a)

(
α(c)u−α(C)U,v

)
−(∇·v,Ep)=0, ∀v∈V0

k (Th). (3.4b)

Let the functions ξ and ϕ satisfy the duality problem

−
∂
(
d(c)ξ

)

∂t
+∇·ϕ=Ep, (x,t)∈Ω× J, (3.5a)

ϕ=−a(c)∇ξ, (x,t)∈Ω× J, (3.5b)

ϕ·n=0, (x,t)∈∂Ω× J, (3.5c)

ξ(x,T)=0, x∈Ω. (3.5d)

For ξ and ϕ, the following variational problem holds.

(
−

∂
(
d(c)ξ

)

∂t
,w

)
+(∇·ϕ,w)=(Ep,w), ∀w∈Wk(Th), (3.6a)

(α(c)ϕ,v)−(ξ,∇·v)=0, ∀v∈V0
k (Th). (3.6b)
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Assume that the dual problem (3.5a)-(3.5d) satisfies the stability estimate

max
0≤t≤T

‖ξ(·,t)‖2+
∫ T

0
‖ξ‖2

H2(Ω)≤K
∫ T

0
‖Ep‖

2. (3.7)

We obtain the error estimation for the pressure in the flow problem as follows.

Theorem 3.1. Let (ξ,ϕ) be the solution of (3.5a)-(3.5d). Under Assumptions 3.1 and 3.2, there
exists a positive constant K independent of the mesh size h and the order k of the RT space, such
that

‖Ep‖
2
L2(L2(Ω))≤K ∑

E∈Th

η2
E+

K0

2(K1+1) ∑
E∈Th

‖Ec‖
2
L2(L2(E)), (3.8)

where

η2
E =

hmin(4,2k+2)

k4
‖RI2‖

2
L2(L2(E))+

hmin(4,2k+2)

k4
‖RB0‖

2
E+

hmin(2,2k+2)

k2
‖RI1‖

2
L2(L2(E)).

Proof. Let w=Ep in (3.6a) and v=Eu in (3.6b). By using Eqs. (3.5a), (3.5c)-(3.5d), and the
integration by parts, we get

‖Ep‖
2
L2(L2(Ω))=

∫ T

0
(Ep,Ep)

=
∫ T

0

(
−

∂
(
d(c)ξ

)

∂t
+∇·ϕ,Ep

)
−
∫ T

0
(α(c)ϕ,Eu)+

∫ T

0

(
ξ,∇·Eu

)

=
∫ T

0

(∂Ep

∂t
,d(c)ξ

)
+
(

d(c0)RB0,ξ(·,0)
)
+
∫ T

0

(
∇·ϕ,Ep

)

−
∫ T

0
(ϕ,α(c)Eu

)
+
∫ T

0

(
ξ,∇·Eu

)
.

In (3.4a)-(3.4b), take w=Phξ∈Wk(Th), v=Πhϕ∈V0
k (Th) and combine them with the above

equality to get

‖Ep‖
2
L2(L2(Ω))=−

∫ T

0

((
d(c)−d(C)

) ∂P

∂t
,ξ
)
+
(
d(c0)RB0,ξ(·,0)

)
+
∫ T

0

(
∇·(ϕ−Πhϕ),Ep

)

+
∫ T

0

(
(α(c)−α(C)

)
U,ϕ

)
+
∫ T

0

(
∇·Eu,ξ−Phξ

)

+
∫ T

0

((
d(c)

∂p

∂t
−d(C)

∂P

∂t
,ξ−Phξ

)
−
(
α(c)u−α(C)U,ϕ−Πhϕ

))
.

Note that Πhϕ·n|∂Ω =0 for Πhϕ∈V0
k (Th). Integrate by parts and use the boundary con-
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dition (3.5c) to obtain

∫ T

0

(
∇·(ϕ−Πhϕ),Ep

)
=
∫ T

0

(
− ∑

E∈Th

(ϕ−Πhϕ,∇Ep)E+ ∑
γ∈Γh

(
(ϕ−Πhϕ)·n,[Ep]

)
γ

+ ∑
γ∈∂Ω

((ϕ−Πhϕ)·n,Ep)γ

)

=−
∫ T

0
∑

E∈Th

(ϕ−Πhϕ,∇Ep)E,

where we have used the fact that the sum over interior edges vanishes. To see this, note
first that [p]=0 on each interior edge. Second, [P] is belonging to the space of polynomials
of degree less than or equal k over the interior edge γ. Thus, (ϕ−Πhϕ)·n is orthogonal to
it according to the definition of Πh.

Recalling (2.1e) and ∇·V0
k (Th)=Wk(Th), we find

(
RB0,Phξ(·,0)

)
=0. By virtue of the

residual notations and the relation u=−a(c)∇p, we obtain

‖Ep‖
2
L2(L2(Ω))=−

∫ T

0

((
d(c)−d(C)

) ∂P

∂t
,ξ
)
+
(
d(c0)RB0,(ξ−Phξ)(·,0)

)

+
∫ T

0

(
(α(c)−α(C)

)
U,ϕ

)
+
∫ T

0

(
RI2,ξ−Phξ

)
+
∫ T

0

(
RI1,ϕ−Πhϕ

)
. (3.9)

To bound the items on the right side of the above equation, we proceed as follows. By
virtue of the projection estimates (3.1)-(3.2), the equality (3.5b), the stability estimate (3.7),
and the Cauchy-Schwartz inequality, we have

∫ T

0

((
a(c)−a(C)

)
U,ϕ

)
≤K‖U‖L∞(L∞(Ω))

∫ T

0
∑

E∈Th

‖a(c)−a(C)‖E · ∑
E∈Th

‖∇ξ‖E

≤
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
·
( K0

4(K1+1) ∑
E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2
,

(d(c0)RB0,(ξ−Phξ)(·,0))≤K ∑
E∈Th

‖RB0‖E ·
hmin(2,k+1)

k2 ∑
E∈Th

‖ξ(·,0)‖2,E

≤K
(

∑
E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2
·
(hmin(4,2k+2)

k4 ∑
E∈Th

‖RB0‖
2
E

) 1
2
,

−
∫ T

0

((
d(c)−d(C)

) ∂P

∂t
,ξ
)
≤K

∥∥∥∂P

∂t

∥∥∥
L∞(L∞(Ω))

∫ T

0
∑

E∈Th

‖d(c)−d(C)‖E · ∑
E∈Th

‖ξ‖E

≤
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
·
( K0

4(K1+1) ∑
E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2
,
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∫ T

0
(RI2,ξ−Phξ)≤K

∫ T

0

(
∑

E∈Th

‖RI2‖E ·
hmin(2,k+1)

k2 ∑
E∈Th

‖ξ‖2,E

)

≤K
(

∑
E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2
·
(hmin(4,2k+2)

k4 ∑
E∈Th

‖RI2‖
2
L2(L2(E))

) 1
2
,

∫ T

0

(
RI1,ϕ−Πhϕ

)
≤K

∫ T

0

(
∑

E∈Th

‖RI1‖E ·
hmin(1,k+1)

k ∑
E∈Th

‖ϕ‖1,E

)

≤K
∫ T

0

(
∑

E∈Th

‖RI1‖E ·
hmin(1,k+1)

k ∑
E∈Th

‖ξ‖2,E

)

≤K
(hmin(2,2k+2)

k2 ∑
E∈Th

‖RI1‖
2
L2(L2(E))

) 1
2
·
(

∑
E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2
.

Then, combining all the above inequalities yields the estimate (3.8).

3.3 A posteriori error estimate for the velocity in the flow equation

With an additional assumption, similar to a saturation assumption, a similar estimate
applies to the error of the velocity as well. This assumption is well motivated by the stan-
dard a priori estimates of the Raviart-Thomas spaces, which suggest that the pressure,
the velocity, and the divergence of the velocity all converge with the same order accu-
racy. We describe the assumption as follows. There exists a constant K f , independent of
h and k, such that

‖∇·Eu‖≤K f ‖Eu‖. (3.10)

Let the functions ξ and ϕ satisfy the duality problem

−
∂
(
d(c)ξ

)

∂t
+∇·ϕ=0, (x,t)∈Ω× J, (3.11a)

ϕ+a(c)∇ξ=−Eu , (x,t)∈Ω× J, (3.11b)

ϕ·n=0, (x,t)∈∂Ω× J, (3.11c)

ξ(x,T)=0, x∈Ω. (3.11d)

By eliminating ϕ, (3.11b) can be rewritten as

∂
(
d(c)ξ

)

∂t
+∇·(a(c)∇ξ)=−∇·Eu .

For ξ and ϕ, the following variational problem holds.

(
−

∂
(
d(c)ξ

)

∂t
,w

)
+(∇·ϕ,w)=0, ∀w∈Wk(Th), (3.12a)

(α(c)ϕ,v)−(ξ,∇·v)=(−Eu,v), ∀v∈V0
k (Th). (3.12b)
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Assume that the dual problem (3.11a)-(3.11d) satisfies the following stability estimate

max
0≤t≤T

‖ξ(·,t)‖2+
∫ T

0
‖ξ‖2

H2(Ω)≤K
∫ T

0
‖∇·Eu‖

2.

Apply (3.10) to the above inequality to get

max
0≤t≤T

‖ξ(·,t)‖2+
∫ T

0
‖ξ‖2

H2(Ω)≤K
∫ T

0
‖Eu‖

2. (3.13)

We obtain the error estimation for the velocity in the flow equation as follows.

Theorem 3.2. Let (ξ,ϕ) be the solution of (3.11a)-(3.11d). Under Assumptions 3.1 and 3.2,
there exists a positive constant K independent of the mesh size h and the order k of the RT space,
such that

‖Eu‖
2
L2(L2(Ω))≤K ∑

E∈Th

η2
E+

K0

2(K1+1) ∑
E∈Th

‖Ec‖
2
L2(L2(E)), (3.14)

where ηE is the same as the one in Theorem 3.1.

Proof. Let w=Ep in (3.12a) and v=Eu in (3.12b). By using equations (3.4a)-(3.4b), (3.11b)-
(3.11d), and the integration by parts, we get

‖Eu‖
2
L2(L2(Ω))=

∫ T

0

(
−
(
α(c)ϕ,Eu

)
+
(
ξ,∇·Eu

))

=
∫ T

0

(
−
(
α(c)ϕ,Eu

)
+
(
ξ,∇·Eu

))
+
∫ T

0

(
−

∂
(
d(c)ξ

)

∂t
,Ep

)
+
∫ T

0
(∇·ϕ,Ep)

=
∫ T

0

(∂Ep

∂t
,d(c)ξ

)
+
(
d(c0)RB0,ξ(·,0)

)
+
∫ T

0

(
∇·ϕ,Ep

)

−
∫ T

0
(ϕ,α(c)Eu)+

∫ T

0

(
ξ,∇·Eu

)
.

Let Phξ ∈Wk(Th), Πhϕ∈V0
k (Th). Similar to the previous subsection, using the boundary

condition (3.11c), we obtain

‖Eu‖
2
L2(L2(Ω))=−

∫ T

0

((
d(c)−d(C)

) ∂P

∂t
,ξ
)
+
(
d(c0)RB0,(ξ−Phξ)(·,0)

)

+
∫ T

0

(
(α(c)−α(C)

)
U,ϕ

)
+
∫ T

0

(
RI2,ξ−Phξ

)
+
∫ T

0

(
RI1,ϕ−Πhϕ

)
.

Note that the items on the right side of the above equation is exactly the same as the ones
on the right-hand side of (3.9). Similar to the previous subsection, using the projection



J. Yang and Z. Xiong / Adv. Appl. Math. Mech., 5 (2013), pp. 163-179 173

estimates (3.1)-(3.2), the equality (3.11b), the stability estimate (3.13) and the Cauchy-
Schwartz inequality, we have

‖Eu‖
2
L2(L2(Ω))≤

(( K0

4(K1+1) ∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
+
(hmin(4,2k+2)

k4 ∑
E∈Th

‖RB0‖
2
E

) 1
2

+
( K0

4(K1+1) ∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
+
(hmin(4,2k+2)

k4 ∑
E∈Th

‖RI2‖
2
L2(L2(E))

) 1
2

+
(hmin(2,2k+2)

k2 ∑
E∈Th

‖RI1‖
2
L2(L2(E))

) 1
2

)
·‖Eu‖L2(L2(Ω)).

The desired result (3.14) is obtained.

3.4 A posteriori error estimate for the transport equation

Subtract (2.1c) from (2.2c) to get

(
φ

∂(c−C)

∂t
,ψ
)
+
(

b(c)
∂p

∂t
,ψ
)
−
(

b(C)
∂P

∂t
,ψ
)
+ ∑

E∈Th

∫

E
D(u)∇c·∇ψ

− ∑
γ∈Γh

∫

γ
{D(u)∇c·n}[ψ]− ∑

γ∈Γh

∫

γ
{D(u)∇ψ·n}[c]+ ∑

E∈Th

∫

E
(u·∇c)ψ

+ ∑
γ∈Γh

r2σγ

hγ

∫

γ
[c][ψ]− ∑

E∈Th

∫

E
D(U)∇C ·∇ψ+ ∑

γ∈Γh

∫

γ
{D(U)∇C ·n}[ψ]

+ ∑
γ∈Γh

∫

γ
{D(U)∇ψ·n}[C]− ∑

E∈Th

∫

E
(U ·∇C)ψ− ∑

γ∈Γh

r2σγ

hγ

∫

γ
[C][ψ]

=
∫

Ω

(
(ĉ−c)−(Ĉ−C)

)
qψ, ∀ψ∈Dr(Th), t∈ J. (3.15)

Let ζ satisfy the duality problem

φ
∂ζ

∂t
+∇·(uζ)+∇·(D(u)T∇ζ)−

(
g

∂P

∂t
+q+

)
ζ=Ec, (x,t)∈Ω× J, (3.16a)

D(u)T∇ζ ·n=0, (x,t)∈∂Ω× J, (3.16b)

ζ(x,T)=0, x∈Ω, (3.16c)

where the function g is defined by

g(x,t)=





b(c)−b(C)

c−C
, if c−C 6=0,

0, if c−C=0.
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Assume that the dual problem (3.16a)-(3.16c) satisfies the stability estimate

max
0≤t≤T

‖ζ(·,t)‖2+
∫ T

0
‖ζ‖2

H2(Ω)≤K
∫ T

0
‖Ec‖

2. (3.17)

We derive the error estimation for the transport problem as follows.

Theorem 3.3. Let ζ be the solution of (3.16a)-(3.16c). Under Assumptions 3.1 and 3.2, there
exists a positive constant K independent of the mesh size h and the order r of the discontinuous
finite element space, such that

‖Ec‖
2
L2(L2(Ω))≤K ∑

E∈Th

η̆2
E+

K1

K0+1 ∑
E∈Th

‖Eu‖
2
L2(L2(E))+

K1

K0+1 ∑
E∈Th

‖Ep‖
2
L2(L2(E)), (3.18)

where

η̆2
E =

h4

r4
‖RI3‖

2
L2(L2(E))+

h4

r4
‖RB2‖

2
E+

h3

r3 ∑
γ∈∂E

‖RB3‖
2
L2(L2(γ))

+
h2

r2
‖D(U)‖2

L∞(L∞(Ω)) ∑
γ∈∂E

‖RB2‖
2
L2(L2(γ))+‖RB0‖

2
E.

Proof. By using the Eqs. (3.16a)-(3.16c) and the integration by parts, we get

‖Ec‖
2
L2(L2(Ω))=

∫ T

0
(Ec,Ec)

=
∫ T

0

(
φ

∂ζ

∂t
+∇·(uζ)+∇·(D(u)T∇ζ

)
−
(

g
∂P

∂t
+q+

)
ζ,Ec

)

=−
∫ T

0

(
φ

∂Ec

∂t
,ζ
)
−
(
φRB2,ζ(·,0)

)
+
∫ T

0

(
Ec,∇·(uζ)

)

−
∫ T

0

((
g

∂P

∂t
+q+

)
ζ,Ec

)
+
∫ T

0
∑

γ∈Γh

({D(u)T∇ζ ·n},[Ec])γ

−
∫ T

0
(∇ζ,D(u)∇Ec). (3.19)

Note that [8]

(ĉ−c)−(Ĉ−C)=

{
−Ec, if q>0,
0, if q<0.

Since [c]=0, taking ψ= ζ̃ ∈Dr(Th)∩C0(Ω) in (3.15) and adding it to (3.19), we obtain

‖Ec‖
2
L2(L2(Ω))=−

∫ T

0

(
φ

∂Ec

∂t
,ζ− ζ̃

)
−
(
φRB2,(ζ− ζ̃)(·,0)

)
−
∫ T

0

(
Ec,q

+(ζ− ζ̃)
)

+
∫ T

0
∑

E∈Th

((
D(u)−D(U)

)
∇C,∇ζ)E−

∫ T

0

(
b(c)

∂p

∂t
−b(C)

∂P

∂t
,(ζ− ζ̃)

)
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−
∫ T

0
∑

E∈Th

(
D(u)∇c−D(U)∇C,∇(ζ− ζ̃)

)
E
+
∫ T

0

(
b(C)

∂Ep

∂t
,ζ
)

+
∫ T

0
∑

γ∈Γh

({D(u)T∇ζ ·n−D(U)∇ζ̃ ·n},[C])γ

+
∫ T

0
∑

E∈Th

∫

E
(u·∇c−U ·∇C, ζ̃)+

∫ T

0

(
Ec,∇·(uζ)

)
,

where the identical relation (c0−C0, ζ̃(·,0)) = 0, ∀ζ̃ ∈Dr(Th) according to (2.1d) is used.
Note that u·n|∂Ω=0. Using the integration by parts, we have

∫ T

0

(
Ec,∇·(uζ)

)
=−

∫ T

0

(
∇Ec,uζ

)
+
∫ T

0
∑

γ∈Γh

({ζu ·n},[Ec])γ

=−
∫ T

0

(
u·∇c−U ·∇C,ζ

)
+
∫ T

0

(
(u−U)∇C,ζ

)
−
∫ T

0
∑

γ∈Γh

({ζu ·n},RB2)γ,

−
∫ T

0
∑

E∈Th

(
D(u)∇c−D(U)∇C,∇(ζ− ζ̃)

)
E

=
∫ T

0
∑

E∈Th

(
∇·

(
D(u)∇c−D(U)∇C

)
,ζ− ζ̃

)
E
+
∫ T

0
∑

γ∈Γh∪∂Ω

(
D(U)∇C ·n,ζ− ζ̃

)
γ
,

where for the last step, we have used the boundary condition (1.1d) and the fact that
[D(u)∇c·n]=0 because of the regularity of c. So,

‖Ec‖
2
L2(L2(Ω))=−

∫ T

0
(R̆I3,ζ− ζ̃)−

(
φRB2,(ζ− ζ̃)(·,0)

)
+
∫ T

0
∑

γ∈Γh∪∂Ω

(
RB3,ζ− ζ̃

)
γ

+
∫ T

0

(
(u−U)∇C,ζ

)
+
∫ T

0
∑

E∈Th

((
D(u)−D(U)

)
∇C,∇ζ)E

+
∫ T

0

(
b(C)

∂Ep

∂t
,ζ
)
−
∫ T

0
∑

γ∈Γh

(ζ{u ·n},RB2)γ

+
∫ T

0
∑

γ∈Γh

(
{D(u)T∇ζ ·n−D(U)∇ζ̃ ·n},RB2

)
γ
.

Next, we bound the items on the right side of the above equality. By virtue of the approx-
imation properties (3.3a)-(3.3b), the stability estimate (3.17) and the Cauchy-Schwartz
inequality, we have

−
∫ T

0
(RI3,ζ− ζ̃)≤K

∫ T

0

(h2

r2 ∑
E∈Th

‖ζ‖2,E · ∑
E∈Th

‖RI3‖E

)

≤K
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
·
(h4

r4 ∑
E∈Th

‖RI3‖
2
L2(L2(E))

) 1
2
,
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−(φRB2,(ζ− ζ̃)(·,0))≤K
h2

r2 ∑
E∈Th

‖ζ(·,0)‖2,E · ∑
E∈Th

‖RB2‖E

≤K
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
(h4

r4 ∑
E∈Th

‖RB2‖
2
E

) 1
2
,

∫ T

0
∑

γ∈Γh∪∂Ω

(RB3,ζ− ζ̃)γ≤K
∫ T

0

(h3/2

r3/2 ∑
E∈Th

‖ζ‖2,E · ∑
γ∈Γh∪∂Ω

‖RB3‖γ

)

≤K‖Ec‖L2(L2(Ω)) ·
(h3

r3 ∑
γ∈Γh∪∂Ω

‖RB3‖
2
L2(L2(γ))

) 1
2
.

We bound the fourth term and the fifth term based on the definition of D(u) and the
stability estimate (3.17) as follows.

∫ T

0

(
(u−U)∇C,ζ

)

≤K‖∇C‖L∞(L∞(Ω))

∫ T

0
∑

E∈Th

‖u−U‖E · ∑
E∈Th

‖ζ‖E

≤
K1

3(K0+1)

(
∑

E∈Th

‖Eu‖
2
L2(L2(E))

) 1
2
·
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
,

∫ T

0
∑

E∈Th

((
D(u)−D(U)

)
∇C,∇ζ

)
E

≤K‖∇C‖L∞(L∞(Ω))

∫ T

0
∑

E∈Th

‖D(u)−D(U)‖E · ∑
E∈Th

‖∇ζ‖E

≤
K1

3(K0+1)

(
∑

E∈Th

‖Eu‖
2
L2(L2(E))

) 1
2
·
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
.

Using the stability estimate (3.17), we proceed to bound the sixth item and the seventh
item

∫ T

0

(
b(C)

∂Ep

∂t
,ζ
)

=−
(
b(C0)Ep(·,0)ζ(·,0))−

∫ T

0

(∂
(
b(C)ζ

)

∂t
,Ep

)

=−
(
b(C0)(p0−P0)ζ(·,0))−

∫ T

0

(∂b(C)

∂C

∂C

∂t
ζ,Ep

)
−
∫ T

0

(
b(C)

∂ζ

∂t
,Ep

)

≤K ∑
E∈Th

‖RB0‖E · ∑
E∈Th

‖ζ(·,0)‖E+K
∫ T

0
∑

E∈Th

‖Ep‖E ·
(

∑
E∈Th

‖ζ‖E+ ∑
E∈Th

∥∥∥∂ζ

∂t

∥∥∥
E

)

≤

(
K
(

∑
E∈Th

‖RB0‖
2
E

) 1
2
+

K1

K0+1

(
∑

E∈Th

‖Ep‖
2
L2(L2(E))

) 1
2

)
·
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
,
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−
∫ T

0
∑

γ∈Γh

(ζ{u ·n},RB2)γ

≤K‖u‖L∞(L∞(Ω))

∫ T

0
∑

γ∈Γh

‖RB2‖γ · ∑
E∈Th

‖ζ‖1,E

≤K
(

∑
γ∈Γh

‖RB2‖
2
L2(L2(γ))

) 1
2
·
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
.

For the eighth item, due to the approximation properties (3.3a)-(3.3b), the stability prop-
erty (3.17), the inverse inequality and the definition of D(u), we have

∫ T

0
∑

γ∈Γh

(
{D(u)T∇ζ ·n−D(U)∇ζ̃ ·n},RB2

)
γ

=
∫ T

0
∑

γ∈Γh

(
RB2,

{(
D(u)T−D(U)

)
∇ζ ·n

}
+{D(U)∇(ζ− ζ̃)·n

})
γ

≤K‖C‖L∞(L∞(Ω))

∫ T

0
∑

γ∈Γh

∥∥u−U
∥∥

γ
· ∑
γ∈Γh

∥∥∇ζ ·n
∥∥

γ

+K‖D(U)‖L∞(L∞(Ω))

∫ T

0
∑

γ∈Γh

∥∥RB2

∥∥
γ
· ∑
γ∈Γh

∥∥∇(ζ− ζ̃)·n
∥∥

γ

≤K‖C‖L∞(L∞(Ω))

∫ T

0
∑

E∈Th

∥∥Eu

∥∥
E
· ∑

E∈Th

∥∥ζ
∥∥

2,E

+K‖D(U)‖L∞(L∞(Ω))

∫ T

0
∑

γ∈Γh

∥∥RB2

∥∥
γ
·
h

r ∑
E∈Th

∥∥ζ
∥∥

2,E

≤
K1

3(K0+1)

(
∑

E∈Th

‖Eu‖
2
L2(L2(E))

) 1
2
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2

+K
h

r
‖D(U)‖L∞(L∞(Ω))

(
∑

γ∈Γh

‖RB2‖
2
L2(L2(γ))

) 1
2
(

∑
E∈Th

‖Ec‖
2
L2(L2(E))

) 1
2
.

Collecting all the above estimates, we see that (3.18) is satisfied.

3.5 A posteriori error estimate for the coupled system

Finally, the a posteriori error estimate for the coupled system is achieved.

Theorem 3.4. Under Assumptions 3.1 and 3.2, there exists a positive constant K independent
of the mesh size h, the order k of the RT space and the order r of the discontinuous finite element
space, such that

‖Ec‖
2
L2(L2(Ω))+‖Ep‖

2
L2(L2(Ω))+‖Eu‖

2
L2(L2(Ω))≤K ∑

E∈Th

η̇2
E,
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where

η̇2
E =

h4

r4
‖RI3‖

2
L2(L2(E))+

h4

r4
‖RB2‖

2
E+

h3

r3 ∑
γ∈∂E

‖RB3‖
2
L2(L2(γ))

+
h2

r2
‖D(U)‖2

L∞(L∞(Ω)) ∑
γ∈∂E

‖RB1‖
2
L2(L2(γ))+

hmin(4,2k+2)

k4
‖RI2‖

2
L2(L2(E))

+
hmin(4,2k+2)

k4
‖RB0‖

2
E+

hmin(2,2k+2)

k2
‖RI1‖

2
L2(L2(E)).

Proof. Multiply (3.8), (3.14) and (3.18) with K1+1, K1+1, and K0+1, respectively. Then,
put them together to yield the desired inequality, which completes the proof.
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[12] B. RIVIÈRE, M. F. WHEELER AND V. GIRAULT, A priori error estimates for finite element meth-
ods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39
(2001), pp. 902–931.
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