
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 5, No. 2, pp. 131-145

DOI: 10.4208/aamm.12-m1209
April 2013

A Spectral Method for Second Order Volterra

Integro-Differential Equation with Pantograph Delay

Weishan Zheng and Yanping Chen∗

School of Mathematics sciences, South China Normal University, Guangzhou 510631,
Guangdong, China

Received 29 January 2012; Accepted (in revised version) 14 September 2012

Available online 28 January 2013

Abstract. In this paper, a Legendre-collocation spectral method is developed for the
second order Volterra integro-differential equation with pantograph delay. We provide
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1 Introduction

The paper is concerned with the second order Volterra integro-differential equation with
pantograph delay:

u(2)(x)=
1

∑
j=0

aj(x)u(j)(qjx)+
1

∑
j=0

bj(x)u(j)(x)

+
1

∑
j=0

∫ x

0
kj(x,s)u(j)(s)ds+g(x), x∈ [0,T], (1.1)

with
u(0)=u0, u(1)(0)=u1. (1.2)

Here, we denote u(j)(x)=(dj/dxj)u(x), j=0,1,2. qj is a given constant and 0<qj<1. aj(x),
bj(x), g(x) are smooth functions on [0,T]. kj(x,s) is also a smooth function on D(D :=
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{(x,s) : 0 ≤ s ≤ x ≤ T}) and u(j)(qjx) is pantograph delay, j = 0,1. u(x) is an unknown
function.

Since Volterra integro-differential equations with pantograph delay arise widely in
the mathematical model of physical and biological phenomena, many researchers have
developed theoretical and numerical analysis for the related types of equations. We refer
the reader to [3, 6, 10] for a survey of early results on Volterra integro-differential equa-
tions. More recently, polynomial spline collocation methods were investigated in [16, 19]
and homotopy analysis method was used to solve system of Volterra integral equations
(see, e.g., [14]). In [20, 21], the authors used spectral collocation methods studying con-
vergence analysis about Volterra integro-differential equations. For pantograph delay
differential equations, in [2, 12, 23], the authors researched on these kinds of functions.
In [1], spectral method was used to solve y′(x)= a(x)y(qx), but it only analysed the nu-
merical error in the infinity norm.

So far, very few work have touched the spectral approximation to second order Volterra
integro-differential equations with pantograph delay. In practice, spectral method has
excellent convergence property of exponential convergence rate. In this paper, we will
provide a Legendre-collocation spectral method for the second order Volterra integro-
differential equation with pantograph delay and analyse the numerical error decay ex-
ponentially in both L2 and L∞ space norms.

For ease of analysis, we will describe the spectral method on the standard interval
[−1,1]. Hence, we employ the transformation

x=
T

2
(1+t), t=

2x

T
−1.

Then the above problem (1.1)-(1.2) becomes

y(2)(t)=
1

∑
j=0

Aj(t)y
(j)(qjt+qj−1)+

1

∑
j=0

Bj(t)y
(j)(t)

+
1

∑
j=0

∫ T
2 (1+t)

0
k̂j(t,s)u

(j)(s)ds+G(t), t∈ [−1,1], (1.3)

with

y(−1)=u0, y(1)(−1)=
(T

2

)
u1, (1.4)

where

y(t)=u
(T

2
(1+t)

)
, G(t)=

(T

2

)2
g
(T

2
(1+t)

)
,

A0(t)=
(T

2

)2
a0

(T

2
(1+t)

)
, A1(t)=

(T

2

)
a1

(T

2
(1+t)

)
,
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B0(t)=
(T

2

)2
b0

(T

2
(1+t)

)
, B1(t)=

(T

2

)
b1

(T

2
(1+t)

)
,

k̂0(t,s)=
(T

2

)2
k0

(T

2
(1+t),s

)
, k̂1(t,s)=

(T

2

)2
k1

(T

2
(1+t),s

)
.

Furthermore, to transfer the integral interval [0,T(1+t)/2] to the interval [−1,t], we
make a linear transformation: s=T(1+τ)/2, τ∈ [−1,t]. Then, Eq. (1.3) becomes

y(2)(t)=
1

∑
j=0

Aj(t)y
(j)(qjt+qj−1)+

1

∑
j=0

Bj(t)y
(j)(t)

+
1

∑
j=0

∫ t

−1
Kj(t,τ)y

(j)(τ)dτ+G(t), t∈ [−1,1], (1.5)

where

K0(t,τ)=
(T

2

)
k̂0(t,s)=

(T

2

)3
k0

(T

2
(1+t),

T

2
(1+τ)

)
,

K1(t,τ)= k̂1(t,s)=
(T

2

)2
k1

(T

2
(1+t),

T

2
(1+τ)

)
.

The main purpose of this work is to provide a spectral collocation method for the sec-
ond order Volterra integro-differential equation with pantograph delay. We will provide
a rigorous error analysis which theoretically justifies the spectral rate of convergence.
This paper is organized as follows. In Section 2, we introduce the spectral approach for
the second order Volterra integro-differential equation with pantograph delay. Some use-
ful lemmas are provided in Section 3, which are important for the convergence analysis.
In Section 4, we provide the convergence analysis in both L2 and L∞ spaces.

Throughout the paper C will denote a generic positive constant that is independent
of N, but depends on T and the given data.

2 The spectral method

As demonstrated in the last section, we can assume that the solution domain is [−1,1].
The second order Volterra integro-differential equation with pantograph delay in one-
dimension are of the form (2.1), namely,

y(2)(t)=
1

∑
j=0

Aj(t)y
(j)(qjt+qj−1)+

1

∑
j=0

Bj(t)y
(j)(t)

+
1

∑
j=0

∫ t

−1
Kj(t,s)y

(j)(s)ds+G(t), t∈ [−1,1], (2.1)
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with
y(−1)=y−1, y(1)(−1)=y′−1, (2.2)

where y−1=u0, y′−1=(T/2)u1.
For a given positive integer N, we denote the collocation points by {ti}N

i=0, which is
the set of the (N+1) Legendre Gauss points, and by {ωi}N

i=0 the corresponding weights.
Let PN denotes the space of all polynomials of degree not exceeding N. For any v ∈
C[−1,1] (see, e.g., [9,11,17] ), we can define the Lagrange interpolating polynomial INv∈
PN , satisfying

INv(ti)=v(ti), 0≤ i≤N.

The Lagrange interpolating polynomial can be written in the form

INv(t)=
N

∑
i=0

v(ti)Fi(t),

where {Fi(t)}N
i=0 is the Lagrange interpolation basis functions associated with the Legen-

dre collocation points {ti}N
i=0.

In order that the spectral collocation method will be carried out naturally, integrating
Eq. (2.1) and using (2.2), we get

y(1)(t)=y′−1+
1

∑
j=0

∫ t

−1
Aj(s)y

(j)(qjs+qj−1)ds

+
1

∑
j=0

∫ t

−1
Bj(s)y

(j)(s)ds+
∫ t

−1
v(s)ds, (2.3a)

y(t)=y−1+
∫ t

−1
y(1)(s)ds, (2.3b)

v(t)=
1

∑
j=0

∫ t

−1
Kj(t,s)y

(j)(s)ds+G(t). (2.3c)

Firstly, Eqs. (2.3a)-(2.3c) hold at the collocation points {ti}N
i=0 on [−1,1], namely,

y(1)(ti)=y′−1+
1

∑
j=0

∫ ti

−1
Aj(s)y

(j)(qjs+qj−1)ds

+
1

∑
j=0

∫ ti

−1
Bj(s)y

(j)(s)ds+
∫ ti

−1
v(s)ds, (2.4a)

y(ti)=y−1+
∫ ti

−1
y(1)(s)ds, (2.4b)

v(ti)=
1

∑
j=0

∫ ti

−1
Kj(ti,s)y

(j)(s)ds+G(ti), (2.4c)
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for 0≤i≤N. In order to obtain high order accuracy of the approximated solution, we have
to compute the integral term. In particular, for small value of ti, there is little information
available for y(s) and y(1)(s). To overcome this difficulty, we transfer the integral interval
[−1,ti] to [−1,1] by using the following variable change:

s=
1+ti

2
θ+

ti−1

2
, s(ti,θ), θ∈ [−1,1]. (2.5)

Then the above equations become:

y(1)(ti)=y′−1+
ti+1

2

1

∑
j=0

∫ 1

−1
Aj(s(ti,θ))y

(j)(qjs(ti,θ)+qj−1)dθ

+
ti+1

2

1

∑
j=0

∫ 1

−1
Bj(s(ti,θ))y

(j)(s(ti,θ))dθ+
ti+1

2

∫ 1

−1
v(s(ti,θ))dθ, (2.6a)

y(ti)=y−1+
ti+1

2

∫ 1

−1
y(1)(s(ti,θ))dθ, (2.6b)

v(ti)=
ti+1

2

1

∑
j=0

∫ 1

−1
Kj(ti,s(ti,θ))y

(j)(s(ti,θ))dθ+G(ti). (2.6c)

Next, using an (N+1)-point Gauss quadrature formula relative to the Legendre weights
{ωi}N

i=0 to approximate the integration term, we get

y
(1)
i =y′−1+

ti+1

2

1

∑
j=0

( N

∑
k=0

Aj(s(ti,θk))y
(j)(qjs(ti,θk)+qj−1)wk

)

+
ti+1

2

1

∑
j=0

( N

∑
k=0

Bj(s(ti,θk))y
(j)(s(ti,θk))wk

)
+

ti+1

2

N

∑
k=0

v(s(ti ,θk))wk, (2.7a)

yi =y−1+
ti+1

2

N

∑
k=0

y(1)(s(ti,θk))wk, (2.7b)

vi =
ti+1

2

1

∑
j=0

( N

∑
k=0

Kj(ti,s(ti,θk))y
(j)(s(ti,θk))wk

)
+G(ti), (2.7c)

where y
(1)
i ≈y(1)(ti), yi ≈y(ti) and vi≈v(ti), 0≤ i≤N. The set {θk}N

k=0 coincides with the
collocation points {ti}N

i=0.

We expand y(1),y and v using Lagrange interpolation polynomials, i.e.,

y(1)(s)≈
N

∑
p=0

y
(1)
p Fp(s), y(s)≈

N

∑
p=0

ypFp(s), v(s)≈
N

∑
p=0

vpFp(s).
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The Legendre collocation method is to seek {y
(1)
i }N

i=0,{yi}N
i=0 and {vi}N

i=0 such that the
following collocation equations hold

y
(1)
i =y′−1+

ti+1

2

1

∑
j=0

( N

∑
p=0

y
(j)
p

N

∑
k=0

Aj(s(ti,θk))Fp(qjs(ti,θk)+qj−1)wk

)

+
ti+1

2

1

∑
j=0

( N

∑
p=0

y
(j)
p

N

∑
k=0

Bj(s(ti,θk))Fp(s(ti,θk))wk

)

+
ti+1

2

N

∑
p=0

vp

N

∑
k=0

Fp(s(ti,θk))wk, (2.8a)

yi =y−1+
ti+1

2

N

∑
p=0

y
(1)
p

N

∑
k=0

Fp(s(ti,θk))wk, (2.8b)

vi =
ti+1

2

1

∑
j=0

( N

∑
p=0

y
(j)
p

N

∑
k=0

Kj(ti,s(ti,θk))Fp(s(ti,θk))wk

)
+G(ti). (2.8c)

Remark 2.1. Generally, the analysis of Volterra integro-differential equations with pan-
tograph delay can be based on the integral equations that are equivalent to the original
initial-value problem. This reformulation will not affect the regularity properties of so-
lutions and the accuracy of numerical solutions (see, e.g., [5, 7, 13]). Consequently, it is
reasonable that we consider the equivalent reformulation system (2.3a)-(2.3c). This trans-
formation does not influence the stability of Legendre-collocation spectral approximation
scheme (see, e.g., [9, 19]).

3 Some useful lemmas

In this section, we will provide some elementary lemmas, which are important for the
derivation of the main results in the subsequent section.

Lemma 3.1. (see [9]) Assume that an (N+1)-point Gauss quadrature formula relative to the
Legendre weight is used to integrate the product yφ, where y∈Hm(I) with I :=(−1,1) for some
m≥1 and φ∈PN . Then there exists a constant C independent of N such that

∣∣∣
∫ 1

−1
y(t)φ(t)dt−(y,φ)N

∣∣∣≤CN−m|y|Hm,N (I)‖φ‖L2(I), (3.1)

where

|y|Hm,N(I)=
( m

∑
k=min(m,N+1)

‖y(k)‖2
L2(I)

) 1
2
, (3.2a)

(y,φ)N =
N

∑
j=0

y(tj)φ(tj)ωj. (3.2b)
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Lemma 3.2. (see [9]) Assume that y∈Hm(I) with I :=(−1,1) and denote INy its interpolation
polynomial associated with the (N+1)-point Gauss points {ti}N

i=0, namely,

INy=
N

∑
i=0

y(ti)Fi(t). (3.3)

Then the following estimates hold

‖y− INy‖L2(I)≤CN−m|y|Hm,N (I), (3.4a)

‖y− INy‖Hl(I)≤CN2l−1/2−m|y|Hm,N(I), 1≤ l≤m. (3.4b)

Lemma 3.3. (see [8]) For every bounded function v(t), there exists a constant C independent of
v such that

sup
N

∥∥∥
N

∑
j=0

v(tj)Fj(t)
∥∥∥

L2(I)
≤C‖v‖L∞(I). (3.5)

Lemma 3.4 (Gronwall inequality). If a non-negative integrable function E(t) satisfies

E(t)≤C1

∫ t

−1
E(s)ds+G(t), −1< t≤1, (3.6)

where G(t) is an integrable function, then

‖E‖Lp(I)≤C‖G‖Lp(I), p≥1. (3.7)

From (3.6), if we have

E(t)≤C1

∫ t

−1
E(qs+q−1)ds+C2

∫ t

−1
E(s)ds+G(t), −1< t≤1, (3.8)

where q is a constant and 0<q<1. Then we also get

‖E‖Lp(I)≤C‖G‖Lp(I), p≥1. (3.9)

Proof. Using the following variable change

x=qs+q−1, s=
x

q
+

1−q

q
.

Note that qt+q−1=q(t+1)−1< t for 0<q<1 and t∈ (0,1], we have

∫ t

−1
E(qs+q−1)ds=

1

q

∫ qt+q−1

−1
E(x)dx<

1

q

∫ t

−1
E(x)dx=C

∫ t

−1
E(s)ds. (3.10)
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This together with (3.8), we get

E(t)≤C1

∫ t

−1
E(qs+q−1)ds+C2

∫ t

−1
E(s)ds+G(t)

≤C
∫ t

−1
E(s)ds+G(t). (3.11)

That leads to the result of (3.9).

Lemma 3.5. (see [15]) Assume that Fj(t) is the j-th Lagrange interpolation polynomial associ-
ated with the Legendre-Gauss points. Then

max
t∈(−1,1)

N

∑
j=0

|Fj(t)|=1+
2

3
2√
π

N
1
2 +B0+O(N− 1

2 ), (3.12)

where B0 is a bounded constant.

4 Convergence analysis

This section is devoted to provide a convergence analysis for the numerical scheme (2.8a)-
(2.8c). The goal is to show that the rate of convergence is exponential and the spectral
accuracy can be obtained for the proposed approximation. Firstly, we carry out our con-
vergence analysis in L2 space.

Theorem 4.1. Let y be the exact solution of the second order Volterra integro-differential equation
with pantograph delay (2.1), with initial condition (2.2). Assume that

Y(1)(t)=
N

∑
i=0

y
(1)
i Fi(t), Y(t)=

N

∑
i=0

yiFi(t), V(t)=
N

∑
i=0

viFi(t),

where {y
(1)
i }N

i=0, {yi}N
i=0 and {vi}N

i=0 are given by (2.8a)-(2.8c) and Fi(t) is the i-th Lagrange
basis function associated with the Legendre Gauss points {ti}N

i=0. If y∈Hm+1(I) with I :=(−1,1)
for some m≥1, we have

‖y(j)−Y(j)‖L2(I)≤CN−m
1

∑
j=0

(|Aj|Hm,N(I)+|Bj|Hm,N(I))‖y(j)‖L2(I)

+CN−m
1

∑
j=0

max
−1≤t≤1

|Kj(t,·)|Hm,N(I)‖y(j)‖L2(I)

+CN−m
1

∑
j=0

|y(j)|Hm,N(I)+CN−m|G|Hm+1,N(I), (4.1)

for j=0,1 provided that N is sufficiently large, where C is a constant independent of N.
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Proof. Following the notations of (3.2b), we define

(
R(s(ti,θ)),φ(s(ti,θ))

)
N,ti

=
N

∑
k=0

R(s(ti,θk))φ(s(ti,θk))wk.

The numerical scheme (2.8a)-(2.8c) can be written as

y
(1)
i =y′−1+

ti+1

2

1

∑
j=0

(
Aj(s(ti,θ)),Y

(j)(qjs(ti,θ)+qj−1)
)

N,ti

+
ti+1

2

1

∑
j=0

(
Bj(s(ti,θ)),Y

(j)(s(ti,θ))
)

N,ti

+
∫ ti

−1
V(s)ds, (4.2a)

yi =y−1+
∫ ti

−1
Y(1)(s)ds, (4.2b)

vi =
ti+1

2

1

∑
j=0

(
Kj(ti,s(ti,θ)),Y

(j)(s(ti,θ))
)

N,ti

+G(ti). (4.2c)

In order to use Lemma 3.1, we restate Eqs. (4.2a) and (4.2c) as

y
(1)
i =y′−1+

ti+1

2

1

∑
j=0

∫ 1

−1
Aj(s(ti,θ))Y

(j)(qjs(ti,θ)+qj−1)dθ

+
ti+1

2

1

∑
j=0

∫ 1

−1
Bj(s(ti,θ))Y

(j)(s(ti,θ))dθ+
∫ ti

−1
V(s)ds− ti+1

2

1

∑
j=0

Ij(ti), (4.3a)

vi =
ti+1

2

1

∑
j=0

∫ 1

−1
Kj(ti,s(ti,θ))Y

(j)(s(ti,θ))dθ+G(ti)−
ti+1

2

1

∑
j=0

Ĩj(ti), (4.3b)

where

Ij(t)=
∫ 1

−1
Aj(s(t,θ))Y

(j)(qjs(t,θ)+qj−1)dθ−
(

Aj(s(t,θ)),Y
(j)(qjs(t,θ)+qj−1)

)

N,t

+
∫ 1

−1
Bj(s(t,θ))Y

(j)(s(t,θ))dθ−
(

Bj(s(t,θ)),Y
(j)(s(t,θ))

)

N,t
,

Ĩj(t)=
∫ 1

−1
Kj(t,s(t,θ))Y

(j)(s(t,θ))dθ−
(

Kj(t,s(t,θ)),Y
(j)(s(t,θ))

)

N,t
, j=0,1.

Following from (2.6c),we have

y
(1)
i =y′−1+

1

∑
j=0

∫ ti

−1
Aj(s)Y

(j)(qjs+qj−1)ds+
1

∑
j=0

∫ ti

−1
Bj(s)Y

(j)(s)ds

+
∫ ti

−1
V(s)ds− ti+1

2

1

∑
j=0

Ij(ti), (4.4a)



140 W. Zheng and Y. Chen / Adv. Appl. Math. Mech., 5 (2013), pp. 131-145

vi =
1

∑
j=0

∫ ti

−1
Kj(ti,s)Y

(j)(s)ds+G(ti)−
ti+1

2

1

∑
j=0

Ĩj(ti). (4.4b)

Incorporating with the estimation (3.1), we have

|Ij(t)|≤CN−m(|Aj|Hm,N(I)+|Bj|Hm,N(I))‖Y(j)‖L2(I),

| Ĩj(t)|≤CN−m|Kj(t,·)|Hm,N(I)‖Y(j)‖L2(I), j=0,1.

Multiplying Fi(t) on both sides of Eqs. (4.4a), (4.2b) and (4.4b) and summing up from i=0
to N yield

Y(1)(t)=y′−1+
1

∑
j=0

IN

∫ t

−1
Aj(s)Y

(j)(qjs+qj−1)ds+
1

∑
j=0

IN

∫ t

−1
Bj(s)Y

(j)(s)ds

+ IN

∫ t

−1
V(s)ds−

1

∑
j=0

Jj(t), (4.5a)

Y(t)=y−1+ IN

∫ t

−1
Y(1)(s)ds, (4.5b)

V(t)=
1

∑
j=0

IN

∫ t

−1
Kj(t,s)Y

(j)(s)ds+ IN G(t)−
1

∑
j=0

J̃j(t), (4.5c)

where

Jj(t)=
N

∑
i=0

ti+1

2
Ij(ti)Fi(t), J̃j(t)=

N

∑
i=0

ti+1

2
Ĩj(ti)Fi(t), j=0,1.

Similarly, multiplying Fi(t) on both sides of Eqs. (2.4a)-(2.4c) and summing up from i=0
to N yield

INy(1)(t)=y′−1+
1

∑
j=0

IN

∫ t

−1
Aj(s)y

(j)(qjs+qj−1)ds

+
1

∑
j=0

IN

∫ t

−1
Bj(s)y

(j)(s)ds+ IN

∫ t

−1
v(s)ds, (4.6a)

INy(t)=y−1+ IN

∫ t

−1
y(1)(s)ds, (4.6b)

INv(t)=
1

∑
j=0

IN

∫ t

−1
Kj(t,s)y

(j)(s)ds+ IN G(t). (4.6c)
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It follows from (4.5a)-(4.5c) and (4.6a)-(4.6c) that

ey(1)(t)+ INy(1)(t)−y(1)(t)=
1

∑
j=0

IN

∫ t

−1
Aj(s)ey(j)(qjs+qj−1)ds

+
1

∑
j=0

IN

∫ t

−1
Bj(s)ey(j)(s)ds+ IN

∫ t

−1
ev(s)ds+

1

∑
j=0

Jj(t), (4.7a)

ey(t)+ INy(t)−y(t)= IN

∫ t

−1
ey(1)(s)ds, (4.7b)

ev(t)+ INv(t)−v(t)=
1

∑
j=0

IN

∫ t

−1
Kj(t,s)ey(j)(s)ds+

1

∑
j=0

J̃j(t), (4.7c)

where

ey(1)(t)=y(1)(t)−Y(1)(t), ey(t)=y(t)−Y(t), ev(t)=v(t)−V(t).

Consequently,

ey(1)(t)=
∫ t

−1
ev(s)ds+

1

∑
j=0

∫ t

−1
Aj(s)ey(j)(qjs+qj−1)ds+

1

∑
j=0

∫ t

−1
Bj(s)ey(j)(s)ds

+
1

∑
j=0

Jj(t)+ f1(t)+ f2(t)+
1

∑
j=0

Hj(t), (4.8a)

ey(t)=
∫ t

−1
ey(1)(s)ds+ f3(t)+ f4(t), (4.8b)

ev(t)=
1

∑
j=0

∫ t

−1
Kj(t,s)ey(j)(s)ds+

1

∑
j=0

J̃j(t)+ f5(t)+
1

∑
j=0

H̃j(t), (4.8c)

where

f1(t)=y(1)(t)− INy(1)(t), f2(t)= IN

∫ t

−1
ev(s)ds−

∫ t

−1
ev(s)ds,

f3(t)=y(t)− IN y(t), f4(t)= IN

∫ t

−1
ey(1)(s)ds−

∫ t

−1
ey(1)(s)ds,

f5(t)=v(t)− IN v(t),

Hj(t)= IN

∫ t

−1
Aj(s)ey(j)(qjs+qj−1)ds−

∫ t

−1
Aj(s)ey(j)(qjs+qj−1)ds

+ IN

∫ t

−1
Bj(s)ey(j)(s)ds−

∫ t

−1
Bj(s)ey(j)(s)ds,

H̃j(t)= IN

∫ t

−1
Kj(t,s)ey(j)(s)ds−

∫ t

−1
Kj(t,s)ey(j)(s)ds, j=0,1.
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Due to Eqs. (4.8a)-(4.8c), we use the Dirichlet′s formula which sates
∫ t

−1

∫ s

−1
Φ(s,τ)dτds=

∫ t

−1

∫ t

τ
Φ(s,τ)dsdτ.

Provided the integral exists, we obtain

ey(1)(t)=
∫ t

−1
H(s,t)ey(1)(s)ds+

∫ t

−1
A1(s)ey(1)(q1s+q1−1)ds+ J(t), (4.9)

where

H(s,t)=
∫ t

s

(∫ τ

s
K0(τ,z)dz

)
dτ+

∫ t

s
K1(τ,s)dτ+

∫ t

s
B0(τ)dτ+

∫ t

s
A0(τ)dτ+B1(s),

J(t)=
∫ t

−1

( 1

∑
j=0

J̃j(s)+ f5(s)+
1

∑
j=0

H̃j(s)
)

ds+
∫ t

−1

∫ s

−1
K0(s,τ)( f3(τ)+ f4(τ))dτds

+
∫ t

−1
A0(s)( f3(q0s+q0−1)+ f4(q0s+q0−1))ds+

∫ t

−1
B0(s)( f3(s)+ f4(s))ds

+
1

∑
j=0

(Jj(t)+Hj(t))+ f1(t)+ f2(t).

By (4.9), we have

|ey(1)(t)|≤ max
(s,t)∈{−1≤s≤t≤1}

|H(s,t)|
∫ t

−1
|ey(1)(s)|ds

+ max
s∈[−1,1]

|A1(s)|
∫ t

−1
|ey(1)(q1s+q1−1)|ds+|J(t)|.

With the help of Lemma 3.4, we deduce that

‖ey(1)(t)‖L2(I)≤C‖J(t)‖L2(I)

≤C
5

∑
k=1

‖ fk(t)‖L2(I)+C
1

∑
j=0

(
‖Jj(t)‖L2(I)+‖ J̃j(t)‖L2(I)+‖Hj(t)‖L2(I)+‖H̃j(t)‖L2(I)

)
. (4.10)

Eq. (4.8b) leads to

‖ey(t)‖L2(I)6‖ey(1)(t)‖L2(I)+‖ f3(t)‖L2(I)+‖ f4(t)‖L2(I). (4.11)

We now apply Lemma 3.3 to obtain that

‖Jj(t)‖L2(I)≤C‖Ij(t)‖L∞(I)

≤CN−m(|Aj|Hm,N(I)+|Bj|Hm,N(I))(‖y(j)(t)‖L2(I)+‖ey(j)(t)‖L2(I)),

‖ J̃j(t)‖L2(I)≤C‖ Ĩj(t)‖L∞(I)

≤CN−m max
−1≤t≤1

|Kj(t,·)|Hm,N(I)(‖y(j)‖L2(I)+‖ey(j)(t)‖L2(I)), j=0,1.
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The L2 error bounds for the interpolation polynomials (see Lemma 3.2) gives

‖ f1(t)‖L2(I)≤CN−m|y(1)|Hm,N(I),

‖ f3(t)‖L2(I)≤CN−m|y|Hm,N(I),

‖ f5(t)‖L2(I)≤CN−(m+1)|v|Hm+1,N(I)

≤CN−m(|G|Hm+1,N(I)+|y|Hm,N(I)+|y(1)|Hm,N(I)).

By virtue of (3.4a) with m=1,

‖ f2(t)‖L2(I)≤CN−1‖ev(t)‖L2(I),

‖ f4(t)‖L2(I)≤CN−1‖ey(1)(t)‖L2(I),

‖Hj(t)‖L2(I)≤CN−1‖ey(j)(t)‖L2(I),

‖H̃j(t)‖L2(I)≤CN−1‖Kj(t,t)ey(j)(t)+
∫ t

−1
∂tKj(t,s)ey(j)(s)ds‖L2(I)

≤CN−1‖ey(j)(t)‖L2(I), j=0,1.

The above estimates, together with (4.10) and (4.11), yield

‖ey(j)(t)‖L2(I)≤CN−m
1

∑
j=0

(|Aj|Hm,N(I)+|Bj|Hm,N(I))‖y(j)‖L2(I)

+CN−m
1

∑
j=0

max
−1≤t≤1

|Kj(t,·)|Hm,N(I)‖y(j)‖L2(I)

+CN−m
1

∑
j=0

|y(j)|Hm,N(I)+CN−m|G|Hm+1,N(I), (4.12)

for j=0,1, which leads to (4.1). This completes the proof of the theorem.

Next, we extend the L2 error estimate to the L∞ space. The key technique is to use an
extrapolation between L2 and H1.

Theorem 4.2. Let y be the exact solution of the second order Volterra integro-differential equation
with pantograph delay (2.1), with initial condition (2.2). Let Y(1)(t), Y(t) and V(t) be defined in
Theorem 4.1. If y∈Hm+1(I) with I :=(−1,1) for some m≥1, we have

‖y(j)−Y(j)‖L∞(I)≤CN
1
2−m

1

∑
j=0

(|Aj|Hm,N(I)+|Bj|Hm,N(I))‖y(j)‖L2(I)

+CN
3
4−m

1

∑
j=0

|y(j)|Hm,N(I)+CN
3
4−m|G|Hm+1,N(I)

+CN
1
2−m

1

∑
j=0

max
−1≤t≤1

|Kj(t,·)|Hm,N(I)‖y(j)‖L2(I), (4.13)
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for j=0,1 provided that N is sufficiently large, where C is a constant independent of N.

Proof. Applying the inequality in the Sobolev space (see [9])

‖w‖L∞(a,b)≤
( 1

b−a
+2

) 1
2 ‖w‖

1
2

L2(a,b)
‖w‖

1
2

H1(a,b)
, ∀w∈H1(a,b), (4.14)

and Lemma 3.2, we get

‖y− INy‖L∞(I)≤C‖y− INy‖
1
2

L2(I)
‖y− INy‖

1
2

H1(I)

≤C
(

N−m|y|Hm,N(I)

) 1
2
(

N
3
2−m|y|Hm,N(I)

) 1
2

≤CN
3
4−m|y|Hm,N(I). (4.15)

Following the same procedure as in the proof of Theorem 4.1, we have the L∞ error esti-
mate with the help of (4.15) and Lemma 3.5.
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