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Abstract. Many problems with underlying variational structure involve a coupling of
volume with surface effects. A straight-forward approach in a finite element discretiza-
tion is to make use of the surface triangulation that is naturally induced by the volume
triangulation. In an adaptive method one wants to facilitate “matching” local mesh
modifications, i.e., local refinement and/or coarsening, of volume and surface mesh
with standard tools such that the surface grid is always induced by the volume grid.
We describe the concepts behind this approach for bisectional refinement and describe
new tools incorporated in the finite element toolbox ALBERTA. We also present several
important applications of the mesh coupling.
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1. Introduction

A great variety of problems in science and engineering are modeled mathematically
by means of a system of partial differential equations (PDEs) closed with suitable initial,
boundary, or interface conditions. The PDEs are defined on a domain in space or space-time
and in many applications the shape of the domain may also be unknown beforehand, and
must be determined as part of the solution. In addition, the problems under consideration
involve a coupling of surface and bulk effects. The mathematical description may reflect
this in that the PDEs contain some unknowns defined on a spacial domain Ω as well as
other unknowns defined on a lower-dimensional manifold Γ ⊂ Ω̄, for instance the domain
boundary ∂Ω. In Section 2 we give several examples of such problems.

These problems may be numerically solved using various discretization schemes and
techniques. In this paper we will focus on finite element discretizations. Most finite el-
ement methods for time-dependent problems do not mesh the space-time domain, but
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employ a suitable time discretization for converting the time-dependent problem into a
sequence of stationary problems. This allows us to restrict ourselves to spacial domains.
Furthermore, we only consider simplicial grids but the derived methods directly carry over
to other types of meshes.

During the last decades, adaptive finite elements have become a well-established tool
for the numerical solution of boundary value problems, see the monographs [1, 5, 59]
and the references therein. Adaptivity is designed to use computational resources more
efficiently. In higher space dimensions some problems may only be solvable in reasonable
time using adaptive methods. Adaptive finite element methods employ an iteration of the
form SOLVE → ESTIMATE → MARK → REFINE/COARSEN
for adapting the finite element mesh to the solution of the underlying problem. Given a
grid, procedure SOLVE computes the discrete solution and ESTIMATE computes an a pos-
teriori error estimate, which is an upper bound for the error in some given norm in terms of
the discrete solution and data of the PDE. Usually, the estimator is built from element error
indicators, which are used in MARK for selecting elements subject to refinement and/or
coarsening. In the last step, refinement and/or coarsening algorithms locally refine and/or
coarsen the grid based on the decisions taken in MARK, see for instance [49] for a more
detailed description. For elliptic problems the above adaptive loop is well analyzed with
respect to convergence [20,41,42] and optimal cardinality [9,14,53].

The finite element discretization of problems involving bulk and surface effects is done
by triangulating Ω as well as Γ and defining finite element spaces on both triangulations.
The different spaces are then used for approximating bulk quantities respectively surface
quantities. The surface triangulation is naturally defined by collecting the faces of elements
of the bulk triangulation that lie on Γ, i.e., the surface grid is the trace of the volume grid.
Since bulk and surface effects interact, we need restrictions of bulk quantities to the sur-
face, naturally introducing the concept of trace spaces. Some applications may also require
prolongations of surface quantities to the bulk. For standard Lagrange finite element dis-
cretizations both tasks are facilitated by an injective mapping connecting surface degrees
of freedom (DOFs) with bulk degrees of freedom. Such a mapping in combination with
corresponding finite element bases for bulk and surface then exactly realizes the finite
element space on Γ as the trace space of the bulk space defined over Ω.

Coupled meshes are easily handled if the meshes do not change during a computation.
In the setting of adaptive methods the problems of coupling grids become inherently more
complex. If an adaptive method requires a change of any of the involved meshes, we might
lose the useful property that the surface grids were originally defined as the collection of
bulk faces. Without this property the transfer of data between bulk and surface meshes
becomes much more difficult. In this scenario, after each mesh change one would have
to somehow reconstruct the connection of bulk elements with surface elements, a cumber-
some, possibly costly process. The aforementioned mapping of DOFs would no longer exist
and would have to established from scratch.

It is thus highly desirable that the coupling is maintained automatically during local
mesh modifications, i.e., refinement and coarsening of relatively small patches of elements.
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We will present techniques of simultaneous bulk/surface mesh adaption fulfilling the prop-
erty that surface mesh elements are always faces of bulk elements. With this property, data
transfer between meshes will always remain simple and efficient. However, when adapt-
ing both meshes simultaneously, the bulk mesh will require a matching refinement of the
surface mesh, and vice versa. It is not clear that the (d − 1)-dimensional surface mesh, if
defined simply as the intersection of bulk elements with Γ, is actually what a given coded
refinement strategy for (d − 1)-dimensional meshes would yield if applied to the surface
mesh independently.

The main focus of this paper is a solution of these issues for bisectional refinement,
which we describe in detail in Section 3. We first recall the refinement by bisection of
conforming triangulations in one, two, and three space dimensions and introduce the con-
cept of submeshes. In addition, we prove that the bisectional refinement of a surface mesh
induced by the refinement the bulk mesh coincides with the natural refinement of the sur-
face mesh. As an outcome, both meshes can be refined (and coarsened) by the standard
algorithm. Having one and only one refinement/coarsening scheme for all meshes of a
given dimension simplifies code, and is therefore desirable.

In general, we aim for a “dimensionless programming” approach, i.e., the software
must hide dimension-dependent code from the user as much as possible. This includes for
instance mesh refinement, coupling of surface and volume grids, etc. The user may thus
create elegant general code valid for all dimensions. The software should also take care of
all bookkeeping details concerning submeshes automatically, leaving the user free to con-
centrate efforts on the implementation of the underlying problem. This is the philosophy
of the finite element toolbox ALBERTA [48, 49]. Basic details about the implementation
of the coupling within ALBERTA are given in Section 4 as well as numerical results from
three prominent applications of coupled surface volume problems that are introduced next.

2. Example problems

There are many interesting applications that couple bulk and surface effects. We
present three characteristic model applications from free surface flow, growth of an epitax-
ial layer, and minimal surfaces. With these examples we want to show different couplings
that naturally occur. Numerical results for these applications are presented in Section 4.
Other important problems are for instance dendritic growth [8, 47], fluid-structure inter-
action [16,30], and morphological changes in stressed epitaxial films [4,52]. In addition
to problems where the problem involves surface/bulk coupling, we also refer to mixed
or hybrid finite element methods which introduce surface/bulk coupling in the numeri-
cal scheme, for instance when using Lagrange multipliers on the boundary for imposing
boundary/coupling conditions [12].

2.1. Fluid flow with free capillary surfaces

Consider a droplet of an incompressible Newtonian fluid freely suspended in d-dimen-
sional space. The fluid volume is surrounded by another medium or vacuum and solely in-
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fluenced in its motion by the action of surface tension at the interface to the other medium.
The standard mathematical description of this effect uses the incompressible Navier-Stokes
equations together with capillary boundary conditions at the interface:

∂ v

∂ t
+ (∇v)v =∇ ·Σ(v , p) in Ω(t), t ∈ (0, T ), (2.1a)

∇ · v = 0 in Ω(t), t ∈ (0, T ), (2.1b)

Σ(v , p)n = σ(d − 1)κ on Γ(t), t ∈ (0, T ), (2.1c)

v · n = V on Γ(t), t ∈ (0, T ), (2.1d)

v = v0, Ω(0) = Ω0 for t = 0 (2.1e)

with the Newtonian stress tensor Σ(v , p) defined as

Σi j(v , p) = −pδi j +η

�

∂ vi

∂ x j

+
∂ v j

∂ x i

�

. (2.1f)

The quantities that appear are the free boundary of the fluid domain Γ = ∂Ω, the fluid
velocity v and pressure p. Constant parameters that describe the fluid are the dynamic
viscosity coefficient η and the surface tension σ. On the moving boundary Γ we use the
outer unit normal n, the vector of curvature κ, and the normal velocity V , i.e., the velocity
of Γ into direction n. The vector κ, by definition, has magnitude H, the mean curvature of
Γ, and points in the direction n. The system is closed by initial conditions v0 and Ω0 for
the velocity v and the domain Ω.

The interaction between bulk and surface in this problem is given in one direction by
the fluid velocity v , whose normal component at the domain boundary Γ prescribes the
motion of Γ itself, see (2.1d). In the other direction, the surface curvature κ, which is
totally determined by the position of Γ, defines the surface tension that exerts stress on
the fluid volume, as described by (2.1c). For the case of water droplets suspended in air
it is well known that the surface tension force will seek to pull the droplet into a spherical
shape corresponding to a minimum of the surface energy potential. For more details on
the physical aspects we refer to [37]. A detailed study of numerical discretization aspects
of this problem is presented in [7,34,35].

This mutual interaction makes the problem well suited as an example of coupled sur-
face and bulk effects, and give rise to interesting new flow situations, such as the flow in
an oscillating droplet. A finite element method for the problem should be designed in such
a way that the surface effects and the surface-bulk coupling are easily discretized numer-
ically. Namely, it is useful to have a surface triangulation automatically induced by the
volume discretization, as presented later.

2.2. Liquid phase epitaxial growth

We consider the following part of the production process of a wafer for an infra-red
detector: Inside a heated furnace a substrate is dipped into a melting pot which is filled
with a compound of molten materials. By reducing the temperature a thin single crystalline
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film begins to grow onto the surface of the substrate to form an epitaxial layer of about
twenty microns.

The mathematical model for this problem has to account for the following effects:
convection in the melt, which arises due to buoyant forces induced by temperature and
concentration changes, impact of the flow on the composition and temperature distribu-
tion of layer and melt. This is described by the incompressible Navier-Stokes equations
in Boussinesq approximation, conservation of energy, and conservation of mass. Precise
information about the thickness and composition of the epitaxial layer has to be extracted
from temperature, concentrations, and the phase diagram that describes the solidification
process. For the transition between liquid phase Ωℓ(t) and solid phase Ωs(t) we thus apply
a sharp interface model, i.e., the interface Γ(t) is assumed to be always a (d − 1) dimen-
sional manifold. For the complete derivation of the model we refer to [36] and [32].

Denoting by Ω(t) = Ωℓ(t) ∪ Ωs(t) the union of liquid and solid phase, and using the
same notation as in (2.1) we obtain for t > 0 the following nonlinear system of PDEs for
velocity v and pressure p in the melt, and temperature θ and concentrations c1, c2 in layer
and melt:

∂ v

∂ t
+ (∇v)v −∇ ·Σ(v , p) = − f (θ , c1, c2) in Ωℓ(t), (2.2a)

∇ · v = 0 in Ωℓ(t), (2.2b)

∂ θ

∂ t
+ v · ∇θ −∇ · (D0∇θ) = 0 in Ω(t), (2.2c)

∂ ci

∂ t
+ v · ∇ci −∇ · (Di∇ci) = 0 in Ω(t), i = 1,2, (2.2d)

where
f (θ , c1, c2) =
�

β0 (θ − θ̄ ) +
∑

i=1,2

βi(ci − c̄i)
�

g

is the buoyant force from the Boussinesq approximation with material constants βi, i =

0,1,2, depending on the average temperature θ̄ , average concentrations c̄i , i = 1,2, and
the vector of gravity g . Furthermore, Di, i = 0,1,2, are the diffusion parameters, which
are constant in liquid and solid phase, and we have set v = 0 in Ωs(t).

The solidification process depends on the local temperature and local concentrations,
i.e., the melting temperature and the composition of the layer depend on the concen-
trations in the melt. Whereas the temperature is assumed to be continuous across the
interface, concentrations may jump and hereafter we denote for i = 1,2 by cℓi , cs

i
the con-

centrations of the melt respectively layer. This coupling is described for a specific melt by
a phase diagram. For our application it is given by the following nonlinear equations on
the interface Γ(t) (cf. [29]):

θ = 1.36− 0.56cℓ2+ 0.65cℓ1 −
1.03cℓ1

1− cℓ2
, (2.2e)

cs
1 =

0.11cℓ1

1− 0.78cℓ1− cℓ2
and cs

2 =
1

2
. (2.2f)
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In addition, temperature and concentrations satisfy the Stefan conditions on Γ(t):

�

D0
∂ θ

∂ ν

�ℓ

s

= −V and

�

Di

∂ ci

∂ ν

�ℓ

s

= −
�

ci

�ℓ
s V i = 1,2, (2.2g)

where [·]ℓs denotes the jump between liquid and solid, and V the interface velocity in nor-
mal direction. We finally assume no-slip boundary conditions for the velocity on Γ(t). The
problem is completed by initial conditions for flow, domains, temperature, and concentra-
tions, as well as by additional boundary conditions at the border of the melting pot.

When discretizing (2.2), the computational domain given by the geometry of the melt-
ing pot is fixed, whereas the liquid part shrinks and the solid part grows. Since the thick-
ness of the emerging layer is of special interest in the fabrication process a precise deter-
mination of the interface velocity is essential, which requires a high grid resolution near
the interface. Furthermore, we use a triangulation of the melting pot such that the initial
interface between liquid and solid part is represented by a surface triangulation.

This approach has several benefits. Using additional bulk basis functions connected
to the surface grid, we can easily extend standard continuous finite element spaces to
account for jumps at the interface without using a discontinuous Galerkin method. Such
extended spaces are the appropriate ones for a discretization of (2.2d) and are preferable
to a discontinuous Galerkin method, which produces for the precision a larger number of
DOFs. Solving the discrete nonlinear system by a Newton method, the assemblage of the
linearized system requires the computation of several integrals over the interface related
to the phase diagram (2.2e), (2.2f), and the Stefan condition (2.2g). This can efficiently
be done by assemblage routines working directly on the interface triangulation.

2.3. Minimal surfaces

We finally consider an application concerning minimal surfaces that appear for instance
in nature as soap films or soap bubbles. We focus on the classical Plateau problem which is
one of the oldest problems in mathematical analysis and can be described as follows. Given
a Jordan curve Γ in R

n, n ≥ 3, we want to find a disc-type minimal surface S spanning Γ,
i.e., among all surfaces spanning Γ, S is of minimal area. We may parameterize S by a
function u : B→ R

n over the unit disc B := {x ∈ R
2 | x2

1+ x2
2 ≤ 1}. If S = u(B̄) is spanning

Γ with minimal area, then u satisfies the following nonlinear PDE system

∆u = 0 in B, (2.3a)
�

�

�

�

∂ u

∂ x1

�

�

�

�

2

−

�

�

�

�

∂ u

∂ x2

�

�

�

�

2

=
∂ u

∂ x1
·
∂ u

∂ x2
= 0 in B, (2.3b)

u : ∂ B→ Γ is one to one. (2.3c)

Conversely, a solution u of (2.3) parameterizes a surface S spanning Γ, where the surface
area of S is stationary. Thus, equation (2.3) can be considered as the Euler-Lagrange
equations for the classical Plateau problem and for a solution u of (2.3) we call u(B)
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minimal surface. The strong nonlinearity of the problem is hidden in (2.3b), asking u

to be conformal, as well as in (2.3c), asking u |∂ B to be a monotone parameterization of
Γ. Classical results together with references for minimal surfaces can be found in the
books [17,18,43].

Following Struwe [55], we reformulate problem (2.3) and determine a weak solution
as follows. We denote by S1 the unit circle in R

2 and distinguish it from ∂ B. Fixing one
smooth parameterization γ: S1→ Γ, we look for a bijective mapping s : ∂ B→ S1 such that
s is stationary for the energy

E(s) :=
1

2

∫

B

�

�∇Φ(γ ◦ s)
�

�

2
. (2.4)

Hereafter, Φ(γ ◦ s) denotes the harmonic extension of boundary values γ ◦ s : ∂ B → Γ.
This means, we are looking for a parameterization γ ◦ s such that the harmonic extension
u = Φ(γ ◦ s) is stationary for the Dirichlet integral. The surface u(B̄) is then a minimal
surface, i.e., u is a solution of (2.3), compare with [55].

Dziuk and Hutchinson used the above reformulation for a finite element discretization
of the classical Plateau problem employing piecewise linear finite elements for both the
approximation of u and s [25]. For this discretization they derived optimal order a priori
error estimates [26] and, later on, Dörfler and Siebert performed an a posteriori error
analysis and designed an adaptive method for computing minimal surfaces [21].

The above discretization is primarily a finite element method for computing an approx-
imation S to the parameterization s : ∂ B → S1 on a 1d triangulation of ∂ B. For accessing
the corresponding Dirichlet energy (2.4) one has to compute a discrete harmonic exten-
sion of boundary data γ ◦ S, which can be easily done by a finite element method for the
Laplace equation over a 2d triangulation of B. Obviously, the finite element method over
the 2d domain could be replaced by a boundary element method defined on the surface
triangulation [2, 28]. But in contrast to a boundary element method the presented finite
element approach can directly be generalized to the more complex problem of looking for
surfaces of constant mean curvature spanning Γ, compare for instance [27].

3. Coupling bulk and surface meshes

We now describe our concept of coupling bulk and surface grids. In the following
Ω ⊂ R

d is a bounded domain triangulated by some initial conforming triangulation T0

and we restrict ourself to simplicial meshes that are created by bisectional refinement
from T0. We first recall the refinement by bisection and then couple meshes of different
dimensions. The basic concepts of triangulations and finite element spaces are taken from
[10,11,15,49].

3.1. Refinement by bisection

The algorithm for creating local refinements of a given triangulation using bisection of
single elements relies on tagging for any element one of its edges as its refinement edge.
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Hereafter, an element is a simplex, i.e., a line segment in 1d, a triangle in 2d, and a
tetrahedron in 3d. In 1d, an “edge” is the element itself. Any element is refined into two
elements by cutting this edge at its midpoint. There are several possibilities of choosing
such a refinement edge for a simplex, one example is to use the longest edge; Mitchell [40]
compared different approaches in 2d. We assume that refinement edges are assigned for
all elements of T0. The refinement algorithm then prescribes the refinement edges of the
two children such that shape regularity of any refinement of T0 is ensured.

For describing the inheritance of refinement edges from parent to children during re-
finement we follow the concept of Kossaczký [33]. We adopt the convention that all ver-
tices of an element are given fixed local indices 0, · · · , d . We assume that the refinement
edges are set as those edges between local indices 0 and 1 on the initial triangulation T0.
During refinement, the new vertex numbers, and thereby the refinement edges, for the
newly created child simplices are prescribed by the refinement algorithm in the following
way. In all dimensions, the index of the newly generated vertex at the midpoint of this
edge has the highest local index for both children. This already fixes in 1d the numbers of
the other two vertices, compare Fig. 1 (left). For 2d and 3d the numbering of vertices on
the children are shown in Fig. 1 (right) respectively Fig. 2. In 1d and 2d this numbering is
the same for all refinement levels. In 3d, one has to make some special arrangements: the
numbering of the second child’s vertices depends on the type of the element. There exist
three different element types 0, 1, and 2. The type of the elements on T0 can be prescribed
(usually type 0 tetrahedron). The type of the refined tetrahedra is recursively given by the
definition that the type of a child element is ((parent’s type + 1) modulo 3). In Fig. 2 we
used the following convention: for the index set {1,2,2} on 
hild[1℄ of a tetrahedron
of type 0 we use the index 1 and for a tetrahedron of type 1 and 2 the index 2.

child[0] child[1]

0 1

1 10 0 0 1

2

child[0] child[1]

0

1

1

02 2

child[0] child[1]Figure 1: Numbering of nodes on parent and 
hildren for intervals and triangles.
1

20

3

child[0]

child[1]

10

child[0]

0

{2,1,1}

33

2 {1,2,2}

child[1]

Figure 2: Numbering of nodes on parent and 
hildren for tetrahedra. Note that 
hild 1 vertex numberingdepends partially on the three 
ases of parent type.
Relying on the above algorithm all possible refinements of T0, i.e., shape and position

of any possible element, any possible conforming refinement, etc., are totally determined
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by the local vertex numbering on T0 plus a prescribed element type on T0 in 3d. Further-
more, a successive refinement of every macro element only produces a small number of
similarity classes, guaranteeing shape regularity. Consider the special macro triangulations
of a (unit) square in 2d and cube in 3d decomposed into two triangles resp. six tetrahedra,
such that the common edge is the refinement edge for all macro elements. In this situation
the above algorithm guarantees that the longest edge will always be the refinement edge
for any element.

Up to now we have described the refinement of a single element. Refinement of a
conforming triangulation can either be done in an iterative or recursive way. In the iterative
variant all selected elements are bisected and this in general results in a non-conforming
triangulation. In order to maintain conformity additional elements have to be refined until
the resulting triangulation is conforming [6].

The recursive variant, which we use latter on, avoids non-conforming situations by only
allowing refinement of a selected element if its refinement edge is the refinement edge for
all elements that share this edge. The set of these elements is called the refinement patch.
If for all patch elements the common edge is the refinement edge, then the entire patch
is refined at the same time by inserting one new vertex in the midpoint of the common
refinement edge and bisecting every element of the patch. This process is called the atomic

refinement operation and the resulting triangulation is always a conforming one. In the
other situation there is an element in the patch whose refinement edge is not the common
edge. Such a neighbour is not compatibly divisible and we first perform the atomic refine-
ment operation at the neighbour’s refinement edge. In 2d the child of such a neighbour at
the common edge is then compatibly divisible; in 3d such a neighbour has to be bisected
at most three times and the resulting tetrahedron at the common edge is then compatibly
divisible. The recursive refinement algorithm now reads

Algorithm 3.1 (Recursive refinement of one simplex).subroutine re
ursive_refine(T, T )do
A := {T ′ ∈ T ; T ′ is not 
ompatibly divisible with T}for all T ′ ∈A dore
ursive_refine(T ′, T );end foruntil A = ;

A := {T ′ ∈ T ; T ′ is element at the refinement edge of T}for all T ′ ∈Abise
t T ′ into T ′0 and T ′1
T := T \{T ′} ∪ {T ′0, T ′1}end for

The refinement of a given triangulation T where some or all elements are marked for
refinement is then performed by
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Algorithm 3.2 (Recursive refinement algorithm).subroutine refine(T )for all T ∈ T doif T is marked for refinementre
ursive_refine(T, T )end ifend for
Relying on recursion, we have to ensure that the recursion terminates. Termination

of the recursion hinges on the distribution of the refinement edges on T0 and we call a
distribution admissible, if recursion terminates for any element of any refinement of T0. An
arbitrary choice of refinement edges may not be admissible, see [40,49] for an example. In
2d, tagging the “longest edge” as refinement edge for all elements in T0 is admissible [40].
In 3d, the situation is more complex and it is not clear that there exists an admissible
distribution of refinement edges for arbitrary T0. Allowing for a possible refinement of
T0, Kossaczký proved the existence of an admissible distribution on the possibly refined
grid [33].

Any possible refinement T of the initial triangulation T0 can be described as a collec-
tion of binary trees, where the roots of the trees are elements of T0, and every element has
either exactly two descendents or none. The refinement T is simply the collection of all
elements with no descendents. The tree structure is solely induced by bisection of single el-
ements and does not depend on refining a whole triangulation iteratively or recursively. It
can be exploited in computations to save memory. As an example, only the physical vertex
coordinates of macro elements need to be stored. Coordinates of descendent simplices can
be calculated from the hierarchy induced by the tree structure. In addition, a coarsening
algorithm as the inverse operation to refinement profits enormously from having access
to all possible refinements of T0, compare with the detailed description in [49]. When
coupling volume and surface meshes we want to exploit this hierarchical structure for both
triangulations.

We finish this section by a short review of existing bisectional refinement algorithms.
The described approach was introduced in 2d by Rivara [45] in 1984 giving the newest

vertex bisection (in Mitchell’s notation). It was generalized to 3d by Bänsch [6] in 1991.
Later on, Liu and Joe [38] as well as Arnold et al. [3] presented modified versions of the
algorithm by Bänsch, mainly relaxing the assumptions on the assignment of the refinement
edges for elements in T0. All these algorithms refine a given triangulation iteratively.

In 2d, Mitchell already described a recursive variant [40] and Kossaczký converted
the 3d algorithm by Bänsch into a recursive one [33]. This recursive algorithm was then
generalized to any space dimension by Maubach [39] and Traxler [58]. Using the recursive
variant needs slightly stronger assumptions on the distribution of refinement edges on T0.
On a first glance this seems to be a drawback of the recursive variant. But firstly, these
assumptions permit the derefinement of any refinement T of T0 back into T0 which is not
true in general for the iterative variant. Secondly, similar assumptions on the distribution
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of refinement edges on T0 are used to prove a crucial complexity result for the adaptive
algorithm. This result mainly states that in any iteration of an adaptive method the total
number of produced elements is always proportional to the sum of the numbers of selected
elements. This was first proved by Binev et al. in 2d [9] and was generalized recently by
Stevenson to any dimension [54].

3.2. Submeshes

In this section, we present our concept of a subtriangulation or submesh and discuss
features of the approach and present a refinement algorithm for simultaneously refining
bulk and surface meshes. Our concept for submeshes is motivated by the following natural
demands.

(1) A submeshS should be subordinate to exactly one master mesh T and refinement/co-
arsening of both meshes should be done simultaneously in such a way that the sub-
mesh property is always preserved. Adaptive methods should be usable on master
and/or submesh and the automatic local refinement/coarsening should be performed
fully automatically on both meshes. In addition, the underlying refinement algorithms
for both meshes should be according to the bisectional algorithm presented above, no
special treatment should be necessary.

(2) Besides some dimension dependent parts, like refinement, DOF administration, defi-
nition of local basis functions, etc., most tasks in a finite element code can be realized
in the same fashion regardless of the problem dimension. The dimension dependent
parts are usually hidden in the library, and this permits creation of general purpose
code valid for all dimensions. This concept is to be maintained for submeshes. This
means, submeshes should be treated as regular mesh objects, endowed with some spe-
cial properties. All methods and routines for single meshes, i.e., assembly of systems,
numerical quadrature, mesh adaption, etc., must also be available for submeshes.
Thus, a general purpose code can be used for both the master mesh and the submesh.

(3) When coupling bulk and surface discretization one needs bulk data on the surface and
vice versa. This means that we need efficient trace and prolongation operators. For
finite element data such operators can directly be constructed from a suitable injective
mapping of surface DOFs to bulk DOFs.

In order to meet the above design concept we use the following notion of master and
submesh.

Definition 3.1 (Submesh). Let T be a conforming d-dimensional triangulation of a domain

Ω, d = 2,3, the master mesh. A submesh of T is a (d − 1)-dimensional triangulation S iff

for all elements S ∈ S it holds that S is a (d − 1)-dimensional subsimplex of some element

T ∈ T .

A direct consequence is that each element S ∈ S has to be assigned and subordinate
to exactly one master element T ∈ T . This then in turn implies that any submesh of a
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conforming master mesh is also conforming. Definition 3.1 also guarantees an injective
mapping of vertices of S to vertices of T , or more generally an injective mapping of DOFs
defined on S to DOFs defined on T when the surface space is the trace of a corresponding
bulk space.

In the context of adaptive methods, we start with a master triangulation T0 of Ω and
given submesh S0 of T0 and let

Γ :=
⋃

S∈S0

S ⊂ Ω̄.

Let T be any triangulation of Ω derived through bisectional refinement according to the
above algorithm. Then there necessarily exists a corresponding triangulation S of Γ,
which is a submesh of T . As we shall see below, a suitable tagging of refinement edges
on S0 implies that S may also be constructed from S0 using the bisectional refinement
algorithm. This implies that a code does not need to carry out inelegant loops over meshes
to collect, manage, or even carry out ad-hoc refinement of submesh elements to maintain
the submesh property. The local numbering of submesh elements follows the established
rules of Section 3.1. This drastically simplifies the code for adaptive refinement, as no
distinction has to be made algorithmically between refining normal meshes and refining
submeshes.

Any possible refinement of S0 is uniquely determined by the distribution of refinement
edges, and thus the initial local numbering of vertices, on the macro triangulation. The
goal to construct S by bisectional refinement from S0 becomes then simply a question of
how to correctly set the local vertex numbering on a submesh macro triangulation. We will
show in the following how this may be done.

The case of a 2d triangulation with a 1d submesh is trivial. In the case of a 3d trian-
gulation with a 2d submesh we refer to Table 1. In this table we deduce from the local
numbering of a master element the local numbering of all faces that might be submesh
elements. The numbering depends on the type and orientation of the master tetrahedron,
as well as the face. Denoting by v0, · · · , v d ∈ R

d the vertices of a simplex T , the orientation
of T is given as

sign det







| |
v1 − v0 · · · v d − v0

| |






∈ {±1}.

Hence, the orientation is determined by the local numbering of the vertices and the face
with local number i is located opposite the ith local vertex. The numbering scheme is pre-
sented as a mapping from local tetrahedron vertex numbers to submesh triangle numbers.
See also Fig. 3 for an illustration.

The numbering of submesh elements is chosen such that the refinement edge of a mas-
ter tetrahedron always coincides with the refinement edge of a submesh triangle attached
to a face along the master refinement edge. As we shall see in Lemma 3.1 this also holds
for any refinement of the master element and/or submesh element. Hence, this construc-
tion of a local numbering of surface elements derived from bulk elements maintains the
submesh property upon any bisectional refinement of T0 with a corresponding bisectional
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Figure 3: Lo
al vertex numbering of submesh triangles along a 3d element of type 0 and positiveorientation. As an example, the shaded triangle 
orresponds to the shaded box in Table 1.Table 1: Lo
al vertex numbering of submesh triangles along a 3d element. Ea
h series of four numbersstates how lo
al verti
es 0,1,2,3 of the tetrahedron are mapped to one of the lo
al verti
es 0,1,2 of thetriangle. The shaded box 
orresponds to the example fa
e given in Fig. 3.
Types 0 1, 2
Orientation + − + −
Master face 0 -, 1, 2, 0 -, 0, 2, 1 -, 0, 1, 2 -, 1, 0, 2
Master face 1 1, -, 0, 2 0, -, 1, 2 1, -, 0, 2 0, -, 1, 2

Master face 2 0, 1, -, 2 1, 0, -, 2 0, 1, -, 2 1, 0, -, 2

Master face 3 1, 0, 2, - 0, 1, 2, - 1, 0, 2, - 0, 1, 2, -

refinement of S0.
A couple of important remarks are in order. First, note that the local vertex numbering

of submesh triangles is oriented in such a way that the vector 01× 02 ∈ R
3 always points

away from the master tetrahedron, where ab is the position vector linking the vertices
a and b. This is an arbitrary choice useful in applications where the domain boundary
is a submesh and the code needs to be aware of which direction points outside of the
domain. Another observation is that the enumeration of a submesh triangle does not
differentiate between the triangle being a macro element or a child element derived by
bisectional refinement. Finally, care must be taken that a submesh element is bound to
precisely one master element, see the implementation goals above. This guarantees the
unique numbering scheme.

Lemma 3.1 (Conservation of Submesh Property in 3d). Let T0 be a master mesh with a

submesh S0 according to Definition 3.1. Let the local numbering of all submesh triangles be

given according to Table 1 and let T be a triangulation obtained from T0 using bisectional

refinement.

Then there exists a triangulation S such that S is a submesh of T and S is constructed

from S0 with bisectional refinement. In addition, for any pair of master and submesh elements



258 D. Köster, O. Kriessl and K. G. Siebert

the local numbering coincides with Table 1.

Proof. The core of the bulk bisectional refinement procedure is the splitting of a tetra-
hedron into two child tetrahedra. We are specifically interested in the case of a parent
tetrahedron lying along Γ. The basic idea of the proof is to examine that this case yields
a valid result after the refinement of the parent tetrahedron (and possibly of the adjoining
submesh triangle) and use an induction principle to complete the proof.

Table 1 shows that 0−1 edges of tetrahedra always line up with 0−1 edges of submesh
triangles. This implies that the intersection of a refinement patch of T0 with Γ will always
be a refinement patch of S0, hence it is always possible to match child submesh triangles
with master mesh child tetrahedron faces. As mentioned, we examine in detail what occurs
when a single tetrahedron T ∈ T0 of type t ∈ {0,1,2} having orientation p ∈ {+,−}
bordering on a submesh element S ∈ S0 on face f ∈ {2,3} is refined. There are 8 possible
cases according to Table 1.

We restrict the study to the exemplary case p = +, t = 0, f = 2, which corresponds to
the shaded entries in Fig. 3 and Table 1. The other cases are left to the reader. Splitting
the tetrahedron according to Fig. 2 results in two child elements T0, T1. We also split the
submesh triangle into two children S0, S1 according to Fig. 1. Since refinement edges line
up as already observed, the submesh property is maintained. It remains to verify that the
newly refined submesh has a numbering again given by Table 1.

The situation for T0 is as follows: T0 has orientation + and type 1. T0 vertex 0 faces S0

vertex 1, T0 vertex 2 faces S0 vertex 0, T0 vertex 3 faces S0 vertex 2. S0 lies on face 1 of
T0. A look at line 2, column 3 of Table 1 confirms this to be the correct numbering for this
situation.

The situation for T1: T1 has orientation +, type 1, as well. T1 vertex 0 faces S1 vertex
0, T1 vertex 1 faces S1 vertex 1, T1 vertex 3 faces S1 vertex 2. S1 lies on face 2 of T0. This
is confirmed by line 3, column 3 of the table. �

3.3. Simultaneous refinement of master mesh and submesh

As stated in the design goals of Section 3.2 we wish to automatically refine and coarsen
bulk mesh and submeshes simultaneously, which means that the submesh property is pre-
served throughout an adaptive simulation. Any mesh, whether master mesh or submesh,
may be refined or coarsened. Since coarsening is essentially the inverse operation to re-
finement, we will concentrate on the latter. When dealing with master and submeshes,
one may even desire submeshes of submeshes, allowing whole hierarchies of dependent
meshes starting from one top-level master mesh, see Fig. 4.

Using the iterative variant of bisectional refinement for simultaneous mesh adaptation
is straight forward. Relying on the recursive variant we only want to make use of atomic
refinement operations for both bulk and surface mesh. Doing this for a 2d bulk mesh cou-
pled to a 1d surface mesh is obvious. For a 3d bulk mesh we observe that performing the
atomic refinement operation in the bulk mesh means that all involved elements share the
same refinement edge. Thanks to Lemma 3.1, the refinement edges of submesh elements
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Figure 4: Entire hierar
hies of submeshes may be de�ned.
always line up with the refinement edges of the assigned master elements. This implies
that submesh elements within a refinement patch of the master mesh also build an admis-
sible patch for the atomic refinement operation in 2d. This observation is the basis of the
generalization of the Algorithm 3.2 accounting for submeshes and which we describe next.

We are going to successively update the submesh triangulation by atomic refinement
operations whenever an atomic refinement operation of the master triangulation occurs in
the course of Algorithm 3.1. If a top-level master mesh is to be refined, then the refinement
algorithm is carried out as for single meshes. We create corresponding submesh refinement
patches of the submesh elements adjoining any master patches. The submesh patches
are then refined (in the process forcing in turn any refinement of subordinated submesh
patches in a hierarchy).

If a submesh is to be refined, we first transfer refinement markers of the submesh
elements to the corresponding master elements. Control is then transferred to the mesh
refinement routine applied to the master mesh. Once we reach the top-level master mesh
we proceed as in the prior paragraph. The submesh refinement markers are reset during
the refinement of the master meshes. The refinement algorithms are thus updated as
follows:

Algorithm 3.3 (Recursive refinement of one simplex with submeshes).subroutine submesh_re
ursive_refine(T, T )do
A := {T ′ ∈ T ; T ′ is not 
ompatibly divisible with T}for all T ′ ∈A dosubmesh_re
ursive_refine(T ′, T );end foruntil A = ;

A := {T ′ ∈ T ; T ′ is element at the refinement edge of T}for all T ′ ∈Abise
t T ′ into T ′0 and T ′1
T := T \{T ′} ∪ {T ′0, T ′1}end for
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S′ := T ∩
⋃

S∈S Sif S′ ∈ S thensubmesh_re
ursive_refine(S′, S )end ifend for
The refinement of a given triangulation T where some or all elements are marked for

refinement is then performed by

Algorithm 3.4 (General refinement with submeshes).subroutine submesh_refine(T )if T is submesh of a mesh U thendo
A := {T ∈ U | T has a fa
e S ∈ T marked for refinement}mark all elements of A for refinementsubmesh_refine(U)until A = ;end iffor all T ∈ T doif T is marked for refinementsubmesh_re
ursive_refine(T, T )end ifend for

The second algorithm contains a do loop where we must guarantee that the exit cri-
terion is fulfilled at some point. All (d − 1)-dimensional subsimplices of a d-dimensional
simplex are bisected after d successive element refinements. This guarantees that any sub-
mesh element is refined at least once after a d refinements of the assigned master element,
whence the above loop terminates after a finite number of iterations.

4. Applications

We implemented the submesh concept within the finite element toolbox ALBERTA
[48, 49]. We first describe some implementational aspects for linking bulk and surface
grids, then give a very simple model problem to motivate how submeshes can be used
and conclude the article by presenting numerical results for the applications described in
§2. All applications are implemented within the current version ALBERTA 2.0, which, in
addition to former versions, gives access to coupled bulk and surface grids. ALBERTA is
freely available at http://www.alberta-fem.de/.
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4.1. Implementational details

Submeshes are defined in ALBERTA on the initial triangulation by letting the user
specify a callback routine. This routine implements the decision which sides, i.e., edges
in 2d and faces in 3d, of elements in the master mesh are to become elements of the
submesh. These sides may belong to the boundary of Ω as well as to its interior. Input to
this callback routine are the current macro master element, the current side (numbered as
0, · · · , d , with d as the master mesh dimension), and user data that may be necessary for
the decision. The function must return true if the side is part of the submesh, otherwise
the return value is false. This function is called for each master macro element S and each
of its (d + 1) sides to build a submesh. The remaining information, for instance neighbor
and coordinate information, etc., is automatically calculated by ALBERTA.

Figure 5: Used pointers from master element to submesh element (left) and vi
e versa (right).
Subsequent refinement of the master mesh or the submesh are naturally possible. Dur-

ing an adaptive simulation, where any mesh may be coarsened or refined, ALBERTA
maintains two data structures for each submesh instance. The first is an array of point-
ers that links each submesh element to the corresponding master element. The second
structure is an array of pointers essentially going in the opposite direction, with a pointer
based on each master subsimplex and pointing either to nothing, or to a corresponding
submesh element if present. Fig. 5 shows both pointer structures as red arrows on a simple
mesh/submesh pair. These structures create some additional overhead in terms of memory
usage and processing time during the refinement and coarsening process, but only if the
submesh feature is actually used.

The pointer structures are used during the refinement process. As described above,
refinement is based on the master mesh, with the submesh updated accordingly. Once an
entire refinement patch on the master mesh is identified, the master-to-submesh pointers
are used to build a corresponding submesh refinement patch. During the bisection of all
patch elements the locally available information of both pointer structures is used to create
new pointers between child master and submesh elements.

These pointer structures are also used for implementing an injective DOF mapping J

from DOFs of the submesh to the corresponding DOFs of the master mesh. This mapping
can be used to implement trace operators as well as prolongation operators, for instance
the trivial prolongation by zero. The administration of this DOF mapping is currently
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implemented for standard Lagrange finite element spaces of equal degree p defined on
master and submesh. The use of this DOF mapping is illustrated in detail below.

4.2. Robin boundary conditions

We present a simple example illustrating the use of submeshes. We consider Laplace’s
equation with Robin type boundary conditions, where volume and surface integrals have
to be computed during the assemblage of the linear system for computing the discrete
solution.

In a FEM code one normally has standard routines for the assemblage of load vectors
and system matrices. The example of Robin boundary conditions highlights some of the
advantages of using a finite element space YM defined on a submesh S . On the upside,
we can create simple and clear code by using standard assemblage routines on bulk and
surface grid. Traversing the smaller submesh instead of the bulk mesh may even reduce
computational effort. On the downside, we now need to store and manage a submesh S
as well as the pointer structures described in Section 4.1 above.

Let Ω ⊂ R
d triangulated by T0 and with boundary Γ = ∂Ω. The strong version of the

problem is
−∆u= 0 in Ω, and αu+ ν · ∇u= g on Γ, (4.1)

with a given function g : Γ → R, outer unit normal vector ν : Γ → R
d , and a constant

α > 0. For a variational formulation we will assume g ∈ L2(Γ). We then seek a solution
u ∈ H1(Ω) such that

∫

Ω

∇ϕ · ∇u+α

∫

Γ

γϕ γu =

∫

Γ

γϕg

for all ϕ ∈ H1(Ω). Hereafter, γ: H1(Ω) → L2(Γ) denotes the trace operator. The inho-
mogeneous Robin boundary condition therefore leads to surface integrals on both sides
of the weak formulation. Discretization of this variational problem using the finite ele-
ment method involves approximating H1(Ω) by a finite-dimensional subspace XN ⊂ H1(Ω)

with basis {ϕ1, · · · ,ϕN}. We choose XN to be the space of standard globally continuous
Lagrange elements of order p on the triangulation T of Ω.

This leads to a linear system in R
N of the form

A u = f ,

where we have used the system matrix

Ai j =

∫

Ω

ϕiϕ j +

∫

Γ

γϕi γϕ j ∈ R
N×N ,

the coefficient vector
u = (u1, · · · ,uN )

t ∈ R
N ,

and the load vector f

f = ( f1, · · · , fN )
t ∈ R

N , fi =

∫

Γ

γϕi g.
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Assume that S is a submesh of T triangulating the boundary Γ. We define

YM = span{γϕ | ϕ ∈ XN}.

Thanks to the submesh property we then have that YM is exactly the corresponding space
of Lagrange elements of order p on the triangulation S of Γ. The spatial position of the
DOFs of functions in YM coincides with the position of corresponding DOFs of functions in
XN .

We denote
�

ψ1, · · · ,ψM

	

as the basis of YM given by the collection of all nonzero γϕ j .
Define an injective mapping of indices J with the following properties:

J : {1, · · · , M} → {1, · · · , N},

ψi = γϕJ(i) for all i = 1, · · · , M .

Making use of these properties, we can implement the assemblage of the load vector
and system matrix as follows. Define temporary quantities B and h associated with YM as

B ∈ R
M×M , Bi j =

∫

Γ

ψiψ j,

h ∈ R
M , hi =

∫

Γ

ψi g.

The point to note is that both temporary quantities are easily calculated using software
routines for the standard FEM tasks of assembling system matrices and right hand sides on
arbitrary meshes. Let j ∈ {1, · · · , N}. We have

∫

Γ

γϕ j g =

∫

Γ

γϕJ(i) g =

∫

Γ

ψi g = hi

if j = J(i) for some i ∈ {1, · · · , N} and
∫

Γ

γϕ j g = 0

otherwise. Similar properties hold for the mass matrix B. We may therefore perform the
assembling of the bulk linear system using the following simple algorithmic steps

fi := 0 for i = 1, · · · , N ,

fJ(k) := fJ(k)+ hk for k = 1, · · · , M ,

and

Ai j :=

∫

Ω

∇ϕi · ∇ϕ j for i, j = 1, · · · , N

AJ(k)J(l) := AJ(k)J(l)+ Bkl for k, l = 1, · · · , M .
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4.3. Flow with free capillary surfaces

We are interested in a sharp interface ALE-type approach where the domain essentially
follows the motion of the fluid. This is most promising because of its simplicity, since the
physical flows to be modeled are not expected to lead to domain topology changes, e.g.
the formation of cusps. Examples of more general methods are Volume-of-Fluid [31] or
the more recent Level Set methods [44, 50, 51, 56, 57]. For the treatment of the capillary
stress boundary condition (2.1c) we opt for a variational formulation of the curvature
term, [23,24], thus extending standard finite element ideas to this context.

What makes this example interesting for this article is that the variational formulation
requires the assembling of a stiffness term

∫

Γ

∇Γ(γϕ) :∇Γ(γv),

where ∇Γ(γv) is the surface gradient acting on the trace of the unknown velocity field on
the boundary, ϕ a given basis function, and γ the trace operator. Note that this term results
from the coupling of the volume flow equations with the capillary boundary condition.
The contributions created by this term need to be added to the bulk system, compare the
analogous mass term in the Robin boundary value problem above. In fact, we implemented
this in the same way as for the Robin problem.

Let t0 = 0, t1, t2, · · · be a division of the time interval [0, T]. The solution at time step
tn is given by (v n, pn) on the domain Ωn. The time discretization scheme is to loop over
the n= 1,2, · · · :

1. Solve for (v n, pn) on the domain Ωn;

2. Update the free boundary Γn using v n|Γn
to define Γn+1 and Ωn+1;

3. Remesh Ωn+1 if necessary,

compare [34,35] for a more precise description of the algorithm.
As an example we study the motion of initially deformed droplets and use data as spec-

ified in [7]. We define starting domains which approximate ellipses in 2D and ellipsoids
in 3D with main axes along the coordinate axes. Since the mean curvature of Γ = ∂Ω
is larger at the tips corresponding to smaller radii and vice versa one observes oscillatory
motion with axial/planar symmetry, with conserved domain volume, see Fig. 9. The data
used is

• All cases: initial velocity v0 = 0, time interval [0,7], constant of surface tension
σ = 1.

• 2D case:

– Ω0 ⊂ R
2 as an ellipse with principal radii r1 = 1, r2 = 1.2.

– Viscosity coefficient: η = 1/300.
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• First 3D case:

– Ω0 ⊂ R
3 as an ellipsoid. Principal radii were ri = 1,1,1.2

– Viscosity coefficient: η = 1/300.

• Second 3D case:

– Ω0 ⊂ R
3 as an ellipsoid. Principal radii were ri = 0.9,1.0,1.2.

– Viscosity coefficient: η = 1/200.

In the simulation we measured the motion of the tips with time. Fig. 6 shows a plot of the
trajectories of the 2D droplet tips over time. Figs. 7 and 8 show corresponding plots for
the two 3D cases. The results obtained coincide very well with those of [7], and we were
able to confirm the conservation of droplet volume as well as the period of the oscillation.

Figure 9: Solution of the 2D droplet at the times t1 = 0.025, t2 = 0.725, t3 = 1.475, t4 = 2.2, t5 = 2.95,
t6 = 3.675. The 
olor indi
ates pressure and the arrows velo
ity.
4.4. Liquid phase epitaxial growth

Also in this application we use a sharp interface model for the simulation of the liquid
phase epitaxial growth which allows for a precise tracking of the thickness of the epitaxial
layer. We follow the approach that the initial bulk mesh is aligned to the initial interface
which in turn then defines the surface mesh. Similar to the previous section, the bulk and
surface mesh may follow the motion of the discrete interface that always separates solid
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and liquid phase. This means, that in each time step the new position of the interface is
determined and coordinates of bulk and surface mesh are updated accordingly. On the
other hand, the thickness of the layer is small compared to the size of the melting pot, and
thus tracking the interface may be omitted. Both approaches are analyzed in [36] yielding
similar results, and hereafter, we use the second variant with fixed liquid and solid phases
Ωℓ,Ωs and interface Γ.

As outlined in Section 2.2, we want to enrich continuous finite element space for the
concentrations by suitable functions at the interface to account for jumps in between solid
and liquid phase. Following the idea of [19] we multiply all continuous Lagrange basis
functions with the Heaviside function

H(x) =

(

1, if x ∈ Ω̄s,

0, if x ∈ Ω̄ℓ \Γ.

The enriched finite element space exactly allows for jumps across Γ. A basis can easily be
constructed by the standard nodal basis where one has to add and modify exactly basis
functions with non-zero trace on Γ. The additional degrees of freedom can easily be stored
via the submesh.

We formulate the system (2.2) in a variational way, and discretize the weak form using
the classical Taylor-Hood element for velocity and pressure, continuous Lagrange finite
elements for the temperature, and the enriched finite element space for the concentrations.
The discrete nonlinear problem involves integrals of the form

−

∫

Γ

V γϕJ( j) and −

∫

Γ

V
�

ci

�ℓ
s γϕJ( j), j ∈ {1, · · · , M}

with basis functions ϕk ∈ XN and γ, XN defined as in Section 4.2. These integrals stem from
integration by parts and the Stefan conditions (2.2g). Furthermore, the weak formulation
of (2.2e) ((2.2f) analogously) yields

∫

Γ

γθ ψ j =

∫

Γ

�

1.36− 0.56cℓ2 + 0.65cℓ1−
1.03cℓ1

1− cℓ2

�

ψ j, j ∈ {1, · · · , M},

with basis functions ψ j ∈ YM and γ, YM defined as in Section 4.2.
In a time-stepping scheme, the nonlinear discrete problem is solved by a Newton

method. Considering the equation and terms above for the assemblage of the Jacobian
several integrals of the form

∫

Γ

wψiψ j, i, j ∈ {1, · · · , M}

with different weighting functions w have to be calculated and added to the system matrix.
This can easily and efficiently be realized with standard tools as presented in Section 4.2.

An efficient solution of the nonlinear discrete system is rather demanding. The dimen-
sion may become very large, already in two space dimensions. Furthermore, the Jacobian
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Figure 10: Results from 3d simulation in half of the melting pot, where the substrate is lo
ated on theleft side. Displayed are (form left to right) the modulus of the �ow velo
ity, 
on
entrations c1, and c2.
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used in the linear sub-problems of the Newton method is neither symmetric nor well condi-
tioned. We tackle these challenges by applying robust Krylov space solvers in combination
with powerful preconditioning techniques (cf. [46] for details). To be more precise, we
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successfully combine transpose-free quasi-minimal residuals (TFQMR) with incomplete LU
factorization (ILUT) which in combination also allows for 3-dimensional simulations. Fi-
nally, we have to face very undesirable oscillations of the discrete interface velocity. They
are amplified through the nonlinear phase diagram equations (2.2e) and (2.2f). Combin-
ing a high grid resolution near the interface with a suitable penalizing term, similar to those
in [13, 22], we were able to strongly damp these oscillations. The penalty term also in-
volves integrals over the interface, which can be efficiently realized by the aforementioned
tools.

Due to symmetry of the geometry, the solution only has to be computed within one half
of the melting pot. Results from a 3d simulation are shown in Figs. 10 and 11. In Fig. 10
the flow field and the concentrations c1, c2 are displayed. The standards in industry for
ensuring a good quality of the produced infrared detector are quite high. For the area of
one square centimeter a 0.1% deviation from the perfect composition and a two micron
deviation of the layer thickness should not be exceeded. Fig. 11 shows the thickness and
the composition of the grown layer, which confirms that for the used parameters of the
simulation the high standards are satisfied.

4.5. Minimal surfaces

We finally return to the minimal surface problem where we want to find a stationary
point of the Dirichlet energy defined in (2.4). Since the Dirichlet integral is invariant
under conformal reparameterizations one has to factor out the conformal group. This can
be achieved by a three point condition, for instance fixing admissible parameterizations
s : ∂ B→ S1 at three distinct points or removing the first three Fourier modes of s, compare
[55] for details.

Figure 12: Comparison of a�ne meshes for the P1 dis
retization (left two pi
tures) and the iso-parametri
meshes for the P2 dis
retization (right two pi
tures) after one respe
tively two global re�nements of theinitial grid. The higher quality of boundary approximation for the parametri
 grid is obvious.
Given a bulk triangulation T of the unit disc B, the induced surface grid S is a tri-

angulation of ∂ B. On the surface grid S we employ continuous finite elements for the
discretization of s. A discrete stationary point of the Dirichlet integral is computed by a
Newton method, where each Newton iteration requires the computation of several discrete
harmonic extensions that are computed in a finite element space over the bulk grid T . We
refer to [21] for the precise algorithm and details. Defining the surface space as the trace of



270 D. Köster, O. Kriessl and K. G. Siebert

10
2

10
4

10
6

DOFs

10
-6

10
-4

10
-2

10
0

E
rr

or

P1
P2

10
-2

10
0

10
2

10
4

CPU (sec)

10
-6

10
-4

10
-2

10
0

E
rr

or

P1
P2Figure 13: Stable Enneper surfa
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retizations. The enormous pro�t from using a higher order dis
retizationis apparent.

the bulk space makes exchange of data between bulk and surface spaces straight forward.

Since minimal surfaces are very regular objects, a discretization employing higher order
elements deems to be a very promising idea and we are going to compare a P1 with a P2

discretization, i.e., we compare piecewise linear with piecewise quadratic finite elements
for both the boundary and the bulk space. Relying on higher order approximations to s

and u one also has to account for a higher order approximation of the curved boundary of
∂ B by using iso-parametric elements for surface and bulk grids. Affine and iso-parametric
grids for both discretizations are compared in Fig. 12. In the context of coupling bulk
and surface grids, one has to use the same parameterization for both meshes. To our best
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Figure 14: A minimal surfa
e spanning a 
urve winding around a torus.
knowledge, this is the first higher order finite element approximation to this problem.

One minimal surface with an explicitly known parameterization is the famous Enneper
surface. This surface we have used in order to benchmark the P1 and P2 discretizations.
The results are shown in Fig. 13, where we have plotted the decay of the H1 error for
the parameterization u versus DOFs (top) and CPU time (bottom). In the left picture
we can observe that the error decay is optimal, i.e., N−1/2 for the P1 and N−1 for the
P2 discretization, where N denotes the number of DOFs. The P1 discretization is clearly
outmatched by the higher order method. This effect is even more prominent, when relating
error to CPU time. Although any higher order is in general more costly, the P2 discretization
benefits in this example dramatically from less Newton iterations. The beauty of minimal
surfaces is apparent from Fig. 14, which presents a minimal surface spanning a curve
winding around a torus.
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