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Abstract. The discontinuous Galerkin (DG) or local discontinuous Galerkin (LDG)

method is a spatial discretization procedure for convection-diffusion equations, which

employs useful features from high resolution finite volume schemes, such as the exact

or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax-

Wendroff time discretization procedure is an alternative method for time discretization

to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In

this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretiza-

tion procedure (LWDG) based on different numerical fluxes for finite volume or finite

difference schemes, including the first-order monotone fluxes such as the Lax-Friedrichs

flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We

systematically investigate the performance of the LWDG methods based on these differ-

ent numerical fluxes for convection terms with the objective of obtaining better perfor-

mance by choosing suitable numerical fluxes. The detailed numerical study is mainly

performed for the one-dimensional system case, addressing the issues of CPU cost, ac-

curacy, non-oscillatory property, and resolution of discontinuities. Numerical tests are

also performed for two dimensional systems.

AMS subject classifications: 65M60, 65M99, 35L65

Key words: Discontinuous Galerkin method, Lax-Wendroff type time discretization, numerical flux,

approximate Riemann solver, limiter, WENO scheme, high order accuracy.

1. Introduction

In this paper, we develop fluxes for the method of DG with Lax-Wendroff time dis-

cretization procedure (LWDG) based on different numerical fluxes for finite volume or fi-

nite difference schemes, including the first-order monotone fluxes such as the Lax-Friedrichs

flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes, and in-

vestigate the performance of the LWDG method based on different numerical fluxes for

convection terms for solving nonlinear convection-diffusion scalar equations or systems:
¨

ut +∇ · f (u) =∇ · f d(u,∇ · u),
u(x , 0) = u0(x),

(1.1)
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where f and f d are convection and diffusion terms, respectively, with the objective of

obtaining better performance by choosing suitable numerical fluxes.

The discontinuous Galerkin (DG) method [3–7] for solving hyperbolic conservation

laws and its extension to time-dependent convection-diffusion equations, the local DG

(LDG) methods [1, 8, 9] are high order finite element methods employing the useful fea-

tures from high resolution finite volume schemes, such as the exact or approximate Rie-

mann solvers, and total variation bounded (TVB) limiters [26].

DG or LDG method is a spatial discretization procedure, namely, it is a procedure to ap-

proximate the spatial derivative terms in (1.1). The time derivative term can be discretized

by explicit, nonlinearly stable high order Runge-Kutta time discretizations [25,27], and the

scheme is termed as RKDG or RKLDG scheme, respectively. An alternative approach could

be using a Lax-Wendroff type time discretization procedure, which is also called the Taylor

type referring to a Taylor expansion in time or the Cauchy-Kowalewski type referring to the

similar Cauchy-Kowalewski procedure in partial differential equations (PDEs) [28]. This

approach is based on the idea of the classical Lax-Wendroff scheme [17], and it relies on

converting all the time derivatives in a temporal Taylor expansion into spatial derivatives

by repeatedly using the PDE and its differentiated versions. The spatial derivatives are then

discretized by, e.g. the DG approximations. The methods are termed as LWDG methods

for conservation laws [20]. Lax-Wendroff type time discretization procedure is also used

by Dumbser and Munz [10, 11], in which they developed the ADER (Arbitrary high order

schemes using DERivatives, see [29]) discontinuous Galerkin method using generalized

Riemann solvers [29]. ADER methods also use the Lax-Wendroff procedure to convert

time derivatives to spatial derivatives. The Lax-Wendroff type time discretization was also

used in high order finite volume schemes [14,29] and finite difference schemes [22].

As pointed out in [20], the LWDG is a one step, explicit, high order finite element

method, the limiter is performed once every time step. As a result, LWDG is more compact

than RKDG and the Lax-Wendroff time discretization procedure is more cost effective than

the Runge-Kutta time discretizations for certain problems including two dimensional Euler

systems of compressible gas dynamics when nonlinear limiters are applied.

An important component of the DG methods for solving conservation laws (1.1) is the

numerical flux, based on exact or approximate Riemann solvers, which is borrowed from

finite difference and finite volume methodologies. In most of the DG papers in the liter-

ature, the two-point, first order monotone Lax-Friedrichs (LF) numerical flux is used due

to its simplicity. However, there exist many other numerical fluxes based on various ap-

proximate Riemann solvers in the literature, such as other two-point, first order monotone

fluxes and essentially two-point TVD flux, which could also be used in the context of DG

methods. The local LF (LLF) numerical flux, the Godunov flux [13], the Engquist-Osher

(EO) flux [12,18] for the scalar case and its extension to systems (often referred to as the

Osher-Solomon flux [18]), the HLL flux [15] and a modification of the HLL flux, often re-

ferred to as the HLLC flux [31] are based on the approximate Riemann solver, these fluxes

are two-point, first order monotone fluxes. One of the essentially two-point TVD fluxes is

the flux limiter centered (FLIC) flux [30] with the following essentially two-point property:

f̂ (ul ,u,u,ur ) = f (u) for any ul and ur , which combines a low order monotone flux and a
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high order flux with a flux limiter to guarantee the TVD property. The other fluxes such as

generalized Riemann solvers [2,29] can also be used as numerical flux for DG methods.

In [20], the simple Lax-Friedrichs flux is used to design the LWDG schemes for con-

servation laws, followed the procedure of [20], in [24] we systematically studied and

compared the performance of the LWDG method based on different numerical fluxes for

conservation laws. But when the procedure of [20] is extended to convection-diffusion

equations, the procedure to convert all time derivatives to spatial derivatives is becoming

very complexity. In order to overcome this difficulty, in this paper, we develop a new LWDG

scheme based on LDG [1, 8, 9] space discretization and Lax-Wendroff time discretization

procedure in [22], in which we introduce the new intermediate variables for both time

and spatial derivatives, and the procedure is more simply than the one based on the ex-

tension of [20]. The fluxes for the LWDG method based on different numerical fluxes

for finite volume or finite difference schemes were developed, including the first-order

monotone fluxes and the second-order TVD fluxes, then we investigate the performance of

the LWDG method based on different numerical fluxes for solving nonlinear convection-

diffusion equations.

We review and describe the details of LWDG methods and the fluxes under consider-

ation in Section 2. We present extensive numerical experiments to compare their perfor-

mance in Section 3. Concluding remarks are given in Section 4.

2. Description of the LWDG methods and the numerical fluxes

In this section, we describe the construction of the LWDG methods based on the proce-

dure of LDG methods and Lax-Wendroff time discretization procedure adopted in [22] for

convection-diffusion equations, and numerical fluxes for consideration. We start with the

description of the LWDG method for convection-diffusion equations.

2.1. Description of LWDG

Consider the one dimensional convection-diffusion equations:
¨

ut + f (u)x = f d(u,ux )x ,

u(x , 0) = u0(x).
(2.1)

We denote the cells by Ii = [x i− 1

2
, x i+ 1

2
], the cell centers by x i =

1

2

�
x i− 1

2
+ x i+ 1

2

�
and the

cell sizes by ∆x i = x i+ 1

2

− x i− 1

2

. Let ∆t be the time step, tn+1 = tn +∆t. We denote by

u(r) the r-th order time derivative of u, namely ∂
r u

∂ t r . We also use u′, u′′ and u′′′ to denote

the first three time derivatives of u. By a temporal Taylor expansion we obtain

u(x , tn+1) = {u+∆tu′ +
∆t2

2
u′′ +

∆t3

6
u′′′ + · · · }(x , tn). (2.2)

If we would like to obtain (k+1)th order accuracy in time, we would need to approximate

the first k+1 time derivatives: u′, · · · ,u(k+1). We will proceed up to the third order in time

in this paper, although the procedure can be naturally extended to any higher orders.
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The DG solution as well as the test function space is given by

V k
h
= {p : p|Ii

∈ Pk(Ii),∀i},

where Pk(Ii) is the space of polynomials of degree ≤ k on the cell Ii . We adopt a local

orthogonal basis over Ii , {v
(i)

l
(x), l = 0,1, · · · , k}, namely the scaled Legendre polynomials

v
(i)
0 (x) = 1, v

(i)
1 (x) =

x − x i

∆x i

, v
(i)
2 (x) =

�
x − x i

∆x i

�2
−

1

12
, · · · .

Other basis functions can be used as well, without changing the numerical method, since

the finite element DG method depends only on the choice of space V k
h

, not on the choice

of its basis functions.

The numerical solution uh(x , t) in the space V k
h

at t = tn can be written as:

uh(x , tn) =

k∑

l=0

u
(l)

i
(t)v

(i)

l
(x), for x ∈ Ii , (2.3)

and the degrees of freedom u
(l)

i
(tn) are the moments defined by

u
(l)

i
(tn) =

1

al

∫

Ii

uh(x , tn)v
(i)

l
(x)d x , l = 0,1, · · · , k,

where al =
∫

Ii
(v
(i)

l
(x))2d x are the normalization constants since the basis is not orthonor-

mal. In order to determine the approximate solution, we evolve the degrees of freedom

u
(l)

i
:

u
(l)

i
(tn+1) =u

(l)

i
(tn) +∆tu

′(l)
i
(tn) +

∆t2

2
u
′′(l)
i
(tn)

+ · · ·+
∆tk+1

(k+ 1)!
u
(k+1)(l)

i
(tn), l = 0,1, · · · , k, (2.4)

where u
′(l)
i
(tn),u

′′(l)
i
(tn), · · · ,u(k+1)(l)

i
(tn), l = 0,1, · · · , k are moments of temporal deriva-

tive terms u′,u′′, · · · ,u(k+1), respectively. The moments of the temporal derivative terms

in (2.4) can be replaced with the spatial ones using the governing equation (2.1) with

following procedure:

Step 1. We introduce the new variable q = ux , we have:
¨

u′ = (− f (u) + f d(u,q))x ,

q = ux .
(2.5)

The expression of u′ and q in the space V k
h

can be written as:

u′(x , tn) =

k∑

l=0

u
′(l)
i
(tn)v

(i)

l
(x), for x ∈ Ii , (2.6)

q(x , tn) =

k∑

l=0

q
(l)

i
(tn)v

(i)

l
(x), for x ∈ Ii . (2.7)
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Step 1.1. Reconstruction of q = ux in V k
h

. Multiply q = ux with a basis v
(l)

i
, l = 0,1, · · · , k

of V k
h

, and integrate over the cell Ii , we obtain:

alq
(l)

i
=

∫

Ii

ux v
(i)

l
(x)d x = u(x i+1/2, tn)v

(i)

l
(x i+1/2)

− u(x i−1/2, tn)v
(i)

l
(x i−1/2)−

∫

Ii

u
dv
(i)

l
(x)

d x
d x . (2.8)

In order to determine the approximate solution, we replace u(x i+1/2, tn) with a numer-

ical flux ûi+1/2. In this paper, we choose

ûi+1/2 = uh(x−
i+1/2

, tn), v
(i)

l
(x i+1/2) = v

(i)

l
(x−

i+1/2
), v

(i)

l
(x i−1/2) = v

(i)

l
(x+

i−1/2
).

The integral in (2.8), can be integrated exactly when u(x , tn) is replaced by approximate

solution uh(x , tn).

Step 1.2. Reconstruction of u′ = (− f (u) + f d(u,q))x in V k
h

. Multiply u′ with a basis

v
(l)

i
, l = 0,1, · · · , k of V k

h
, and integrate over the cell Ii , we obtain:

alu
′(l)
i
=

∫

Ii

(− f (u) + f d(u,q))x v
(i)

l
(x)d x

= (− f (u) + f d(u,q))(x , tn)v
(i)

l
(x)

���
x=xi+1/2

x=xi−1/2

−

∫

Ii

(− f (u) + f d(u,q))
dv
(i)

l
(x)

d x
d x . (2.9)

In order to determine the approximate solution, we replace fluxes f and f d at x =

x i+1/2 with numerical fluxes f̂i+1/2 andÓf d i+1/2, respectively. In this paper, we choose

Óf d i+1/2 = f d(uh(x+
i+1/2

, tn),q(x+
i+1/2

, tn)),

v
(i)

l
(x i+1/2) = v

(i)

l
(x−

i+1/2
), v

(i)

l
(x i−1/2) = v

(i)

l
(x+

i−1/2
).

The numerical fluxes for convection term f̂i+1/2 will be presented in detail in Subsection

2.2. The integral term in (2.9) can be computed either exactly or by a suitable numerical

quadrature accurate to at least O (∆x k+l+2). In this paper we use two and three point

Gaussian quadratures for k = 1 and k = 2 respectively.

Step 2. The reconstruction of the second time derivative and the variable q′ = (u′)x :

¨
u′′ = −( f (u)t − f d(u,q)t)x = −( f

′(u)u′− f du(u,q)u′ − f dq(u,q)q′)x ,

q′ = (u′)x .
(2.10)

are obtained as following. Notice that we will only need an approximation of order k, one

order lower than before, because of the extra ∆t factor in (2.4).
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Step 2.1. The procedure of reconstruction of q′ = u′x from u′ is similar to that of q in step

1.1 with numerical flux û′
i+1/2

= u′(x−
i+1/2

, tn), but we can reconstruct q′ just in V k−1
h

.

Step 2.2. The procedure of reconstruction of

u′′ = −( f ′(u)u′− f du(u,q)u′ − f dq(u,q)q′)x ,

in V k−1
h

is similar to that in Step 1.2. As in Step 1.2, we split the fluxes f ′(u)u′ −
f du(u,q)u′ − f dq(u,q)q′ into two parts, one comes from convection term, f ′(u)u′; an-

other from diffusion term, − f du(u,q)u′ − f dq(u,q)q′. Here we just replace f ′(u)u′ at

x i+1/2 with a central average, that is, we use 1

2
( f ′(u−

i+1/2
)(u′)−

i+1/2
+ f ′(u+

i+1/2
)(u′)+

i+1/2
)

to replace value of f ′(u)u′ at x i+1/2. It seems that a more costly numerical flux approxi-

mation is not needed here to control spurious oscillations, presumably because this term is

multiplied by an extra ∆t anyway. For the term comes from diffusion, as in Step 1.2, we

again use (− f du(u,q)u′ − f dq(u,q)q′)+
i+1/2

to replace value of − f du(u,q)u′ − f dq(u,q)q′

at x i+1/2.

Step 3. The reconstruction of the third time derivative:

ut t t =− ( f
′(u)u′′ + f ′′(u)(u′)2)x − ( f duu(u,q)(u′)2+ 2 f duq(u,q)u′q′

+ f dqq(u,q)(q′)2+ f du(u,q)u′′ + f dq(u,q)q′′)x .

Notice that we will only need an approximation of order k − 1, one order lower than

the second time derivative, because of the extra ∆t2 factor in (2.4), the procedure of

reconstruction of the third time derivative is similar as that of the second time derivative,

but we just reconstruct it in V k−2
h

.

For systems of conservation laws (2.1), u(x , t) = (u1(x , t), · · · ,um(x , t))T is a vector

and f (u) = ( f 1(u1, · · · ,um), · · · , f m(u1, · · · ,um))T is a vector function of u. As before, the

time derivatives in (2.2) are replaced by the spatial derivatives using the PDE. The DG

discretization is then performed on each component.

For two dimensional cases, we consider the convection-diffusion equations:

¨
ut + f (u)x + g(u)y = f d(u,ux ,uy)x + gd(u,ux ,uy)y ,

u(x , y, 0) = u0(x , y).
(2.11)

By a temporal Taylor expansion we obtain

u(x , y, t +∆t) = u(x , y, t) +∆tu′ +
∆t2

2
u′′ +

∆t3

6
u′′′ + · · · .

For example, for third order accuracy in time we would need to reconstruct three time

derivatives: u′,u′′,u′′′.

We again use the PDE (2.11) to replace time derivatives by spatial derivatives:

¨
u′ = −( f (u)− f d(u,q, s))x − (g(u)− f d(u,q, s))y ,

q = ux , s = uy ,
(2.12)
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



u′′ = −( f ′(u)u′− f duu′− f dqq′ − f dss
′)x

−(g′(u)u′− gduu′− gdqq′− gdss
′)y ,

q′ = u′x , s′ = u′y ,

(2.13)

and





u′′′ = −( f ′′(u)(u′)2 + f ′(u)u′′ − f duu(u
′)2− f dqq(q

′)2− f dss(s
′)2

−2 f duqu′q′− 2 f dusu
′s′ − 2 f dqsq

′s′ − f duu′′ − f dqq′′− f dss
′′)x

−(g′′(u)(u′)2 + g′(u)u′′ − gduu(u
′)2− gdqq(q

′)2− gdss(s
′)2

−2gduqu′q′− 2gdusu
′s′ − 2gdqsq

′s′ − gduu′′ − gdqq′′ − gdss
′′)y ,

q′′ = u′′x , s′′ = u′′y .

(2.14)

Then we follow the Step 1, Step 2 and Step 3 to reconstruct the first, the second and

the third time derivatives, respectively.

In order to maintain stability and non-oscillatory property of the DG method for solving

conservation laws (1.1) with strong shocks, a nonlinear limiter must be applied. In the nu-

merical experiments in this paper, we will use the TVB limiter adopted in [7] only to detect

troubled cells, where a WENO limiter developed in [23] will be used for the reconstruction

of first and higher order moments of the polynomials inside those troubled cells. We refer

to [23] for the details of this WENO reconstruction and will not repeat it here. For the case

of hyperbolic systems, to identify the troubled cells, we could either use a component-wise

indicator or a characteristic one. In this paper we will use the characteristic indicator.

2.2. Description of fluxes for the convection term for LWDG schemes

We now review the two-point or essentially two-point numerical fluxes for the convec-

tion term. Numerical experiments to compare their performance for the LWDG method

will be given in next section.

For the one dimensional system case, we will consider Euler or Navier-Stokes equations

of compressible gas dynamics, namely (2.1) with

u = (ρ,ρv, E)T , f (u) = (ρv,ρv2+ p, v(E + p))T , (2.15)

with f d(u,ux ) = 0 and

f d(u,ux) = (0,
1

Re
(
4

3
vx x),

1

Re
[

2

3
(v2)x x +

1

(γ− 1)Pr
(c2)x x])

T

for Euler and Navier-Stokes equations, respectively, where ρ is the density, v is the velocity,

E is the total energy, p is the pressure, which is related to the total energy by E =
p

γ−1
+

1

2
ρv2 with γ = 1.4 for air, c =

p
γp/ρ is the sound speed. Pr is the Prandtl number, with

Pr=0.7. Re is the Reynolds number.

1. The Lax-Friedrichs (LF) flux and the local LF (LLF) flux.
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The LF flux is one of the simplest and most widely used building blocks for the DG

method and high order finite volume methods such as the ENO and WENO schemes. How-

ever, the numerical viscosity of the LF flux is also the largest among monotone fluxes for

scalar problems. The LF or the LLF flux is defined by:

f̂i+1/2 =
1

2
( f −

i+1/2
+ f +

i+1/2
−α(u+

i+1/2
− u−

i+1/2
)), (2.16)

where u±
i+1/2

and f ±
i+1/2

are the left and right limits of the discontinuous solution uh and f

at the cell interface x i+1/2, respectively. For the LF flux, α is taken as an upper bound over

the whole line for | f ′(u)| in the scalar case, or for the absolute value of eigenvalues of the

Jacobian for the system case, and for the LLF flux α is taken as an upper bound of | f ′(u)|
between u− and u+.

2. The Godunov flux.

The Godunov flux [13,30] is based on the exact Riemann solver, which has the smallest

numerical viscosity among all monotone fluxes for the scalar case but could be very costly

to evaluate in the system case, as it often lacks explicit formulas and relies on iterative

procedures for its evaluation. The Godunov flux is defined as

f̂ G(u−,u+) = f (u(0)),

where u(0) is the solution of the local Riemann problem at x/t = 0 (the solution of the

local Riemann problem is a function of the single variable x/t only due to self-similarity),

i.e. the exact solution to the conservation law (2.1) with the initial condition:

u(x , 0) =

¨
u− for x ≤ 0,

u+ for x > 0.

For the scalar case, the Godunov flux can be expressed in a closed form as

f̂ G(u−,u+) =

¨
minu−≤u≤u+ f (u) if u− ≤ u+,

maxu+≤u≤u− f (u) if u− > u+.
(2.17)

However, for most nonlinear systems, the Godunov flux cannot be expressed in a closed

form. Its evaluation would in general require an iterative procedure. We refer to [30]

and the references therein for the details of the exact Riemann solver for systems in ap-

plications, such as the Euler equations (2.15), which are needed for the evaluation of the

Godunov flux for such systems.

3. The Engquist-Osher (EO) flux and the Osher-Solomon flux [12,18].

The Engquist-Osher (EO) flux [12] for the scalar case and its extension to systems

(often referred to as the Osher-Solomon flux [18]) are smoother than the Godunov flux

with almost as small numerical viscosity, and have the advantage of explicit formulas for

the scalar case and for some well known physical systems, such as the Euler equations of

compressible gas dynamics.
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For the scalar case the EO flux is given by:

f̂ EO(u−,u+) =
1

2


 f (u−) + f (u+)−

∫ u+

u−
| f ′(u)|du


 , (2.18)

For the system case, the explicit formulas for the Osher-Solomon flux for the Euler equa-

tions (2.15) refers to [18,21]; we do not repeat it here to save space.

4. The Harten-Lax-van Leer (HLL) flux [15,30].

The HLL flux [15] is based on the approximate Riemann solver with only three constant

states separated by two waves. The HLL flux for the Euler equations (2.15) is given by:

f̂ H L L(u−,u+) =





f (u−), if 0≤ s−,
s+ f (u−)−s− f (u+)+s−s+(u+−u−)

s+−s−
, if s− ≤ 0≤ s+,

f (u+), if s+ ≤ 0.

(2.19)

where the lower and upper bounds of the wave speed, s− and s+, must be estimated. We

use the pressure-velocity estimates [30]

s− = v−− c−q−, s∗ = v∗, s+ = v++ c+q+, (2.20)

where, for K = ±,

qK =

¨
1, if p∗ ≤ pK ,

(1+
γ+1

2γ
(p∗/pK − 1))1/2, if p∗ > pK

with

p∗ =
1

2
(p−+ p+)−

1

2
(v+− v−)ρ c, v∗ =

1

2
(v−+ v+)−

p+ − p−

2ρ c
,

ρ =
1

2
(ρ− +ρ+), c =

1

2
(c− + c+).

5. The HLLC flux – a modification of the HLL flux [30,31].

The HLLC flux is a modification of the HLL flux, whereby the missing contact and shear

waves are restored. The HLLC flux for the Euler equations (2.15) is given by:

f̂ H L LC(u−,u+) =





f (u−), if 0≤ s−,

f (u−) + s−(u∗− − u−), if s− ≤ 0≤ s∗,

f (u+) + s+(u∗+ − u+), if s∗ ≤ 0≤ s+,

f (u+), if s+ ≤ 0,

(2.21)

where, for K = ±,

u∗K = ρK
sK − vK

sK − s∗




1

s∗

EK

ρK + (s
∗ − vK)[s∗ +

pK

ρK (sK−vK )
]


 . (2.22)
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The definitions of s−, s∗ and s+ are given in (2.20).

6. The first-order centered (FORCE) flux [30].

The FORCE flux is given by:

f̂ FORC E(u−,u+) =
1

2

�
f̂ LF(u−,u+) + f̂ R(u−,u+)

�
, (2.23)

where f̂ R is the second order Richtmyer flux given by

f̂ R(u−,u+) = f (u∗), u∗ =
1

2

�
u− + u+ −

∆t

∆x
( f (u+)− f (u−))

�
. (2.24)

This flux is the average of the LF flux and the second order Richtmyer flux, hence its

viscosity is smaller than that of the LF flux.

7. A flux limiter centered (FLIC) flux [30].

The general flux limiter approach combines a low order monotone flux and a high order

flux. The FLIC flux we use has the FORCE flux as the low order flux and the Richtmyer flux

as the high order flux:

f̂ F LI C(u−,u+) = f̂ FORC E(u−,u+) +φi+1/2[ f̂
R(u−,u+)− f̂ FORC E(u−,u+)], (2.25)

where φi+1/2 is a flux limiter. There are several possible choices for the flux limiter such

as the superbee, van Leer and the minbee flux limiters [30]. Following [30], for the Euler

equation we use the following procedure: we first define q = E (total energy) and set

r−
i+1/2

=
∆qi−1/2

∆qi+1/2

, r+
i+1/2

=
∆qi+3/2

∆qi+1/2

,

where ∆qi−1/2 = qi − qi−1, and qi is the cell average of q on the cell Ii . We then compute

a single flux limiter

φi+1/2 =min(φ(r−
i+1/2

), φ(r+
i+1/2

)),

and apply it to all components of the flux. In this paper we use the minbee limiter:

φ(r) =





0, r ≤ 0,

r, 0≤ r ≤ 1,

1, r ≥ 1.

Clearly, if u− = u+ = u, then f̂ F LI C(u,u) = f (u). Hence even if the FLIC flux depends

on more than the two-point u− and u+ through the limiter φi+1/2 and we are abusing

notations when we denote it by f̂ F LI C(u−,u+), it is indeed an essentially two-point flux as

defined before, hence can be used as a flux for the DG method.

In next section we will use these fluxes to perform numerical experiments.
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onds) for the LWDG methods with di�erent �uxes, for the a

ura
y testproblem of Euler equations. Total CPU time for N = 10, 20, · · · , 1280 
ells is re
orded.
Flux LF LLF G EO HLL HLLC FORCE FLIC

k = 1 23.64 23.80 43.93 47.27 27.82 28.16 25.19 26.76

k = 2 80.20 81.75 112.89 120.21 87.77 88.24 83.31 86.65Table 2: CPU time (in se
onds) for the LWDG methods with di�erent �uxes, for the a

ura
ytest problem of Navier-Stokes equations with Reynolds number Re=10000. Total CPU time for
N = 10, 20, · · · , 1280 
ells is re
orded.

Flux LF LLF G EO

k = 1 59.63 59.69 81.43 83.67

k = 2 269.68 270.44 305.23 312.30

Flux HLL HLLC FORCE FLIC

k = 1 63.51 63.68 61.54 62.02

k = 2 276.94 277.20 272.65 274.13

3. Numerical results

In this section we perform extensive numerical experiments to compare the perfor-

mance of the LWDG method based on the eight different fluxes outlined in the previous

section. The detailed numerical study is mainly performed for the one dimensional system

case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution

of discontinuities. Numerical tests are also performed for two dimensional systems. In

all the figures, we plot only the cell averages of the numerical solution. For CPU time

comparison, all the computations are performed on a Dell Server 1850 with CPU Xeon

P4-3.4GHz and 4GB ram. We denote the LWDG scheme with the flux “X” as LWDG-X, such

as LWDG-LF for the LWDG scheme with the LF flux. In our numerical experiments, the CFL

numbers c f lc for convection terms are taken as 0.2 and 0.12, and for diffusion terms the

CFL numbers c f ld are taken as 0.01 and 0.003 for diffusion terms, for k = 1 and k = 2

(second and third order accuracy), respectively, and time step

∆t = 1
�
(

α

c f lc ∗∆x
+

1

Re ∗ c f ld ∗∆x2
),

where, α is taken as an upper bound over the whole line for the absolute value of eigen-

values of f ′(u).

Example 3.1. We solve the one dimensional nonlinear system of Euler and Navier-Stokes

equations (2.15). The initial condition is set to be ρ(x , 0) = 1+ 0.2 sin(πx), v(x , 0) = 1,

p(x , 0) = 1, with a 2-periodic boundary condition. The exact solution for Euler equations

is ρ(x , t) = 1+ 0.2 sin(π(x − t)), v(x , t) = 1, p(x , t) = 1. For Navier-Stokes equations,

we add a source term to ensure the exact solution is also ρ(x , t) = 1+ 0.2 sin(π(x − t)),

v(x , t) = 1, p(x , t) = 1. We compute the solution up to t = 2 and TVB constant M = 0.01.

In Tables 1 and 2 we provide a CPU time comparison for the LWDG schemes with different



446 J. QiuTable 3: Euler equations. The numeri
al errors and the orders of a

ura
y for the density ρ, and theratios of the numeri
al errors by LWDG with di�erent �uxes 
ompared with those by the LWDG-LFs
heme. k = 1.
N flux L1 error L1 order error ratio L∞ error L∞ order error ratio

LF 3.2821E-05 2.0080 1.0000 1.4322E-04 1.9628 1.0000

LLF 3.3058E-05 2.0083 1.0072 1.5099E-04 1.9683 1.0543

G 4.4033E-05 2.0566 1.3416 1.9697E-04 1.9316 1.3753

80 EO 4.4033E-05 2.0566 1.3416 1.9697E-04 1.9316 1.3753

HLL 3.9933E-05 2.0478 1.2167 1.8936E-04 1.9300 1.3222

HLLC 4.4033E-05 2.0566 1.3416 1.9697E-04 1.9316 1.3753

FORCE 3.2895E-05 2.0085 1.0023 1.4395E-04 1.9624 1.0051

FLIC 3.2854E-05 2.0079 1.0010 1.4486E-04 1.9584 1.0115

LF 2.0428E-06 2.0020 1.0000 9.1257E-06 1.9907 1.0000

LLF 2.0598E-06 2.0015 1.0083 9.4642E-06 2.0021 1.0371

G 2.6846E-06 2.0112 1.3142 1.2727E-05 1.9842 1.3947

320 EO 2.6846E-06 2.0112 1.3142 1.2727E-05 1.9842 1.3947

HLL 2.4510E-06 2.0075 1.1998 1.2251E-05 1.9836 1.3424

HLLC 2.6846E-06 2.0112 1.3142 1.2727E-05 1.9842 1.3947

FORCE 2.0471E-06 2.0020 1.0021 9.1752E-06 1.9906 1.0054

FLIC 2.0456E-06 2.0019 1.0014 9.3557E-06 1.9786 1.0252

LF 1.2755E-07 2.0005 1.0000 5.7305E-07 1.9977 1.0000

LLF 1.2859E-07 1.9968 1.0082 5.9471E-07 2.0451 1.0378

G 1.6688E-07 2.0026 1.3084 8.0194E-07 1.9961 1.3994

1280 EO 1.6688E-07 2.0026 1.3084 8.0189E-07 1.9961 1.3993

HLL 1.5265E-07 2.0016 1.1969 7.7210E-07 1.9960 1.3474

HLLC 1.6688E-07 2.0026 1.3084 8.0189E-07 1.9961 1.3993

FORCE 1.2781E-07 2.0005 1.0021 5.7619E-07 1.9977 1.0055

FLIC 1.2764E-07 2.0005 1.0007 5.9196E-07 1.9993 1.0330

fluxes. The numerical errors and the orders of accuracy for the density ρ, and ratios of the

numerical errors for comparison with the LWDG-LF scheme are shown in Tables 3-6.

We can see that the LWDG-LF scheme costs the least CPU time for each of the cases

k = 1 and 2. For Euler equations, the LWDG-G and LWDG-EO schemes cost 100% more

than that of the LWDG-LF scheme for k = 1 and 40% for k = 2, the LWDG-HLL and LWDG-

HLLC schemes cost about 20% more than that of the LWDG-LF scheme for k = 1 and 10%

for k = 2, the LWDG-LLF, LWDG-FORCE and LWDG-FLIC schemes cost a little more than

that of the LWDG-LF scheme for both k = 1 and 2. For Navier-Stokes equations, the LWDG-

G and LWDG-EO schemes cost 40% more than that of the LWDG-LF scheme for k = 1 and

15% for k = 2, the LWDG-HLL and LWDG-HLLC schemes cost about 8% more than that

of the LWDG-LF scheme for k = 1 and 3% for k = 2. The LWDG-LLF, LWDG-FORCE and

LWDG-FLIC schemes cost a little more than that of the LWDG-LF scheme for both k = 1 and

2 and for both Euler and Navier-Stokes equations. Of course, this CPU time comparison

depends on our specific implementation of these fluxes and also on the specific test case

(for the Godunov flux which has an iteration procedure and may converge with different

number of steps for different solutions), but it does give the correct ball-park of the relative
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al errors and the orders of a

ura
y for the density ρ, and theratios of the numeri
al errors by LWDG with di�erent �uxes 
ompared with those by the LWDG-LFs
heme. k = 2.
N flux L1 error L1 order error ratio L∞ error L∞ order error ratio

LF 5.5999E-07 2.9838 1.0000 2.6869E-06 2.9770 1.0000

LLF 5.2588E-07 2.9890 0.9391 2.5654E-06 2.9829 0.9548

G 2.7593E-07 3.0008 0.4927 1.6137E-06 2.9971 0.6006

80 EO 2.7592E-07 3.0008 0.4927 1.6137E-06 2.9971 0.6006

HLL 3.1371E-07 2.9993 0.5602 1.7692E-06 2.9986 0.6584

HLLC 2.7592E-07 3.0008 0.4927 1.6137E-06 2.9971 0.6006

FORCE 5.5433E-07 2.9844 0.9899 2.6668E-06 2.9777 0.9925

FLIC 5.5454E-07 2.9849 0.9903 2.6670E-06 2.9779 0.9926

LF 8.7809E-09 2.9990 1.0000 4.2201E-08 2.9985 1.0000

LLF 8.2333E-09 2.9997 0.9376 4.0197E-08 2.9994 0.9525

G 4.3146E-09 2.9989 0.4914 2.5332E-08 2.9947 0.6003

320 EO 4.3110E-09 3.0000 0.4910 2.5231E-08 2.9998 0.5979

HLL 4.9024E-09 3.0000 0.5583 2.7605E-08 3.0007 0.6541

HLLC 4.3110E-09 3.0000 0.4910 2.5231E-08 2.9998 0.5979

FORCE 8.6910E-09 2.9990 0.9898 4.1879E-08 2.9985 0.9924

FLIC 8.6918E-09 2.9992 0.9899 4.1879E-08 2.9985 0.9924

LF 1.3723E-10 2.9999 1.0000 6.6135E-10 2.9961 1.0000

LLF 1.2862E-10 2.9969 0.9373 6.2901E-10 2.9979 0.9511

G 7.5319E-11 2.8541 0.5488 5.2448E-10 2.6509 0.7930

1280 EO 6.7365E-11 2.9999 0.4909 3.9633E-10 2.9925 0.5993

HLL 7.6601E-11 3.0000 0.5582 4.3210E-10 2.9970 0.6534

HLLC 6.7365E-11 2.9999 0.4909 3.9635E-10 2.9925 0.5993

FORCE 1.3582E-10 2.9999 0.9898 6.5632E-10 2.9961 0.9924

FLIC 1.3583E-10 3.0000 0.9898 6.5634E-10 2.9960 0.9924

CPU costs of the LWDG method using these different fluxes.

On the numerical errors, for the case of k = 1, the L1 and L∞ errors of LWDG-LF

are smallest for the same meshes among all schemes, but for the case of k = 2, errors of

LWDG-LF are largest.

For the case of k = 1, the L1 and L∞ errors of LWDG-G, LWDG-EO, LWDG-HLL and

LWDG-HLLC schemes are about 30%, 30%, 20% and 30% larger than those by the LWDG-

LF scheme for the same meshes, respectively. For the case of k = 2, the L1 and L∞ errors

of LWDG-G, LWDG-EO, LWDG-HLL and LWDG-HLLC schemes are about 30-70% of those

by the LWDG-LF scheme for the same meshes. The L1 and L∞ errors of the LWDG-LLF,

LWDG-FORCE and LWDG-FLIC schemes are similar to those of the LWDG-LF scheme for

both k = 1 and 2 cases. This indicates that we have to be cautious when discussing about

the accuracy advantage of various fluxes as this may depend on the order of accuracy of

the scheme for the nonlinear systems case, though it was clearly shown that the Godunov

flux is always superior in accuracy compared to the more diffusive LLF flux for DG schemes

of any order of accuracy between two and six for elastic waves problem in [19].

Example 3.2. We consider the interaction of blast waves of the Euler equation (2.15) with



448 J. QiuTable 5: Navier-Stokes equations, Reynolds number Re=10000. The numeri
al errors and the ordersof a

ura
y for the density ρ, and the ratios of the numeri
al errors by LWDG with di�erent �uxes
ompared with those by the LWDG-LF s
heme. k = 1.
N flux L1 error L1 order error ratio L∞ error L∞ order error ratio

LF 3.2836E-05 2.0081 1.0000 1.4311E-04 1.9628 1.0000

LLF 3.3074E-05 2.0083 1.0072 1.5093E-04 1.9682 1.0547

G 4.3346E-05 2.0684 1.3201 1.9562E-04 1.9347 1.3669

80 EO 4.3345E-05 2.0684 1.3200 1.9562E-04 1.9348 1.3669

HLL 3.9211E-05 2.0603 1.1941 1.8420E-04 1.9488 1.2871

HLLC 4.3346E-05 2.0684 1.3201 1.9562E-04 1.9347 1.3669

FORCE 3.2908E-05 2.0087 1.0022 1.4383E-04 1.9625 1.0050

FLIC 3.2908E-05 2.0071 1.0022 1.4383E-04 1.9628 1.0050

LF 2.0437E-06 2.0020 1.0000 9.1191E-06 1.9907 1.0000

LLF 2.0607E-06 2.0016 1.0083 9.4578E-06 2.0026 1.0371

G 2.5784E-06 2.0310 1.2616 1.2521E-05 1.9922 1.3731

320 EO 2.5784E-06 2.0310 1.2616 1.2521E-05 1.9922 1.3731

HLL 2.3314E-06 2.0349 1.1408 1.1373E-05 2.0222 1.2472

HLLC 2.5784E-06 2.0310 1.2616 1.2521E-05 1.9922 1.3731

FORCE 2.0472E-06 2.0023 1.0018 9.1636E-06 1.9910 1.0049

FLIC 2.0472E-06 2.0023 1.0018 9.1636E-06 1.9910 1.0049

LF 1.2759E-07 2.0006 1.0000 5.7269E-07 1.9976 1.0000

LLF 1.2863E-07 1.9987 1.0082 5.9438E-07 2.0508 1.0379

G 1.5707E-07 2.0119 1.2311 7.8323E-07 1.9983 1.3676

1280 EO 1.5707E-07 2.0119 1.2311 7.8323E-07 1.9983 1.3676

HLL 1.4019E-07 2.0221 1.0988 6.8822E-07 2.0166 1.2017

HLLC 1.5707E-07 2.0119 1.2311 7.8323E-07 1.9983 1.3676

FORCE 1.2771E-07 2.0013 1.0010 5.7472E-07 1.9989 1.0035

FLIC 1.2771E-07 2.0013 1.0010 5.7472E-07 1.9989 1.0035

the initial condition:

(ρ, v, p) =




(1,0,1000) for 0≤ x < 0.1;

(1,0,0.01) for 0.1≤ x < 0.9;

(1,0,100) for 0.9≤ x .

A reflecting boundary condition is applied to both ends. See [14, 32]. The computational

domain is [0,1], the final time is t = 0.038, and TVB constant M = 100.0.

In Tables 7-8, we provide a CPU time comparison for the LWDG schemes with different

fluxes. From these tables, we can see that the relation of CPU times by the LWDG with

different fluxes is also similar to those in the previous example. We can see again that the

LWDG-LF scheme costs the least CPU time for each of the cases k = 1 and 2. For Euler

equations, the LWDG-G and LWDG-EO schemes cost 60% more than that of the LWDG-LF

scheme for k = 1 and 30% for k = 2, the LWDG-HLL and LWDG-HLLC schemes cost about

12% more than that of the LWDG-LF scheme for k = 1 and k = 2. For Navier-Stokes

equations, the LWDG-G and LWDG-EO schemes cost 40% more than that of the LWDG-LF

scheme for k = 1 and 15% for k = 2, the LWDG-HLL and LWDG-HLLC schemes cost about



Development and Comparison of Numerical Fluxes for LWDG Methods 449Table 6: Navier-Stokes equations, Reynolds number Re=10000. The numeri
al errors and the ordersof a

ura
y for the density ρ, and the ratios of the numeri
al errors by LWDG with di�erent �uxes
ompared with those by the LWDG-LF s
heme. k = 2.
N flux L1 error L1 order error ratio L∞ error L∞ order error ratio

LF 6.6271E-07 2.9152 1.0000 3.0107E-06 2.9632 1.0000

LLF 6.1296E-07 2.9271 0.9249 2.8109E-06 2.9729 0.9336

G 2.6369E-07 3.0343 0.3979 1.5096E-06 3.0465 0.5014

80 EO 2.6369E-07 3.0343 0.3979 1.5096E-06 3.0465 0.5014

HLL 2.9357E-07 3.0474 0.4430 1.6416E-06 3.0542 0.5453

HLLC 2.6369E-07 3.0343 0.3979 1.5096E-06 3.0465 0.5014

FORCE 6.5512E-07 2.9162 0.9886 2.9845E-06 2.9641 0.9913

FLIC 6.5512E-07 2.9168 0.9886 2.9845E-06 2.9644 0.9913

LF 9.8267E-09 3.0780 1.0000 4.4056E-08 3.0799 1.0000

LLF 9.0992E-09 3.0755 0.9260 4.1328E-08 3.0761 0.9381

G 3.7028E-09 3.0900 0.3768 1.8875E-08 3.2172 0.4284

320 EO 3.7029E-09 3.0899 0.3768 1.8875E-08 3.2172 0.4284

HLL 3.9485E-09 3.1300 0.4018 2.0355E-08 3.2215 0.4620

HLLC 3.7029E-09 3.0899 0.3768 1.8875E-08 3.2172 0.4284

FORCE 9.7083E-09 3.0784 0.9880 4.3656E-08 3.0800 0.9909

FLIC 9.7083E-09 3.0784 0.9880 4.3656E-08 3.0800 0.9909

LF 1.1563E-10 3.2375 1.0000 5.2659E-10 3.2260 1.0000

LLF 1.0809E-10 3.2242 0.9348 4.9649E-10 3.2273 0.9428

G 5.7600E-11 2.9323 0.4981 1.4708E-10 3.5890 0.2793

1280 EO 5.5540E-11 2.9841 0.4803 1.4710E-10 3.5888 0.2794

HLL 5.8208E-11 2.9870 0.5034 1.6386E-10 3.5524 0.3112

HLLC 5.5540E-11 2.9841 0.4803 1.4708E-10 3.5890 0.2793

FORCE 1.1423E-10 3.2370 0.9879 5.2174E-10 3.2260 0.9908

FLIC 1.1423E-10 3.2370 0.9879 5.2174E-10 3.2260 0.9908Table 7: CPU time (in se
onds) for the LWDG methods with di�erent �uxes, for the blast wave problemof Euler equations. Total CPU time for N = 200 and 400 
ells is re
orded.
Flux LF LLF G EO HLL HLLC FORCE FLIC

k = 1 2.18 2.27 3.29 3.75 2.48 2.49 2.27 2.37

k = 2 7.12 7.47 9.25 10.03 7.91 7.95 7.30 7.47Table 8: CPU time (in se
onds) for the LWDG methods with di�erent �uxes, for the blast wave problemof Navier-Stokes equations with Reynolds number Re=10000. Total CPU time for N = 200 and 400
ells is re
orded.
Flux LF LLF G EO HLL HLLC FORCE FLIC

k = 1 2.63 2.72 3.75 4.22 2.96 2.95 2.74 2.83

k = 2 9.50 9.94 11.67 12.44 10.35 10.46 9.73 9.88

12% more than that of the LWDG-LF scheme for k = 1 and 5% for k = 2. The LWDG-

LLF, LWDG-FORCE and LWDG-FLIC schemes cost a little more than that of the LWDG-LF

scheme for both k = 1 and 2 and for both Euler and Navier-Stokes equations.

In Figs. 1-4, the computed densities ρ with 400 cells are plotted against the reference
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454 J. QiuTable 9: CPU time (in hours) for the LWDG methods to 
ompute the double Ma
h re�e
tion problemfor the two meshes of 480× 120 and 960× 240 
ells.
Nx × Ny 480× 120 960× 240 1920× 480

Flux k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

LF 0.4531 1.2406 3.0993 10.1298 22.4780 100.8831

HLL 0.6528 1.6633 3.9091 13.0633 30.9580 128.0188

HLLC 0.5945 1.4230 3.7654 12.4587 25.9656 129.2997

“exact” solution, computed using a fifth-order WENO scheme [22] with 5000 grid points,

and against the solution computed by the LWDG-LF scheme on the same mesh, zoomed at

the region 0.53 ≤ x ≤ 0.88 which contains the contact discontinuities and shocks in the

solution.

The resolution of the LWDG-LF scheme is the worst among all schemes. For the case

of k = 1, the resolution of the LWDG-G, LWDG-EO and LWDG-HLLC schemes is the best,

followed closely by that of the LWDG-HLL scheme, and the resolution of these four schemes

is much better than that of the other four schemes. The resolution of the LWDG-LLF, LWDG-

FORCE and LWDG-FLIC schemes is similar to that of the LWDG-LF scheme. For the case k =

2, we also observe that the resolution of the LWDG-G, LWDG-EO and LWDG-HLLC schemes

is the best, followed closely by that of the LWDG-HLL and LWDG-LLF schemes, and the

resolution of these five schemes is much better than that of the other three schemes. The

resolution of the LWDG-FORCE and LWDG-FLIC schemes is similar to that of the LWDG-LF

scheme.

Example 3.3. Double Mach reflection. This problem is originally from [32]. The compu-

tational domain for this problem is [0,4]× [0,1]. The reflecting wall lies at the bottom,

starting from x = 1

6
. Initially a right-moving Mach 10 shock is positioned at x = 1

6
, y = 0

and makes a 60◦ angle with the x -axis. For the bottom boundary, the exact post-shock con-

dition is imposed for the part from x = 0 to x = 1

6
and a reflective boundary condition is

used for the rest. At the top boundary, the flow values are set to describe the exact motion

of a Mach 10 shock. We compute the solution up to t = 0.2, and TVB constant M = 100.0.

Based on our numerical experimental results for the one dimensional case, we only test the

schemes LWDG-LF, LWDG-HLL and LWDG-HLLC which seem to be the good choice when

all factors such as the cost of CPU time, numerical errors and resolution of discontinuities

in the solution are considered.

The LWDG methods with WENO limiters, for three uniform meshes, with 480× 120,

960× 240 and 1920× 480 cells, and two different orders of accuracy (for k=1 and k=2,

second and third order), are used in the numerical experiments. In Table 9 we again

document the CPU time by the LWDG schemes with different fluxes. We can see that the

LWDG-HLL scheme costs about 30% more CPU time than the LWDG-LF scheme, and the

LWDG-HLLC scheme costs about 15-30% more CPU time than the LWDG-LF scheme, for

the same accuracy order and same mesh. To save space, we show only the simulation

results on the most refined mesh with 1920× 480 cells in Figs. 5 and 6, and the “zoomed-
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in” figures around the double Mach stem to show more details in Fig. 7. All the figures are

showing 30 equally spaced density contours from 1.5 to 22.7.

4. Concluding remarks

In this paper, we developed a new LWDG methods based on the local DG methods

and Lax-Wendroff time procedure adopted in [22] for convection-diffusion equations, and

numerical fluxes for finite volume or finite difference schemes are extended to numerical
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fluxes used for LWDG methods. We have systematically studied and compared a few dif-

ferent fluxes for the LWDG methods. Extensive one and two dimensional simulations on

the hyperbolic systems of Euler and Navier-Stokes equations indicate that LWDG methods

with the LF flux cost the least CPU time among all, but the resolution of solutions on the

discontinuities are also the worst among all. The numerical errors of the LWDG method

with the LF flux for a smooth problem seem to be the smallest for k = 1 and largest for

k = 2 among all LWDG schemes. The LWDG methods with the Godunov or EO fluxes seem

to cost significantly more CPU time than the LWDG-LF method. Similar to [21, 24], the

HLLC flux might be the best choice, and the HLL flux is the next, as fluxes for the LWDG

method when all factors such as the cost of CPU time, numerical errors and resolution of

discontinuities in the solution are considered.

We also tested the Sod, the Lax and shock interaction with entropy waves problems

[27], the relation of CPU times by the LWDG with different fluxes is similar to these of

the blast wave problem; but unlike to the blast wave problem, it is difficult to differ the

performance of resolution by the LWDG with different fluxes by eye, they are not shown in

the paper to save space.

We have also tested the LWDG methods based on a few other numerical fluxes, such as

the second-order Lax-Wendroff (LW) flux and the Warming-Beam (WB) flux. Our numer-

ical tests indicate that spurious oscillations appear for the Lax shock tube problem for the

LWDG-LW and LWDG-WB schemes, and the codes are unstable (they blow up) for the blast

wave test case.
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