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THE CHARACTERISTIC FINITE ELEMENT
ALTERNATING-DIRECTION METHOD WITH MOVING
MESHES FOR THE TRANSIENT BEHAVIOR OF A
SEMICONDUCTOR DEVICE

YIRANG YUAN

Abstract. For the transient behavior of a semiconductor device, the modified
method of characteristics finite element alternating-direction procedures with
moving meshes are put forward. Some techniques, such as calculus of varia-
tions, operator-splitting, characteristic method, generalized L? projection, en-
ergy method, negative norm estimate and prior estimates and techniques are
employed. Optimal order estimates in L? norm are derived for the error in the
approximation solution. Thus the well-known theoretical problem has been

thoroughly and completely solved.
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1. Introduction

With the rapid development of semiconductor devices, the traditional approx-
imate method is no longer applicable. We must study the initial boundary value
problems of quasilinear partial differential equations, namely, the so-called diffusion
model. For high-dimensional problems, new numerical simulation techniques!!—3!
are needed to obtain the solutions for semiconductor devices in complicated geo-
metric shapes.

The mathematical model of the two-dimensional semiconductor device of heat
conduction is described with the initial boundary value problem made up of four
quasilinear partial differential equations!~%: one equation of the elliptic type for
the electric potential, two of the convection-dominated diffusion type for the con-
servation of electron and hole concentrations, and the last one for heat conduction.
The four equations, relevant initial condition and boundary condition make up a
closed system. For two-dimensional problems, there are

*Al/f:a(P*@JrN(X))a X:(l‘l,xg)TEQ, tGJ:(OaT]v (1)

% =V {De(X)Ve = pe(X)eVep} — Ri(e,p, T), (X,t) €QxJ, (2)
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0
5 =V ADX)Vp + iy (XpV0} = Roep.T), (X)eQxd. (3)
p(X) Gt — AT = {(Dp(X)Vp + 1ppVeh) — (De(X)Ve — pe(X)eVh)} (@)
Vi, (X,t) e Qx J.
The unknown functions are electrostatic potential @ and electron and hole con-
centrations e, p and temperature T. All coefficients appearing in (1) ~ (4) are

positive. a = g, g and € are constants (g is the electron charge, ¢ is the dielectric

permittivity). gfhe diffusion coefficients Ds(X) (s = e, p) are related to the mobil-

ities ps(X) by the relation Dy(X) = Urus(X), where Ur is the thermal voltage.

N(X)= Np(X)—Na(X) is a given function, Np(X) and N4(X) being the donor

and acceptor impurity concentrations. R;(e,p,T)(i = 1,2) is the recombination
2

0 J \p 9?2 0
V= () = A= — 4+ 2
term. V (8X1’8X2) and X7 +8X22
The initial conditions is
e(X,0) = eo(X), p(X,0) =po(X), T(X,0) =Tp(X), X €. (5)
Boundary condition:
T
Ylaa =0, % = @ = 6— =0, (X,t)€ N xJ, (6)
Nloa  Mlasa 97 lasg

where + is the outer normal vector of (2.

In 1964 Gummel first proposed sequence iterative computation methods to treat
this kind of problem/®!, thus opening up a new field. Douglas et al. put forward the
finite difference method for one-dimensional and two-dimensional simple models
(without considering the temperature’s effect or constant coefficients). They solved
some practical problems and first obtained the theoretical analysis result!® 7. How-
ever, optimal order error estimates in /? norm were not obtained yet. Based on
what has been achieved, the author considers the finite difference method for a
semiconductor device of heat conduction, and optimal order estimates in [? norm
are obtained 18], And the author first considers characteristic finite element method
and theoretical analysis for numerical simulation of a semiconductor device 919,
In this paper, for modern numerical simulation the problems met are often large-
scale and large-scope, and the mode number is as large as tens of thousands or
even hundreds of millions. Thus we need the operator-splitting method to solve
the problem. We shall apply the finite element method with moving meshes to
concentration equations and heat-conduction equation. Moreover, in the process of
solution, the electron, hole concentrations and heat conduction distribution front
will push forward with increasing time, so the finite element mesh near the front
will be locally densified. In such a way, we can ensure the accuracy of the numerical
results without increasing the computation time as a whole. The densified meshes
must move forward as time goes on, to keep themselves always near the concentra-
tion and temperature distribution front. At this point we need the new technique
of alternating-direction and moving meshes mutual association scheme to solve the
problem 1115,

This thesis puts forward a kind of modified method of characteristics finite ele-
ment alternating-direction procedures with moving meshes. Some techniques, such
as calculus of variations, operator-splitting, characteristic methods, generalized L?
projection, energy method, negative norm estimate and prior estimates are em-
ployed. Optimal order estimates in L? norm are derived for the error in approximate
solution. The research is important both theoretically and practically for the model
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analysis, model numerical method and software development in the semiconductor
device field.

To avoid technical boundary difficulties associated with the modified method of
characteristics for (2) and (3), we assume that 2 is a rectangle and that (1)~(4) are
Q-periodic. This is physically reasonable, because condition (6) can be treated as a
reflection boundary. Throughout the rest of this paper, all functions will be assumed
to be spatially Q-periodic. The boundary conditions (6) can be dropped['6—18,

Generally, this is a positive definite problem:

0<Di <Dy(X)<D*s=e,p; 0<pu <ps(X)<ps=e,p; (1)
0 < p« < p(X) <pf,

where D, D*, u, p*, p. and p* are constants.
Our assumptions on the regularity of the solutions of (1)~(6) are denoted col-
lectively by

W€ L®(J;WHQ)), e,p e L°(J, WrL(Q)),

e 0%p BT (8)
’8—7'62’8—7'3’@6[/ (J5 L>(82)).

The outline of this paper is as follows. In §2, some preparatory work is con-
sidered. In §3, the modified method of characteristics finite element alternating-
direction procedures with moving meshes are formulated. In §4, some auxiliary
elliptic projections are discussed. In §5, the convergence analysis is presented. In
this paper M and e stand for general positive constant and general positive small
constant respectively, and have different meanings in different areas.

T € L=(J; WH1(Q))

2. Some preparatory work

The weak form of problems (1)~(6):

(Vip, Vo) = a(p— e+ N,v), Yoec HY(Q), teJ, (9a)

(%, z) — (peu - Ve, z) + (D Ve, Vz) — (ew - Vi, 2) (9b)
:a(ﬂee(p7€+N)az)7(Rl(eapaT)vz)v ZGHl(Q)a tGJa

dp

(55 2) + (kpu - Vp, 2) + (DyVp, V) + (pu - Vitp, 2) (9¢)
:70‘(Npp(p7€+N)az)7(R2(eapaT)7Z)v ZGHl(Q)a tGJa

oT

(5r2)+ (VT,92) = ((DyVp + ipp¥4) — (DeVe — pee V)] - Vi,2), (g
ze€ HY(Q), teJ,
where u = —V1.
Let  be the given plane region with coordinates X = (z1,22)7 € R
Let Vi, = Vj,, be a family of finite-dimensional subspace of H L(Q), parameterized
by hy, with the following properties: for v € WTh4(Q), 1 < ¢ < o0,

vhi,rel%h”U = nlly g € MlJvll, 41 g.0hy- (10)

Let Ny (Q), My, (Q) be two families of finite-dimensional subspace H' (), pa-
rameterized by h. and hp, with the following properties:
(a) For v € Wk+La(Q), 1 < ¢ < o0,

. k
el 17 = bl S Ml g 0P
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For z € WitL4(Q), 1 < ¢ < oo,

inf 2 — 2 < Mllz B
ZhthT(Q)” hHlaq_ H |‘l+17q7Q T

(b) For vy, € Ny (2), zp € Mp,. (),

lonll @y < M vnllpaays lnlli @) < Mhztllznll s )
||’UhHW£O(Q) < Mh;1||vh”Hj(Q)v J=0,1,

2l @y < Mbz lznl sy = 0,1,

For the alternating-direction methods, assume that Np,_(Q) C G, M},,.(Q) C G,
ow ow O*w

where G = {w|w, 92 Doy’ Drims € L*(Q) }. Assume that

9™ (u—¢)

2
inf { E R E ——
Ni i
PENR 20 iti=m 0 Oy
i,j=0,1

}< Mh’jHHquH,
0

" (v — )

owion || = MuE e
1 2

0

||l+1'

2
inf { g hit g

M,
e itj=m
i,7=0,1

We shall also assume that Np,_(Q) and Mp,. () are spanned by a tensor product
basis.

We discuss characteristic finite element operator-splitting methods with moving
meshes approximation of concentration equations (2) and (3).We subdivide region
Q1 = [a1,b1] X [c1,d1]. The coding of nodes: {z,[0 < a < Ny, },{zy5]0 <
B < N, }. The global coding of two-dimensional mesh region 4, i = 1,2,--- , N;
N = (Ng, +1)(Ng, +1). The tensor product index of node i is (a(i), 3(i)), where
a(7) is the number of the x1-axis, and B(7) is the number of the x2-axis. The tensor
product basis can be rewritten as products of one-dimensional basis functions in
the following manner:

Ni(z) = o) (®1)Vp() (T2) = Palz1)¥s(22), 1 <i<N. (11)

This tensor product basis is very easy to construct in R? 1920, Now we construct

the finite element subspace. Its index is k, simplified as IN,. We note that here the
subdivision and the structure of basis functions are changed with time ¢", so IV}' is
used.

Next, we discuss a finite element method with moving meshes approximation of
heat conduction equation (4). Similarly, we subdivide region. Q = [ag, ba] X [c2, d2],
the coding of nodes: {zy, |0 < a < My, },{z,5[0 <3 < M,,}. The global
coding j, j =1,2,--- ,M; M = (M, +1)(M,, + 1). The tensor product index
of node j is (A(j), 1(j)). The tensor product basis can be rewritten as products of
one-dimensional basis function in the following manner:

Mj(z) = x¢)(21) V5 (22) = Pa(21)Pp(z2), 1< <M. (12)

It is easy to construct this tensor product basis which is the finite element sub-
space mentioned above; whose index is [ and can be simplified as Mj,. Similarly,
this finite element space is written as M;).



90 YIRANG YUAN

3. The modified method of characteristics finite element alternating-
direction procedures with moving meshes

Noting that the electric potential of time ¢ changes very slowly, we adopt big
step calculation. However, for the concentration, we adopt small step calculation.
We shall use the following notations: At.—the time step for the concentration
equation; Aty,—the time step for the potential equation; j = Aty /At., t™ = nAt,,

o, " <ty

Ey" = v v
(1+ 3)1/% B Ewmfla b <" <1, 07 =tm +0AL,

where subscripts correspond to potential time levels, and superscripts to concen-
tration levels.
The finite element scheme of electric potential equation (1):

(VYn,ms Vor) = a(Dhm — €hm + Nm,vn),  Vop € V, (13)

where the approximate electric intensity Uy, ., = —Vip .

As the flow is essentially in the characteristic direction, we apply the modified
method for characteristic procedure to the first-order parts of (2) and (3), thus
ensuring a high accuracy of the numerical results!'6=1821=24 " We write eqs. (2)
and (3) in the form

% = V- (DeVe)+ peu- Ve +eu- Ve +apie(x)e(p—e+ N(z)) — Ri(e,p, T), (14a)
0
6_]: = V- (DpVp) = ppu- Vp—pu-Vyp —apy(x)p(p—e+N(z)) — Ra(e, p, T), (14b)

where u = —V. Let 7. = 7.(X, t) be the unit vector in the direction (—pet1, —retia, 1)
and 7, = 7,(X,t) be unit vector in the direction (upu1, pipus,1). Setting &, =
[1+ p2|u*]'/2,s = e,p, we have

0 0 0 0
e = a: e_'qu)_:_ _'V.
or. o1 Mt Yor, ot Mt
We write egs. (14a) and (14b) in the form
0
@2 V(D) — ope(X)elp — e+ N(X) — e Vpse = ~Ra(e,p,T), (150)
e
9p
@pa_r,, =V (DpVp) + app(X)p(p — e+ N(X)) +pu- Vi, = —Ry(e,p, T). (15b)
) et de 1 . Co
Approximate 3 =3 (X, t"*t1) by a backward difference quotient in the
Te Te
T.-direction.
n+1 n+1 X _.n X n+1A
de X) e ( )—e ( +/;eﬁ t). (16&)
or. Ato(1 + 2lu) 2
Similarly, we have
n+1 n—+1 X)) —p"(X — n+1At
07 Ate(1+ pglul”)t/?
The equivalent weak form of problems (9b), (9¢) and (9d) becomes:
Oe
(q)ea_,rea Z) + (Devea VZ) - (eﬂ ' V/J/ev Z) - Oc(,uee(p —e+ N)a Z) (17&)

= —(Rl(e,p,T),z),
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(q)”g_i’ 2) + (DpVp, Vz) + (pu- Vitp, 2) + alppp(p — e + N), 2) (17b)
- *(R2(eap7 T),Z),
oT
(pg7>0) + (VT Vo) = =([(DpVp = pppae) = (DeVe + peew)] - w, v).
(17¢)

For the electron concentration equation, the modified method of characteristics
with finite element procedure is defined as follows:

n+1 ~n

e —e ~ ~
(B 20) 4+ (De Ve, Van) — alpeel (B — €7 + N), 25)

At, (18)

—(EFEUMY - Ve, ) = —(Ru(&8, p, T), 2n),

where U, = =V, €8 = ep(X2), X2 = X + pu.EU T At,.
Similarly, for hole concentration equation (17b) the characteristic finite element
schemes:

n+1 A
I
b

(B ) 4+ (D VB, V) + iy (B — &3+ N), 20)

(19)
HERBULT - Vi - 2n) = —(Ra(@q, 07, T, 2n),

where p = pp(X2), X2 = X — pu, EU T At

The characteristic finite element alternating-direction schemes with moving meshes
of problems (1)~(6): When ¢t = t,,,, and if {€p m, Dh,ms Thym } € Noom X Npm X Mp m
are known, from (13), we obtain approximation solution ¥, ., € V3. We find ¢ =
t" =t +yAt., v=1,2,---,7, the finite element solution {eZH,pZH,T,?H} €
N NP S vt

First, we put forward generalized L? projection:

O*(en —ep) 0%z

e — €) XAt el — €h ) AeAt. 2 ) =Y
(e — epszn) + (V(iep @h)vvzh); (+1 ) ( 0x10xs = 0x10x2 0
Zp € ;LI )
(20a)
020 — €)%z,

-0 0 )\eAtc -0 0 )\eAtCQ h h =0
(€h — €nr 2n) + (V(en eh),szh) —5\7(1 ) 01101y~ Ox1029 ’
Zn € h>

(20b)
R A
-n __ ,.n )\Atc n _ .n )\At52 h h —
(Dh — Phs2n) + ApAte(V(Dp ph);VZh); (+1p )( 0x10z2 " Ox1072 0
Zn € }7; ,
(21a)
*(py —pp) 9z
=0 _ .0 )\Atc =0 .0 )\AtCQ h h =0
(Dn, — Phs 2n) + ApAte(V (D), ph),vVZh) tv(l pAL)*( 92005 ' Dz10ms ,
Zh S h?
(21b)
(p(Th, = T), wn) + ArAte(pV (T, — T, V)
(22a)

P, —T) 0wy,
81'181'2 ’ 81'181‘2

+(ArAt)3(p ) = 0,Ywy, € M,
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(p(Ty = T2), wn) + Ar At (pV (T, — TP), V)
OAT, —TY)  0%wy, - (22b)
8:516302 ’ 8:518:52 a

+(ArAt)%(p 0, Yy, € M,

where (20), (21) and (22) are the generalized L? projection. When Njyt' #
N,’;,M,:H'l # M}, we need these auxiliary projections. A¢, A, and Ap are posi-

1 1
tive constants. A., A, and Ar are chosen to satisfy A, > EDg, Ap > §D; and

1
A > 3P L respectively.

The finite element schemes with moving meshes of electron and hole concentra-
tions equations:

n+1 2n

(%ATh zn) + (DeVeER, Vzy) + Ae(V(ep T —en), Vzy,)
20+l _ gn 9
+AZAL, (3 (6x18$26h)’ 0312};2 (23)
= alpeep (P — & + N), 21) + (€ EURY - Ve, 21)
—(Ri(€},pp  Ti), 21), Vo € NPT

n+1 2n,
p —-p —n n
(PPl ) + (DY, V) + (Vi = ), V1)
TN LA A
P

011012  Ox10%9 (24)
= —a(uppy (B — & + N), 2n) — (BREURT - Vi, 2n)
—(Ra(er, P T, 2n), Wz € N,
where & = ef(X2), XP = X + pBUT Ate, By = pp(Xp), Xp = X -

e P
EU At...
The finite element scheme with moving meshes of heat conduction equation:

TTL-‘,—I _ Tn B B
(P~ wn) + (VI Vun) + Ar (pV (T3 = ), V)
c
2+l m 2
+)\%Atc(pa (Th Th) 0 Wh,

81'181'2 ’ 81'181‘2 (25)
—([(DpVPy, — ﬂpphEUn+1)

7(D€Vé;7,z + :L"PE;LLEQZJrl)] 'EQZJrlvwh)a Vwy, € M;LH_l'

For electron concentration equation (23), if e"Jr1 Z{ Yoaths, ep= Z{ 5PaPB

take zj, = pa g as the test function, multiply (23) by 2At67 then (23) can be written
in the form:

X (€ — €23) e © 5,00 @ 5) + AMTUELS ) (2 © s, D)

+(Pa ® U, Pa @)} + (AeAtc)? Z(éZEl — &0p) (0 ® U, 04 ® P) = AL F",

a’
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Let
b1 dl
CiCl = (/ Pay @a2dx1)7 03:2 = ( ¢ﬂ1¢ﬂ2d$2)7
a

1 Cc1

b1 dl

Auy = ([ hbldmr) Ay = ([ 01,05, dm0).
ail c1

Then we have

(Cuy + XAt Ar) @ (Cry + NAt A, ) (€T — €7) = At F™, (23)
where
Fry = a(peel (P — 7 + N), o @ p) + (EFEURT - Vi, o @ 1)

Zn An mn 1 n =n
—(Ra(en, pns T7)), pa ® ) + (At (eh — €n)s pa ®Pp).
c

(23)" shows that equations (23) can be solved by the alternating-direction method,
that is, by solving a series of one-dimensional equations two times in succession.

Similarly, we point out that equations (24) and (25) can be solved by alternating-
direction method.

The algorithm for a time step is as follows. Firstly, by the initial approximation
e, pY, TP, we can obtain ¥, o from eq. (13). Secondly, from schemes (20)~(25),
we can obtain (e}, p}, T}, (€3,p2, T2), -, (efl,pfl,TZ). Next, by (en,1,Pn,1,Th1)s
we can obtain Wy, ;. From egs. (20)~(25) we can obtain (eJt' pi*!, T/,
(ei”,p%”, T}Z"'Q)7 .-+, (en,2,Pn,2, Th.2). In this way, we can calculate continuously,
so that a complete time step can be taken. Finally, because of the positive definite

condition, we can obtain only one solution for the problem.
4. Some auxiliary elliptic projections

For convergence analysis we introduce some auxiliary elliptic projections, where
constants (., 8, and Br are chosen to ensure the coerciveness of bilinear forms.

Let ¥), = ¥ : J = (0,T] — Vj, which satisfies:
(V(¥ —T), Vi) =0, VYo, €V, te (26)

Let L™ le(t) € N+l o Jgn = (#7,¢"F1] — N/, which satisfies:
(D V(e — L"e),Vzp) — alpen - V(e — L™ e), 2p) + Be(e — L™ e, zp)

=0, Vzp € N*HL (27)
Let L™ !p(t) € N*1: J% — N/t which satisfies:
(DpV(p = L), Van) + ol Vp = L™p) 2n) + Bp(p = L0 2n) o)
=0, Yz € NP1
Similarly, let L"*17(t) € M Jm — M1, which satisfies:
(V(T — L"), V) + Br(T — L™ T, wp) =0,  Vw, € M (29)
In addition, we assign the initial value:
ey = L'e(0), p) = L'p(0), Ty = L'T(0). (30)

Let 0 = U — Wy, = Uy, — Oy, o+ = eptt — Lntlentd (ntl = entl —
an ) Se h ) Se

Ln+len+1’§-g — éh77 Ln+len7 C;L — enfﬁ Ln+16n’§g+1 — pZJrl o Ln+1pn+1’<;1+1 —

pn+1 _ Ln+1pn+17§g — pzz _ Ln—i—lpn, C;z — pn _Ln—i-lpn, ﬂ.n—i-l — T}:Hrl _ Ln-l—lTn—i-l7

0.n+1 — Tn—i—l _ Ln+1T'ﬂ+1, an =7Tn _ Ln+1Tn7 on =17Tn" — Ln+1Tn.
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The result from Galerkin methods 2528l

101l + hollOlly, < M|, 2y e, (31a)

r+1

{ Iell + RellClly < Mlell P54, € .
€l + PellClly, < Mlle™fl 1 hET
{||<p||0+hc||<p||1Sannth’;ﬂ, te, -
_ _ C
G lo +RellGly < Mlp™ g1 hE
ol + hrllolly < MITIhy b, e, -
57l + 3™l < MUy 1
6§e age 86 k41
= he||==|| <M — RETE, te Jn 32
Sl el B = e+ |5 e
s g Op
=2+ he|| 22| <M = hett, teJgn 32b
o R o IR 4 I T T .Y
do do oT
—| +hr|| 5| <M{T — R te g 32
(e I o R HIVC N Y R T (320)

5. Convergence analysis

Theorem Suppose that the exact solution of problems (1)~(6) satisfies smooth
condition:

2 2
Ve LW e, p € Lo W (), 28 0P

L2 2P ¢ 1o L0

87_62’87_;3 € ( ’ ( )) ’
’T

T € L>(J; WHL(Q)), a2 € Le°(J; L*°(92)). Adopt characteristic finite element

alternating-direction schemes with moving meshes (20)~(25) computation. Sup-
pose r > 0, k > 1, | > 1, and the spatial and time discretization satisfy the
following relations:

Ate = O(h2) = O(h3), by = o(he) = o(hr), hET = o(hr), hit" = o(h.). (33)
Then, the following error estimate holds:

IV = Vnllz_ (g2 +lle=enlli_ 2 + 0= Prllz 0200 54
34
HIT = Thllz (sipogy < M{Ate + R+ REF 4 ALY

where [|gl|zo07.x) = AS?ETHQHHX’ constant M depends on ,e,p,T and their
nAt.<

derivatives.
Proof. Firstly, we consider the estimate of the electric potential equation. Sub-
tracting (13) from (9a) (¢ = t,,) and using (26) (¢t = t,,), we obtain

IVmllg < M{[I€emlly + 1p.mllg + 25 }- (35)
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Secondly, consider the electron concentration equations. Subtracting (23) from (9b)
(t = t"1) and using (27) (t = t"T1), we obtain

n+1 B
)+ (DLVE, Vo) 4 AV — €0, )
Pt - &)
QA . e e
+)‘e t( 81‘181'2 781’181'2

aen—i-l en+1 —én

= (PG — B - Vet - )
in_fn n+1 n
+(§8Atfe’zh)+(c At C 2n) + Be(CEH 2n)

ta(pe[e" (e ="+ N) — e (P — € + NI, 2n)
(et = ELEUL ] - Ve, 2n)

F(Ru(E, P, Tp) — Ryt pntt T, 2y
FA(V(H =) = V(e"H —e), Vzp)

8 ( n+1 C ) 62(6n+1 _ en) 82Zh
N At. el Vz, € NPTt
+ ¢ ( 81‘181'2 81'181‘2 ’ 81'181‘2)7 % € h ’

where é” = (X)), X! = X + p EUF T At €1 = EM(XD), - .

For the remainder of the proof, we let k& denote the largest index such that
te_1 < t&, if t¥ is a electric potential time level, then t& = ¢y,

We need to introduce the induction hypothesis:

IVUpml <M, 0<m<k-—1. (37)

Take z;, = £"*1 as the test function. Then estimate the terms on the left-side of
(36).

g -e

SV & o — llEllo (384)

n+1
& 2 gl

(DeVEL, VEIHY) + A (VELH — €0), VELH)
= Ae(VEIHL VEH) + ([De — AJVER, VERTT)

_ 38b
> |9z~ mgx D — Ad(VEE + [z )
1 _
= 5{2Ae ~ max| Do = Ael }[VEX [lg — Gmax|De = ||| VEL .
Notice that A\, > m)z(auX|De — Ae|, and we have
62(€n+1 _ gn) 62€n+1 )\2Atc 82§n+1 2 82gn 2
2 e e e e e _ e
AcAte( 01109  Ox10x4 = 2 {‘ 0x10x2 ||, H dx10x2 ||, (38¢)
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Multiply (36) by 2At., then estimate the terms on the left-hand side of (36).

£n+1 fn n+1 cn n+1
PV —h AL D) + (D VEL, VEITT)

FA(V (53“ — &), Vet

et &) et
6$18I2 ’ 6$18I2
> et 2 — €8] + 22t {2 — maxD. — A} | Ve

N

+A2At(

a2§g+1
8:516302

0%

(A AL
) 6$1 6$2

7Atcm)2(l,X|De — )\e|||V§”

o +

(39)

We now estimate the terms on the right-hand side of (36). By the induction hy-

pothesis (37) and negative norm estimate [17:1%:23:24] e have
2

aenJrl en+1 _ én
EU - Vet — ———
’[ at Un™ Ve == ||,
(X" 92, 2
g/@ieAtc/ ——dr| dX
Q (X,tm) or?
Xt +1 ) 82
< Ate|| Py, . // 5 deX
0,00 X t'n, or
< MAt¢ / / dtdX,
tm
where @ . = [1+ ,ue|EU;Z+1| ]1/2.
Then, we have:
2([20 _ p EURH . Vent] — €08 entlAy,
2
< M{(At)* [, ftn o[ A Y

2<%53, AL < M e

D{(SEmE en 1) A (i, €)ALY,

2t + o] e 2

< M{ (Atcf + 2 2D el
2 2
HI&p,m g + [[€2F ] YAL: + 2| Ve Ate,
2{a(pe[e™ T (pnFt — et + N) — e (py — € + N)), &0+
(et — ep BUT - Ve, €271) + (Ra (e, b7, Ti)
7R1 (en+17pn+1’ TnJrl)’ gzwrl) }Atc
< M{(At)? + W 4 B2 L D e mlls + 16poml]

a1+ ez st + ellez
2)\e(v(<;l+1 B Eg) . v(enJrl _ e’ﬂ)’ VEQH)AtC

tn+

< M2 [ 50T+ 15

Jdt + e||Vertt |2 At

(40a)

(40b)

(40c¢)

(40d)

(40e)
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aQ(CnJrl _ En) a2(en+1 o en) a2€n+1
2 AeAtc 2 e e/ , e
( ) ( 6$18I2 6$16$2 8:516302

age

ot

it , (40f)

2 2

|dt + M(At.)?
2

de

o2t
e oret

[ 81'181‘2

< M(At.)? /

tn

"

2 0

For error equation (36), using (38)~(40), we can obtain:

(1—3MAL)|| et ||s — (1 +2MAD)|Er|,
+At{ 22, —max| D, (X) = Ao | = Aee }| Vg

—Atcm)?,X|De(X) - )\e|||V§_Q||§+

ot |?
6$18I2 B (AeAtC)2

0
< M{(AtC)Q Jrhi}(wrl) Jrh(22(k+1) +h2T(l+1)

82571 2
6$1 6$2

(1 — MAt) (N At,)?

0

Hlleeamlly + Uepaml® + €212 + €215 + 17115 } At

tn+1 2 2

Jdt.
2

de
ot

age

+M(At.)? / [ N

tn

2 ‘

We use [|£5 ]|, to estimate [|€7|,, and from (20a) we have

lo

0°(& — &) 0%

8:518:52 ’ 8:516302

(L —<) Pz
8I18$2 78I16$2 ’

(gg - ga VZh) + )\eAtc(v(ge - 52)7 Vzh) + ()\eAtc)Q(

= (gﬂeﬁb - gv Vzh) + AeAtC(V(Ee - <g)a VZh) + ()‘eAtc)Q(

(42)
Take zj, = £, and we can obtain
(1= [E | + rerte|VE + (rte?| 26|
ello T ARkl Voello T A2t 5 B |,
> 2 e
< IE8 NIy + AeAte|[VE o] + (AeAte) 921029 O+E[HC?*CQH (43)
2 P —¢|*
FAAL| V(= ¢, + (AeAte) w0ty O]-
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For the hole concentration equation (24), we can obtain the following error esti-
mates:

(1 —3MAL,) ||§”+1||O (1+2MAt,) ||§”||O

At 2X — max| Dy(@) = Ay | = Ape H|VER;

) a2§g+1
—Atcm)?X|Dp(x) - >‘p|||vgn||0 (1= MAte)(ApAte) 011022 0
s 2 (44)
—(ApAt,)? 0%y
8I18I2 0

2(r+1 2(k+1 2(1+1 2 2
< M{(At)? + h2UD 4 p2HD 4 g3 ’+||se,m||0+||sp,m||o

H Ekp

el gt + i@+ e [ (|2

- ) 82gn
(L= IG5+ Xt EE + ot 5250 |
< g1+ A AT+ 3y 7|t EM@*@W )
= D 1o P c 0 8 ax P o
0 en) 0*(G — C”)
FAAL V(G = Gl + Oy )2 | =52 28 O]'

Similarly, for the heat conduction equation, we have the following error estimates:

1 2

2

(1—-3MAt.)

piﬂ'”‘HHO (1+2MAt.)||p .

1 2
pEVT(nJrlH 7Atc|].f
0

FALL 2 — 1 Ap| — )\Ts}‘

2 1 92 |?

1 627Tn+1 1
P 81‘181‘2

2
p 81‘181'2 0
< M{(Ate)? + B2 1 B2 2D e g (1€ 2+ (€012 lemll

+(1 — MAt)(M\rAt.)?

- ()\TAtC)Q‘

0

t7L+1 2 2
T d
+||£p,m||§}Atc+M(Atc)2/ or +H_U |
tm 2 0t
3 2 1 827—.[.71 2
1- G A . 2 2
( 6)[‘0 T + (ArAt,) ‘p om, 0]
2 1 9% 2 1 1 2
" A Atc 2 2 _ 2(=n _ n
‘OJF(T ) 0z1022 OJFE[‘p(U U)‘O
2 182(5—7170_71) 2
o — g™ 2| 39\ —07)
(om = ™) + (rAte) vl R

(47)
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1
Let K = 3M At be suitably small so that K At, < 3 From (41), (44) and (46) we

can obtain:

(L= KA fler o + llen s + w2 llo + Aedte [ VEz I3

82€n+1
e e e ) (o
0
2¢n+1 2 112
€ ) ﬂ.n-‘r
AeAt)2|| =2 AcAtc)?
+ ) 0x10z> 0+( ) 011022 ||
_ 2 _ 2 —n =n 2
(L KAOLE + (16812 + 17712 + At | wE2 2
FAAL VER | 2Ar At V772
ALY 62521 VAL )2 825;1 N ()\ At )2 o327 2}
+(AAL) 02,015 0+( e Qxy Oa . Tl Oy 0y 0
< M{(At)? + "+ neED L B el + I€pmllg YA
gt 2 2 2 2 2 2
Ode Op oT s s oo
M(At,)? ge op il Fe %p 22 1dt.
S A R R IR IS e I
(48)

We use [|£7]],, Hngo’ and [|7" |, to estimate ||§_2H0 , Hg‘g”o , and ||7"|,. For (48),
by (43), (45) and (47) we can write it in the following form:

1 - KAt
e (o)l a2+ g I+ 12 + 2o v

+1]|2 +11)2 2 o2 :
A AL VEFL |0+ Ap At || Va0 + (A At,) 921015 |,
o2t oPamtL |2
ApAte)?|| 52 ArAte)?
+( P ) 6$18$2 0+( T ) 8I16$2 0

—LIER 13+ [|€2112 + 17115 + A ALl VER (S + ApAte||VER|2 + Ar Ate | V"3

2 2

+ (AAt,)?
0

a2ﬂ.n

o%¢n
8:516302

6$18I2 o

o2en
8:516302
<M1= e){ (Ate)? + R 4 h2HY LRI e 12+ [1€pamlll YA

tn+1

M
+?{hfj’"+” + RS L p2ED Y L A (1 - ) (At,)? /
tW,

+ ()\TAtC)2

0

+(AeAt,)?

L5 5

(49)
(49) is the estimate for the moving mashes in the ease of N}/ ™' o Nj, Mt £ My,
When N{;H Ny, M}?H M}, then e} = e, D) = s T}? =1}, and we have
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the following estimates :

(1 - KAt.) 2 2 2 2
(i) et + g 1 + 1+ 2ot v
2€n+1
+A, At ||V£”+1||O+)\TA7§ HV?T"+1|| + (N At )?
81'181‘2 0
82£”+1 92 n+1 2 0
A\, At)2 P ArAt)? n|? n
+( 4 ) afﬂl o . + ( T ) 6$16$2 0 Ee || + ng ||
Ho™ 1§+ A ALl VELG + ApAte || VER |2 + A At [V 3
62€n 82§n 827'('" 2
AeAt,)? € Ap At )? P ArAt)?
+( ¢ C) 81‘181'2 0 + ( P C) 81'181'2 0 + ( T C) 81‘181‘2 0
< M{(At)? + by 4+ hEED p BT el + 16pmlln YAL
g+t 2 2 2 2 2 2
Oe op or 05 s, do
M(At.)? — — — — =P — 1| |dt.
A I3 IS I s I S

Let us suppose that in the whole process of computation, the meshes have been
moved R times, which corresponds to estimate (49), and for the remaining L — R
times, the meshes are not moved, which corresponds to estimate (50). Without loss
of generality, we make the following arrangement:

(1- KAt.)
(14 KAt.)

< M{(At)? + 5D 4 2D 4 h3D e ol + llepolly + - AL

t de?
M(At.)? —

tletllo +lgslly + I + -3 = tlleells + lgllg + I=llg +

dt.

Hag@ 2+...

o,

1 - KAt,
(=) T gear el + Il + 1 -+

2 2 2
=tllello +llgally + =l +
<M1 —e){(Ate)? + h2HY 4 p20HD g2 A

M
+?{h3}(k+1) +h§(k+1) _’_h;(lﬂ)}

+M(1 - 6)(At0)2/: [Hg

dt.

[l

(51)2
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(1- KAL) .
el el Nl + Il -+ = ezl + g + el +
<

M{(At)? + 2 +h?(’“+1 + 2D 4y

M(At,)? [ Hag‘e
t2
(51)3

(1 - KAt.) 2 2 2

e a3 R 1 R o R
2 2112
=~ s + gl + 1= llg +---

< M{ (AL + by 4 he®Y g 4y (51)4

M
+?{hfj’“+” 4 2D 20,
t* 2
M=)t U n \
t3 2
(1 - KAL)

T el + e )? + 1me)? + - - }

~Clleallg + g g + =" llg ++- 3

B |
at ||,

de

51
< M{(At)? + 5" + hf(kH) + 03 4 e taralle + €niaralle oL

M(At,)? : l Hace

(1—- KAt.) 2 2 2
-y R e+ g 2+ e+ -+

—{lleglly + lleglle + imally + -+ }
< M{(At)? + 20D 4 gD 4 ’“>+H£e wroallo +H£p (a+1) /J]HO

0
ge at.

(51)q+1

M {h (1) 20D 4 20480y (A M

(1 - KAt.)
m{ Hﬁf”é + H‘s%”f) + H7TLH(2) 0}

—{ |‘§£71H§ + Hfﬁflui + HﬂL*lHi +---}
< M{(At.)? + hi}(ﬂrl) 42kt h2T(z+1) PR

th 2
M(Atc)Q/ l Oell” ‘
thl 2

at

& |
at |,

4o dt.

(51)L
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Sum them up according to

1 — KA, 1 - KAt

1 ———F)(51 1-— — 9251
511+ (T peart )30 + (1 = ) (f st (51 "
1 - KAt, 1— KAt
1—e)(+——2)3(51 cod (1= o) B (—————=5) 1 (51) .
1= (e (U 4+ (1= ) (e 1)
Suppose r > 1,k > 1,1 > 1, and we can obtain
1 - KAt, 2 2 2 2
R C\Lf||¢L L L L
(1 )RR et 2 b2+ 2+ Aot 92
92l 2 o2¢L
A AL VEL| 4+ Ap At | Va2 + (A At,)? c Ay AL P
+TAp H §p||0+ T ALV [g + ( ) 11025 O+( pite) 071022 .
o2xLl |? 2 2 2
2 0 0 0
vowant 22y el e+ el
< M{(Ate)? + B2 4 pgE T g pZ D
[L/g) 2 2 R ot41) | 241 | 12(41)
+m2::1 [€e,mllo + €p,mllo]Ate } + —{hy" " + he +hy )
. . (53)
Taking € = e in particular, we have (1 —¢)f = (1 + E)R < e. And we notice
that

(1+KAtC)L:( L 2K At
1— KAt 1— KAt,
€0 = 52 = 0% = 0. Applying discrete Gronwall inequality, we can obtain

IEE g + g Il + llm™ g + Ac Al | VEE[lg 4+ Ap Al | V€ [[g 4+ Ar Al |V

)L S (1 +4KAtC)T/AtC S 64KT7

< M{(Ato)? + BT 4 p2EHD 4 2D

H(R+ DRIELTD 4 pgE T 4 gDy
(54)
Suppose that in the whole process of computation, the number of moving times
R is not too large, which means that it is independent of h and At.. Then we have

lEEllo + Nleg g + I [lg + el Ve [l + At V&7 g + Ar e[Vt

< M{(At)? + RJTHD 4 p2EHD 2y
(55)
Finally, from (35), (55) and (33) we conclude that induction hypothesis (37)
holds. Based on error estimates (55) and (35), and the result (31) of projection
theorem, we can come to the theorem.
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