
NUMERICAL MATHEMATICS: Theory, Methods and Applications

Numer. Math. Theor. Meth. Appl., Vol. 2, No. 1, pp. 65-89 (2009)

A Parallel Algorithm for Adaptive Local Refinement

of Tetrahedral Meshes Using Bisection

Lin-Bo Zhang∗

State Key Laboratory of Scientific and Engineering Computing, Institute of

Computational Mathematics and Scientific/Engineering Computing, Academy of

Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080,

China.

Received 13 March 2008; Accepted (in revised version) 10 July 2008

Abstract. Local mesh refinement is one of the key steps in the implementations

of adaptive finite element methods. This paper presents a parallel algorithm for

distributed memory parallel computers for adaptive local refinement of tetrahedral

meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid

(http://lse
.

.a
.
n/phg/), a toolbox under active development for parallel

adaptive finite element solutions of partial differential equations. The algorithm pro-

posed is characterized by allowing simultaneous refinement of submeshes to arbitrary

levels before synchronization between submeshes and without the need of a central co-

ordinator process for managing new vertices. Using the concept of canonical refinement,

a simple proof of the independence of the resulting mesh on the mesh partitioning is

given, which is useful in better understanding the behaviour of the bisectioning refine-

ment procedure.

AMS subject classifications: 65Y05, 65N50

Key words: Adaptive refinement, bisection, tetrahedral mesh, parallel algorithm, MPI.

1. Introduction

The local refinement algorithms of simplicial meshes, mainly meshes composed of tri-

angles in two-dimensions, tetrahedra in three-dimensions, have been extensively studied

by many authors. In adaptive finite element computations, two types of refinement al-

gorithms are widely used: the regular refinement and the bisectioning refinement. The

regular refinement consists of simultaneously bisecting all edges of the triangle or tetra-

hedron to be refined, producing 4 smaller triangles or 8 smaller tetrahedra. Since the

regular refinement cannot generate locally refined conforming meshes, either special nu-

merical algorithms are designed to handle the hanging nodes, or it is combined with other

types of refinement (e.g., the red/green algorithm) to produce a conforming mesh, see,

∗Corresponding author. Email address: zlb�lse
.

.a
.
n (L.-B. Zhang)

http://www.global-sci.org/nmtma 65 c©2009 Global-Science Press

66 L.-B. Zhang

e.g., [19–21]. While with the bisectioning refinement, only one edge of the triangle or the

tetrahedron, called the refinement edge, is bisected, producing 2 smaller triangles or tetra-

hedra, as illustrated by Fig. 1. The main advantage of bisectioning refinement is that it can

naturally produce locally refined conforming meshes and nested finite element spaces. The

main problems with bisectioning refinement are how to select the refinement edge such

that triangles or tetrahedra produced by successive refinements do not degenerate, and the

refinement procedure on a given mesh terminates in a finite number of steps, producing a

conforming mesh which is ready for further refinements.

Figure 1: Bise
tion of a tetrahedron.
The methods for selecting the refinement edge proposed by various authors can be clas-

sified into two categories, namely the longest edge approach and the newest vertex approach

(the latter is also called the newest node approach by some authors).

The longest edge based algorithms are proposed and mainly studied by Rivara et

al. [14, 15]. In these algorithms, triangles or tetrahedra are always bisected using one

of their longest edges, the finite termination of the refinement procedure is obvious be-

cause when traversing from one simplex to another in order to make the resulting mesh

conforming, one steps along paths of simplices with longer longest edges. In two dimen-

sions, it can be shown that triangles produced by repeated bisection using the longest

edge approach have angles bounded away from 0 and π. But in three dimensions, The

non-degeneracy of tetrahedra produced by repeated bisections is still open.

The newest vertex approach was first proposed for two dimensional triangular meshes

by Sewell [5], and was generalized to three dimensions by Bänsch [4]. Mitchell did much

of the early work on the newest vertex bisection for triangular meshes [6,7]. Maubach [10]

further generalized the method for n+ 1-simplicial meshes in n dimensions. More recent

work on the newest vertex algorithms is described in the papers of Kossaczky [1], Liu

and Joe [3], and Arnold et al. [2]. Though the concept of the newest vertex approach is

very simple in two dimensions: once the refinement edge for the triangles in the initial

mesh is determined, the refinement edge of a newly generated triangle is the edge oppo-

site to its newest vertex, its generalization to three dimensions is highly non-trivial, and

the algorithms proposed by various authors are essentially equivalent, but use different

interpretations. It is theoretically proved that tetrahedra generated by these algorithms

belong to a finite number of similarity cases, which ensures non-degeneracy of tetrahedra

produced by repeated bisections.

Parallel Refinement of Tetrahedral Meshes 67

There are also works in the literature on parallel mesh refinement algorithms for tri-

angular or tetrahedral meshes using bisection. Mitchell developed a parallel bisectioning

algorithm in his PHAML package using full domain partition method [8]. Rivara et al. [16]

proposed a parallel algorithm for global refinement of tetrahedral meshes which is not suit-

able for adaptive local refinement. Pébay and Thompson [17] presented a parallel refine-

ment algorithm for tetrahedral meshes based on edge splitting. Jones and Plassmann [11]

proposed and studied a parallel algorithm for adaptive local refinement of two dimen-

sional triangular meshes. Barry, Jones, and Plassmann [12] also presented a framework

for implementing parallel adaptive finite element applications and demonstrated it with

2D and 3D plasticity problems. Castanos and Savage [13] described the parallel algorithm

for adaptive local refinement of tetrahedral meshes used in the PARED package.

The algorithm proposed here uses the newest vertex approach, because the newest

vertex approach has the advantage of being purely topological, i.e., the refinement process

only depends on the topological structure of meshes. The refinement edge of the descen-

dant tetrahedra is uniquely determined once the coarsest mesh is properly initialized. Liu

and Joe [3] pointed out that in the experiments they had carried out, much fewer tetrahe-

dra in the final mesh were produced with the newest vertex algorithm than with a longest

edge algorithm, and the resulting meshes of the latter depended heavily on roundoff errors

in the computation/comparison of edge lengths.

We end this introduction by briefly describing the algorithms of [1–3] from which the

present algorithm is derived.

The algorithms in [2,3] are essentially the same. We will use the terminologies of [2] to

describe the algorithm because they are simpler. In this algorithm, each tetrahedron in the

mesh has a marked edge which is its refinement edge. Each face also has a marked edge.

For a face containing the refinement edge of a tetrahedron, the marked edge of the face

is just the refinement edge. Tetrahedra in a marked mesh are classified into five types ac-

cording to the relative position of their marked edges and a flag: type A (adjacent), type Pu

(planar unflagged), type Pf (planar flagged), type O (opposite), and type M (mixed). For

any marked tetrahedron, the marking of its children is precisely defined based on its type

and marked edges through a set of well defined rules. Thus the refinement edges of all

tetrahedra are well defined once the tetrahedra in the initial mesh are properly marked.

Tetrahedra of types O and M can only exist in the initial mesh. A general algorithm for

marking tetrahedra of an arbitrary initial mesh was also proposed in [2, 3] for which fi-

nite termination of the refinement procedure and the conformity of the resulting mesh are

proved.

The algorithm of Kossaczky [1] is based on a different and interesting point of view:

a tetrahedron to be bisected is embedded into a reference parallelepiped consisting of 6

congruent tetrahedra sharing one diagonal of it, successive bisections of the tetrahedra are

then defined by bisecting in turn the diagonal of the parallelepiped shared by all tetrahedra,

the diagonals of faces of the parallelepiped shared by some tetrahedra, and the edges of

the parallelepiped. After three levels of bisections, the parallelepiped is divided into 8

smaller parallelepipeds, all similar to each other, then the same process can be restarted

with the smaller parallelepipeds. Fig. 2 gives an illustration of the process. Using this

68 L.-B. Zhang

point of view it is easy to see the finiteness of similarity cases of tetrahedra produced by

repeated bisections, and the refinement procedure is well defined once the embeddings for

the tetrahedra in the initial mesh are defined. Based on this idea, Kossaczky developed an

algorithm in which each tetrahedron is associated with a type, and the refinement edge of

a tetrahedron is denoted by the local numbering of its four vertices, with edge 0–1 being

the refinement edge. The type and numbering of vertices of the new tetrahedra are derived

from their parent. There are three types of tetrahedra according to the position of their

refinement edge in the reference parallelepiped: type Diagonal (the refinement edge is

the diagonal of the reference parallelepiped), type Face Diagonal (the refinement edge is

a diagonal of a face of the reference parallelepiped), and type Edge (the refinement edge

is an edge of the reference parallelepiped). This algorithm is equivalent to the algorithm

of [2] by mapping type Diagonal to type A, type Face Diagonal to type Pu, type Edge to

type Pf , and define the marked edge of the faces according to local numbering of vertices.

Figure 2: Embedding of a tetrahedron into a parallelepiped.
In our implementation, Kossaczky’s notation is used for storing refinement informa-

tion of a tetrahedron, with which only the type of the tetrahedron needs to be explicitly

stored. To define types and ordering of vertices for the tetrahedra in an arbitrary initial

mesh (called initial embedding by Kossaczky), we first use the initial marking algorithm

described in [2] to mark all tetrahedra, then map tetrahedra of types A, Pu and Pf to types

Diagonal, Face Diagonal and Edge respectively, and renumber the vertices of the tetrahe-

dra accordingly. In order to handle tetrahedra of types O and M which are not defined

in Kossaczky’s algorithm, two extra types, that we still call type Opposite and type Mixed,

respectively, are introduced. Fig. 3 summarizes the 5 types of tetrahedra and associated

bisection rules used in our implementation, in which refinement edges are indicated with

thick lines. The last three rules in Fig. 3 were given in [1] and the first two rules can be

easily derived by examining refinement rules in [2].

2. The serial refinement algorithm

In this section, we first summarize basic properties previously known of the bisection-

ing refinement based on the newest vertex approach. Then we introduce the concept of

canonical refinement and use it to give a simple proof of the independence of the resulting

mesh on the actual implementation. For simplicity of discussions, we first introduce some

formal notations and definitions.

A tetrahedron t is defined by its four vertices, and t is non degenerate if the four vertices

are not co-planar. For convenience of discussions, the variable t will be used to denote both

a tetrahedron (as an object) and its interior domain, whichever is applicable.

Parallel Refinement of Tetrahedral Meshes 69

Face Diagonal (Pu)

2
0

1

3

0
3

2

2

1

03

1

Opposite (O)

Face Diagonal (Pu)

0

1

2

3

1

03

2

0

3
2

1

Mixed (M)

Face Diagonal (Pu)

2
0

1

3

2

0

13

1
0

3
2

Diagonal (A)

Edge (Pf)

0

1

2

3

1

0

3 2

1

0

3
2

Face Diagonal (Pu)

Diagonal (A)

0

1

2

3

0

1

3
2

0

3
2

1

Edge (Pf)

Figure 3: Re�nement rules for the 5 re�ne-ment types, thi
k lines indi
ate re�nementedges.
Let t be a tetrahedron. Then E (t) denotes the set of the 6 edges of t, F (t) the set of

the 4 faces of t, and V (t) the set of the 4 vertices of t.

Definition 2.1. Let Ω be an open bounded domain in R3. A tetrahedral mesh T on Ω is a set

of non degenerate tetrahedra satisfying the following conditions:

1. Ω =
⋃

t∈T t.

2. ∀t, t′ ∈ T, either t = t′ or t ∩ t′ = ;.

As with a tetrahedron, E (T), F (T), and V (T) are used to denote the set of edges,

faces, and vertices of a tetrahedral mesh, respectively. Let f ∈ F (T); f is called a boundary

face if f ⊂ ∂Ω, an interior face otherwise.

Let t be a tetrahedron, a bisection of t consists of dividing t into two smaller tetrahedra

by inserting a new vertex at the center of a selected edge, called the refinement edge, and

linking the new vertex to the two vertices of the edge opposite to the refinement edge, as

shown by Fig. 1. The two new tetrahedra are called children of t. All tetrahedra generated

by repeated bisections of a tetrahedron t and t itself are called descendants of t. The

70 L.-B. Zhang

generation of descendants of a tetrahedron t is defined as follows: t has generation 0 and

if t′ is a generation k descendant, then the two children of t′ have generation k+ 1. We

will denote by t′ ≤ t if t′ is a descendant of t (and t′ < t if t′ 6= t). A tetrahedron t is

called a descendant of a tetrahedral mesh T if it is a descendant of a tetrahedron of T .

Let T and T ′ be two tetrahedral meshes on a domain Ω, if all tetrahedra of T ′ are

descendants of T , then T ′ is called a descendant mesh of T . As for the case of tetrahedra,

the notation T ′ ≤ T (or T ′ < T if T ′ 6= T) is used to denote that T ′ is a descendant mesh

of T .

For convenience of descriptions, we introduce the concept of a bisection operator. For

a given tetrahedral mesh T , a bisection operator on T can be thought of the procedure

of bisecting selected tetrahedra of T and the attributes attached to T which define an

unique, pre-determined refinement edge for each tetrahedron of T as well as for all its

descendants. (Note that with this concept, the method for marking an initial mesh is

considered an attribute of the bisection operator.)

A bisection operator is denoted by R and the following conventions will be used:

• R(t) denotes the submesh consisting of the two children of t.

• Rk(t) denotes the submesh consisting of all descendants of t of generation k.

• R(t) ¬ Rk(t), R(T, t) ¬ R(T, t, k) ¬ (T \ {t})
⋃

R(t), where t = (t, k) ∈ T ×N and

N denotes the set of positive integers.

• R(T, t) ¬ (T \ {t})
⋃

R(t).

• R(T,S)¬ (T \ S)
⋃

t∈S R(t), where S is a subset of T .

• R(T,S)¬ (T \S)
⋃

t∈S R(t), where S⊂ T×N and S = {t | ∃k, (t, k) ∈ S}. S is called

a selection of T since it selects the set of tetrahedra to be refined and defines their

refinement levels.

It is clear that for any selections S⊂ T ×N, R(T,S) is a descendant mesh of T .

Definition 2.2. A tetrahedral mesh T is conforming if ∀t ∈ T and ∀ f ∈ F (t), either f is a

boundary face, or ∃t′ ∈ T, t′ 6= t and f ∈ F (t′).

Note: the definition of conformity here is narrower than its usual meaning. More

precisely it refers to face conformity. It does not ensure conformity of edges. An example

of a mesh consisting of 3 tetrahedra which is conforming by Definition 2.2 but has a non

conforming edge is shown in Fig. 4. Such meshes are not common in the context of finite

element or finite volume approximations. For performance reasons, the parallel refinement

algorithm presented here works with face neighbours, which only ensures face conformity.

A similar algorithm can be designed to work with edge neighbours for ensuring both face

and edge conformity, but it requires much more memory for storing neighbour information

and need more communications in the parallel implementation. Hereafter throughout

this paper, except when explicitly stated, the term conformity will always refer to face

conformity.

Parallel Refinement of Tetrahedral Meshes 71

Figure 4: A fa
e-
onforming mesh with a non
onforming edge.
Definition 2.3. Let T be a tetrahedral mesh, R a bisection operator. R is called a conforming

bisection operator if, for any descendants t and t′ of T sharing a common face f , let e and e′

be the refinement edge of t and t′ respectively, if f contains both e and e′, then e = e′.

The conformity of a bisection operator corresponds to the concept conformingly marked

tetrahedral mesh in [2]. It is a necessary condition for the existence of conforming descen-

dant meshes for an arbitrary selection S.

In the subsequent discussions, when not explicitly stated, we will assume that a con-

forming tetrahedral mesh is always associated with an underlying conforming bisection

operator.

Definition 2.4. Let t be a tetrahedron of a tetrahedral mesh T and f a face of T . f is called

a hanging face of t in T if ∃ f ′ ∈ F (t), f 6= f ′ and f ⊂ f ′.

Definition 2.5. Let T be a conforming tetrahedral mesh, S ⊂ T × N a selection of T , R a

bisection operator on T , T ′ a conforming descendant mesh of T . T ′ is called a conforming

refinement of T with respect to S if T ′ ≤ R(T,S).

Now we describe the serial refinement algorithm. It is slightly different from the al-

gorithm Lo
alRefine in [2] in order to cover the parallel refinement procedure defined

later in Section 4.Algorithm 2.1:The input is a
onforming tetrahedral mesh T and a sele
tion S. The output is a
onformingre�nement T ′ of T with respe
t to S.
Step 0 Let k = 0, T0 = R(T,S)

Step 1 Let Sk = {t | t ∈ Tk and t has a hanging fa
e in Tk}

Step 2 If Sk = ;, then let T ′ = Tk and terminate.
Step 3 Let Tk+1 = R(Tk,S′

k
), where S′

k
is an arbitrary non empty subset of Sk.

Step 4 Let k = k+ 1 and goto step 1.
In our implementation, the bisection operator is defined by the types and local ordering

of vertices of tetrahedra in the mesh, which are determined by Arnold’s initial marking

algorithm and the refinement rules shown in Fig. 3. We will call this bisection operator

the newest vertex bisection operator. It is well defined and is conforming, and for any given

72 L.-B. Zhang

selection Algorithm 2.1 terminates in a finite number of steps and generates a conforming

descendant mesh, see [1–3] for discussions and proofs. Though the original proofs in

[1–3] were for edge conformity, it is not difficult to verify that they are also valid for face

conformity.

Definition 2.6. Let T be a conforming tetrahedral mesh, S a selection of T , The canonical

refinement of T with respect to S, denoted by TC(S), is defined to be the descendant mesh of

T satisfying the following conditions:

1. TC (S) is a conforming refinement of T with respect to S.

2. If T ′ is a conforming refinement of T with respect to S, then T ′ ≤ TC (S).

The following theorem gives existence and uniqueness of the canonical refinement.

Theorem 2.1. Let T be a conforming tetrahedral mesh, S a selection of T . If a conforming

refinement of T with respect to S exists, then TC (S) exists and is unique.

Proof. The uniqueness of the canonical refinement is obvious from its definition and

the fact that for any descendant meshes T ′ and T ′′ of T ; if both T ′ ≤ T ′′ and T ′′ ≤ T ′ hold,

then T ′ = T ′′.

Denote by R(T,S) the set of all conforming refinements of T with respect to S. Let

T (T,S) be the set of all tetrahedra of R(T,S). Define TC(S) to be the subset of T (T,S)

consisting of tetrahedra of smallest generations, i.e.:

TC (S) = {t | t ∈ T (T,S) and t does not have an ancestor in T (T,S)}.

It is not difficult to verify that TC (S) is well defined since R(T,S) 6= ;, and is a descendant

mesh of T (i.e., TC (S) satisfies the conditions in Definition 2.1). Thus to prove TC (S) is the

canonical refinement of T with respect to S, we just need to prove it’s conforming.

Suppose t ∈ TC (S), f ∈ F (t) and f is not a boundary face, we need to show that t has

a neighbour in TC (S) sharing the face f .

By definition of TC (S) there exists T ′ ∈ R(T,S) such that t ∈ T ′. Since T ′ is con-

forming, ∃t′ ∈ T ′, t′ 6= t, such that f ∈ F (t′). If t′ ∈ TC (S) then t′ is the neighbour we

are looking for. Otherwise, by definition of TC(S), there exist T ′′ and t′′, T ′′ ∈ R(T,S),

t′′ ∈ T ′′
⋂

TC (S), such that t′ < t′′. The proof is concluded if we can show that f ∈ F (t′′).
Let us suppose the contrary. Then f is a descendant face of a face, say f ′′, of t′′ and

f 6= f ′′. If we let t′′′ be the neighbour of t′′ in T ′′ sharing the face f ′′, then it is easily seen

that t < t′′′, which contradicts the definition of TC (S). �

Theorem 2.2. Let T be a conforming tetrahedral mesh associated with the newest vertex

bisection operator, S a selection of T , then the resulting mesh of Algorithm 2.1 is the canonical

refinement TC (S).

Proof. First, since Algorithm 2.1 terminates in a finite number of steps for a given

choice of S′
k
, k = 0,1, · · · , and produces a conforming refinement of T with respect to S,

by Theorem 2.1 the canonical refinement TC (S) exists.

Parallel Refinement of Tetrahedral Meshes 73

Next, we prove by induction that for any given choice of S′
k
, k = 0,1, · · · , TC(S) ≤ Tk.

Obviously, TC(S) ≤ T0 holds. Suppose for some k, TC (S) ≤ Tk holds and Sk 6= ;, then for

any t ∈ TC(S), ∃t
′ ∈ Tk such that t is a descendant of t′. We distinguish the following two

cases:

case 1: If t′ /∈ S′
k
, then t′ ∈ Tk+1.

case 2: If t′ ∈ S′
k
, then t′ has a hanging face in Tk. In order to show t is a descendant

of Tk+1, we only need to show t < t′. Let’s suppose the contrary, i.e., t = t′, then

t has a hanging face in Tk, since by the induction hypothesis TC (S) is a descendant

mesh of Tk, it is not difficult to see that t also has a hanging face in TC(S), which

contradicts the conformity of TC (S).

In both cases, t is a descendant of Tk+1, thus we have TC (S)≤ Tk+1. �

Corollary 2.1. The resulting mesh produced by Algorithm 2.1 is independent of the choice of

the subsets S′
k

in step 2.

Theorem 2.2 and Corollary 2.1 ensure that for any selection, the resulting mesh of

Algorithm 2.1 only depends on the initial marking, not on the processing order, which is

an inherent property of the bisectioning refinement algorithm, as long as a consistent, pre-

determined rule is used for selecting the refinement edge which does not depend on the

processing order.

Figure 5: Example of a hierar
hi
al binary tree.
In the implementation, to support mesh coarsening (unrefinement) and multigrid al-

gorithms, all tetrahedra created by successive bisections are stored as a binary tree, in

which the leaf nodes constitute the finest mesh. Mesh coarsening is necessary in some sit-

uations, for example, when solving time dependent problems, its parallel implementation

is another interesting subject of study, but here we will focus on the mesh refinement algo-

rithm. Fig. 5 is an illustration of a binary tree for an adaptively refined 2D triangular mesh,

in which the initial mesh contains one triangle, and the finest mesh contains 7 triangles.

74 L.-B. Zhang

Figure 6: Subtrees for a partitioned mesh.
3. Mesh partitioning

The parallel algorithm is based on the standard message passing interface MPI. In order

to distribute a mesh T on a distributed memory parallel computer, it is partitioned into P

submeshes Ti , i = 0, · · · , P − 1, where P is the number of MPI processes. The partitioning

is computed using existing tools like METIS [18]. In our implementation the partitioning

is element-based, i.e., the set of tetrahedra of T is divided into P disjoint subsets. After

mesh partitioning, in each process is stored a binary tree, which we call a subtree, whose

leaf elements constitute a submesh. Each subtree contains all ancestors of the leaf ele-

ments and is an incomplete binary tree in the sense that some non leaf nodes may only

have one branch, with the other branch stored in another subtree. Each leaf element

only exists in one subtree, but non leaf elements may be shared across multiple subtrees.

Fig. 6 shows the subtrees after partitioning the mesh in Fig. 5 into 2 submeshes. In our

implementation no ghost elements are stored, because in finite element applications most

computations which require neighbourhood traversal can be replaced with element-based

mesh traversal. For example, when computing the matrix of a linear system, the mesh is

traversed element by element, contribution from each element to the matrix is computed

independently and added to the global matrix through an unified linear solver interface.

In special situations where neighbourhood traversal is really needed, ghost elements can

be dynamically created.

In a distributed mesh, there are three kinds of indices for a vertex: its index within

a tetrahedron, in the range 0 – 3; its index within a submesh, in the range 0 – nv − 1,

where nv is the number of vertices in the submesh; and its index within the whole mesh,

in the range 0 – Nv − 1, where Nv is the number of vertices in the whole mesh. To simplify

the discussions below, we will call these 3 kinds of indices t-index, l-index, and g-index,

respectively.

In the implementation, in each tetrahedron are stored an array v[i℄, i = 0,1,2,3,

which are the l-indices of the 4 vertices of the tetrahedron, and the type of the tetrahedron.

The array v and the type of a tetrahedron uniquely determine its refinement edge, and

bisecting a tetrahedron simply consists of computing the array v and the type of its children

according to the set of rules in Fig. 3.

For each submesh, an array called L2Gmap is used to store the g-indices of all vertices

of the submesh. More precisely, L2Gmap[i℄ gives the g-index of the vertex with l-index

i. If the mesh is not partitioned, then L2Gmap[i℄ = i, i.e., the l-indices and g-indices

are identical (in this case L2Gmap need not be explicitly stored). The array L2Gmap is

Parallel Refinement of Tetrahedral Meshes 75

created when the mesh is partitioned, and updated during mesh refinement, coarsening,

and repartitioning. The algorithm for updating L2Gmap after the mesh is refined will be

discussed later in Section 5.

A neighbour of a tetrahedron t may be on another submesh, such a neighbour is called

a remote neighbour of t, and their common face is called a shared face. Similarly, a vertex

may be either exclusively owned by a submesh or shared by two or more submeshes, it is

called a private vertex in the former case and a shared vertex in the latter case.

A remote neighbour is stored in a C struct named RNEIGHBOUR which contains essen-

tially five members: lo
al, remote, rank, vertex, and rfa
e. lo
al is the pointer (or

index) to the local tetrahedron, remote is the pointer (or index) to the remote tetrahedron

in the remote submesh, rank is the MPI rank of the process containing the remote sub-

mesh, vertex is the t-index in the local tetrahedron of the vertex opposite to the shared

face, and rfa
e is a three-entry array which stores the t-indices of the vertices of the

shared face in the remote tetrahedron. Entries of the array rfa
e are ordered in the fol-

lowing way: let v0 < v1 < v2 be the t-indices in the local tetrahedron of the three vertices

of the shared face, then rfa
e[0℄, rfa
e[1℄ and rfa
e[2℄ are their corresponding t-

indices in the remote tetrahedron. The array rfa
e plays a key role in the implementation

of our parallel refinement algorithm.

4. The parallel refinement algorithm

The basic idea of the parallel refinement algorithm is a natural one, which was also

used by other parallel adaptive local refinement algorithms based on bisection [11, 13].

In our implementation, for a given selection S, the refinement procedure is divided into

two steps. In the first step, the submeshes are refined independently, with the shared faces

treated as if they were boundary faces. This step creates locally conforming submeshes,

but with non conforming shared faces. In the second step, tetrahedra containing one or

more shared faces which have been bisected during the first step are exchanged between

neighbour submeshes, and tetrahedra having one or more hanging shared faces are bi-

sected, the process is repeated until the global conformity of the mesh is reached, i.e., no

more hanging shared faces exist.Algorithm 4.1: Parallel adaptive lo
al re�nement algorithm using bise
tion
Step 1 perform Algorithm 2.1 in ea
h submesh with the given sele
tion.
Step 2.1 ex
hange information between submeshes about non
onforming shared fa
es, i.e.,shared fa
es whi
h have been bise
ted during last exe
ution of Step 1 or Step 2.3.
Step 2.2 terminate if no more non
onforming shared fa
es in all submeshes.
Step 2.3 bise
t in all submeshes tetrahedra having non
onforming shared fa
es using Algo-rithm 2.1 until all non
onforming shared fa
es are bise
ted and lo
al
onformity is ob-tained. This step will be des
ribed in detail in Algorithm 4.2.
Step 2.4 goto Step 2.1.

76 L.-B. Zhang

In Step 1 of Algorithm 4.1, tetrahedra selected for refinement are bisected to requested

levels, and local conformity of submeshes is obtained. The steps 2.1–2.4 are called the syn-

chronization loop which ensures global conformity of the resulting mesh. Communications

only occur in Step 2.1, all other steps are executed independently in all processes.

In the unrefined mesh, i.e., the mesh before performing Step 1 of Algorithm 4.1, each

submesh has a list of RNEIGHBOUR structs with correctly linked data between submeshes,

we call this list the primary list of remote neighbours, or shortly the primary list. During

the execution of Algorithm 4.1 two more lists are created. The first one is used to save theRNEIGHBOUR structs for new tetrahedra, as well as information necessary to track from a

tetrahedron in the unrefined mesh to any of its descendants (described below), it is called

the temporary list of remote neighbours, or shortly the temporary list. The second one is

used to save RNEIGHBOUR structs with updated information for new tetrahedra, it is called

the saved list of remote neighbours, or shortly the saved list.

In Algorithm 4.1, each time a tetrahedron having shared faces is bisected, newRNEIGHBOUR structs are created for its children having shared faces, one for each shared

face. The lo
al member of the new RNEIGHBOUR struct points to corresponding new

tetrahedron and the other members are inherited from the parent (using data from the

primary list). Thus at the time when a new tetrahedron is created, only the lo
al and therank members of its RNEIGHBOUR struct contain correct information; the other members

are simply copied from its ancestor in the unrefined mesh and will be updated later. The

new RNEIGHBOUR structs are added both to the primary and temporary lists. For each newRNEIGHBOUR struct in the temporary list, three extra members are saved:

1. A depth member which is the relative generation of the new tetrahedron with

respect to its ancestor in the unrefined mesh.

2. A path member which contains bitwise flags whose lowest depth bits indicate

which child to choose for each bisection when going from the ancestor in the

unrefined mesh to the new tetrahedron, 0 means child 0, 1 means child 1. In the

implementation a 32-bit or 64-bit integer is used to store this member, it allows

a tetrahedron in the unrefined mesh to be repeatedly bisected 32 or 64 times in

Algorithm 4.1, which should be sufficient for practical applications.

3. A type member which is the type of the ancestor in the unrefined mesh of the

new tetrahedron.

Before giving more details on the implementation, we give a proposition which is

needed for justifying Algorithm 4.2. It was stated as Lemma 1 in [1] for tetrahedra of

types Diagonal, Face Diagonal, and Edge, and can be easily extended for the other two

types (the types Opposite and Mixed) by examining the bisection scheme.

Proposition 4.1. Let t be a tetrahedron. Let f be any face of t. If f does not contain the

refinement edge of t, then f must contain the refinement edge of one of the children of t.

Parallel Refinement of Tetrahedral Meshes 77

At the beginning of a synchronization loop, i.e., in Step 2.1 of Algorithm 4.1, each

process sends entries in its temporary list to corresponding processes and flushes the tem-

porary list for further new entries. Then the entries received from other processes are

processed in Step 2.3 of Algorithm 4.1, the actions carried out on each entry received

are described in Algorithm 4.2 below. The main idea is traversing along refinement path

in both submeshes from the two matching tetrahedra in the unrefined mesh to the two

matching tetrahedra in the refined mesh, bisecting tetrahedra as necessary, and updating

information stored in corresponding RNEIGHBOUR structs, as illustrated by Fig. 7 with a

two dimensional mesh.Algorithm 4.2: Step 2.3 of Algorithm 4.1Suppose pro
ess A is the
urrent pro
ess. Let {rnB,depthB,pathB,typeB} be an entry re
eivedfrom pro
ess B by pro
ess A. Let tA be the tetrahedron referen
ed by rnB.remote whi
h isin the unre�ned mesh of pro
ess A, and tB be the remote tetrahedron in the unre�ned meshof pro
ess B referen
ed by rnB.lo
al. Let rnA be the
orresponding RNEIGHBOUR stru
t inpro
ess A (rnA.lo
al= tA, rnA.remote= tB). Perform in pro
ess A the following steps (thefun
tion bise
t(t) below means applying Algorithm 2.1 to the submesh with the sele
tion
{t}× {1}):
Step 1 If the shared fa
e of tB is not bise
ted then goto Step 8.
Step 2 If the shared fa
e
ontains the re�nement edge of tA then goto Step 6.
Step 3 If tA has not been bise
ted, then bise
t(tA).
Step 4 Let t ′ be the
hild of tA
ontaining the shared fa
e, set tA := t ′. Now the shared fa
eof tA must
ontain the re�nement edge of tA a

ording to Proposition 4.1.
Step 5 Update the members of rnA and rnB a

ordingly.
Step 6 If tA has not been bise
ted, then bise
t(tA).
Step 7 Among the
hildren of tA,
hoose the one mat
hing the re�nement path of the remotetetrahedron tB (the de
ision on whi
h
hild to
hoose
an be easily derived from
urrentvalues of rfa
e and vertex members of rnA and rnB, pathB&1, typeB, and the typesof the lo
al tetrahedron), and set tA to that
hild.
Step 8 Similarly set tB to the mat
hing
hild of the remote tetrahedron.
Step 9 Update the members of rnA and rnB to mat
h the new tA and tB.
Step 10 Set depthB := depthB− 1, pathB := pathB�1, and set typeB to the type of tB.
Step 11 If depthB> 0 then goto Step 1.
Step 12 If tA has been re�ned in the
urrent submesh but the shared fa
e has not, then settA to the
hild
ontaining the shared fa
e, and update the members of rnA and rnBa

ordingly.
Step 13 Append rnA to the saved list.

After all received entries are processed by Algorithm 4.2, they are sent back with up-

dated data to where they came, and appended to the saved list on the remote processes.

These communications are also performed in Step 2.1 of Algorithm 4.1.

Note that in the synchronization loop entries in the primary list are kept unchanged,

78 L.-B. Zhang

Figure 7: Updating a mat
hing pair of elements.
up to date data are saved in the saved list. This is important because otherwise one has to

deal with RNEIGHBOUR structs in some intermediate states which may lead to very complex

situations.

The synchronization loop terminates if the temporary lists in all processes are empty in

Step 2.1 of Algorithm 4.1. Then entries in the saved list and the primary list are used to

construct the list of RNEIGHBOUR structs for the final new mesh. If multiple entries exist

for a same shared face, the one with a larger depth value is used.

It can be verified that Algorithm 4.1 is equivalent to an implementation of Algo-

rithm 2.1 for the global mesh. Thus the theoretical results of Section 2 apply to Algo-

rithm 4.1, ensuring the finite termination of the synchronization loop and global confor-

mity of the resulting mesh. It can also be verified that after the above steps the newRNEIGHBOUR structs contain correct information about the remote neighbours in the final

mesh.

5. Assigning global indices to new vertices

Assignment of global indices consists of updating the L2Gmap array, which is postponed

to after the synchronization loop for increasing communication granularity. In this section

we describe the algorithm for updating the L2Gmap array.

During the refinement process, when a new vertex is created, an unique l-index is

assigned to it. The l-indices assigned to new vertices are strictly increasing with respect

to their order of creation. If a new vertex is a shared vertex, then it is saved to a list.

Each entry in the list is stored as a triplet {a, b, m}, where m is the l-index of the new

vertex, a and b correspond to the two vertices of the refinement edge. Since only shared

vertices need to be saved, the size of the list is relatively small compared to total number

of new vertices. Since a tetrahedron may be bisected arbitrary number of times during

the refinement process, a or b may be either old or new vertices (here old vertex means a

vertex in the unrefined mesh).

To define values of a and b, we introduce the notation of c-index (which means a

compound index). Let v be the l-index of a vertex, then its c-index c is defined as:

c =

¨ L2Gmap[v℄ if v is an old vertex,

v + Nv if v is a new vertex,

where Nv is the number of vertices in the unrefined global mesh. For an old vertex, the

Parallel Refinement of Tetrahedral Meshes 79

c-index is just its g-index, and for a new vertex, the c-index is its l-index plus the number

of vertices in the unrefined global mesh. Let x and y be the c-indices of the two vertices,

if
omp_vertex(x , y) < 0, then a := x and b := y, otherwise a := y and b := x . The

recursive function
omp_vertex which compares two c-indices is defined in Algorithm

5.1. By examining the procedure for assigning g-indices to new vertices described later in

this section, one can verify that the sign of the value returned by
omp_vertex is exactly

the same as comparing the g-indices of the two vertices. This function is very useful when

one needs to compare or order vertices according to their g-indices during the refinement

procedure before L2Gmap is updated.Algorithm 5.1: The fun
tion
omp_vertexfun
tion
omp_vertex(i, j)if i < Nv or j < Nv thenreturn i − jelseFind the triplet (a0, b0, m0) in the list of shared verti
es su
h that m0 = i− Nv,if the entry is not found then set m0 := −1.Find the triplet (a1, b1, m1) in the list of shared verti
es su
h that m1 = j− Nv ,if the entry is not found then set m1 := −1.if m0 =−1 or m1 =−1 thenif m0 6=−1 thenreturn 1end ifif m1 6=−1 thenreturn −1end ifreturn i − jelseLet r :=
omp_vertex(a0, a1)if r 6= 0 thenreturn relsereturn
omp_vertex(b0, b1)end ifend ifend ifend
The following proposition, Proposition 5.1, validates the function
omp_vertex, as

well as the function
omp_shared_vertex defined later in Algorithm 5.2.

Proposition 5.1. Let {a, b, m} be an entry in the list of new shared vertices. If a is a new

vertex, i.e., a ≥ Nv, then there exists an entry {a0, b0, m0} in the list such that m0 = a − Nv

and m0 < m. Similarly, If b is a new vertex (b ≥ Nv), then there exists an entry {a1, b1, m1}
in the list such that m1 = b − Nv and m1 < m. This property holds at any time during the

refinement procedure.

80 L.-B. ZhangAlgorithm 5.2: The fun
tion
omp_shared_vertexfun
tion
omp_shared_vertex(i, j)Let (a0, b0, m0) be the triplet for the entry i.Let (a1, b1, m1) be the triplet for the entry j.Let r :=
omp_shared_vertex0(a0, i, a1, j)if r 6= 0 thenreturn relsereturn
omp_shared_vertex0(b0, i, b1, j)end ifendfun
tion
omp_shared_vertex0(a, i, b, j)if a < Nv or b < Nv thenreturn a− belseLet Bki
be the blo
k
ontaining the i-th entry of the list,�nd the triplet (a0, b0, m0) in Bki

su
h that m0 = a− Nv .Let Bk j
be the blo
k
ontaining the j-th entry of the list,�nd the triplet (a1, b1, m1) in Bk j

su
h that m1 = b− Nv .Let r :=
omp_shared_vertex0(a0, i, a1, j)if r 6= 0 thenreturn relsereturn
omp_shared_vertex0(b0, i, b1, j)end ifend ifend
Proof. Let {a, b, m} be a triplet in the list of new shared vertices, it is clear that both a

and b must be shared vertices. Moreover, if a or b is a new vertex, since it is created before

the vertex m, a corresponding entry must exist in the list. �

After termination of the synchronization loop, each process sends its list of new shared

vertices, together with the number of new private vertices, to all other processes (it consists

of an MPI_Allgatherv operation). Then each process has an identical copy of the lists of

new shared vertices and the numbers of private vertices of all submeshes, and can update

its L2Gmap independently.

Assigning g-indices to private vertices is quite easy and straightforward. Let the number

of new private vertices in submesh i be li, i = 0, · · · , P − 1, then L =
∑P−1

i=0 li is the total

number of new private vertices. The g-indices of the new private vertices are in the range

Nv, · · · , Nv+ L−1 (Nv , · · · , Nv+ l0−1 for submesh 0, Nv+ l0, · · · , Nv+ l0+ l1−1 for submesh

1, etc.).

Assigning g-indices to shared vertices is more complicated. Let m0, · · · , mP−1 be the

numbers of new shared vertices from all submeshes, M =
∑P−1

i=0 mi the total number of

Parallel Refinement of Tetrahedral Meshes 81

new shared vertices. Denote by Bk (k = 0, · · · , P − 1) the list of new shared vertices from

submesh k. The lists Bk are concatenated into a list of size M (which is in fact the result of

the MPI_Allgatherv operation). A corresponding list of integers, index, whose entries

are indices to the list of new shared vertices, is created and initialized with index[i℄= i,

i = 0, · · · , M − 1. The index list is then sorted using the function
omp_shared_vertex
defined in Algorithm 5.2. The function
omp_shared_vertex takes as input two indices

to the list of shared vertices and returns an integer value reflecting the result of comparison

of the two new shared vertices.

After the index list is sorted, new g-indices are continuously assigned to new shared

vertices according to the entries of index, starting from Nv + L. Two entries for which

the return value of
omp_shared_vertex is 0 represent a same vertex and are assigned

a same g-index value.

 1e+06

 1e+07

 64 48 32 24 16 12 8 6 4 3 2 1

nu
m

be
r

of
 te

tr
ah

ed
ra

/s
ec

on
d

number of processes

P4/Myri.
O3800

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 48 32 24 16 12 8 6 4 3 2 1

pa
ra

lle
l e

ffi
ci

en
cy

number of processes

P4/Myri.
O3800

Figure 8: The number of the tetrahedra per se
ond (left) and the parallel e�
ien
y (right) against thenumber of pro
esses for the �rst example.
6. Numerical experiments

We present three numerical examples demonstrating the parallel refinement algorithm.

In the first example, the domain is the unit cube and the initial mesh contains 6 congruent

tetrahedra. The mesh is repeatedly refined, each time about 25% tetrahedra are randomly

selected for refinement. At the beginning, the serial algorithm is run on process 0 a number

of times until the total number of tetrahedra in the mesh exceeds 10,000, at that point the

mesh is partitioned into P submeshes using the METIS function METIS_PartMeshDual
and distributed onto the P processes. Then the parallel refinement algorithm is started with

the P processes and is repeated until the number of tetrahedra in each submesh exceeds

one million. Since in this example the numbers of tetrahedra in different submeshes are

roughly the same, no mesh repartitioning is needed. The number of tetrahedra in the

final mesh, the parallel refinement time (not including the serial refinement part), and the

average number of tetrahedra created per second with various number of processes are

82 L.-B. ZhangTable 1: Some statisti
s and results for the �rst example.
Lenovo DeepComp 1800, 2GHz Pentium IV/Myrinet 2000

Nprocs # tetrahedra Wall time (s) Tetrahedra/sec Efficiency

1 1, 311, 940 2.22 591, 747 1.00

2 2, 580, 736 2.52 1, 025, 958 0.87

3 4, 624, 250 3.50 1, 322, 531 0.74

4 4, 624, 856 2.64 1, 753, 354 0.74

6 9, 898, 356 3.97 2, 490, 235 0.70

8 9, 893, 362 3.09 3, 205, 731 0.68

12 19, 764, 128 4.33 4, 567, 630 0.64

16 19, 774, 100 3.32 5, 959, 549 0.63

24 35, 773, 120 4.65 7, 691, 865 0.54

32 35, 778, 384 3.60 9, 931, 217 0.52

48 76, 666, 264 5.48 13, 999, 528 0.49

64 76, 752, 286 4.49 17, 079, 386 0.45

SGI Origin 3800, 600MHz MIPS R14000

Nprocs # tetrahedra Wall time (s) Tetrahedra/sec Efficiency

1 1, 313, 888 4.21 312, 260 1.00

2 2, 584, 392 4.67 553, 793 0.89

3 4, 624, 648 6.91 669, 250 0.71

4 4, 623, 142 5.11 905, 508 0.72

6 9, 897, 970 9.02 1, 097, 188 0.59

8 9, 889, 678 5.68 1, 740, 701 0.70

12 19, 762, 892 9.45 2, 090, 727 0.56

16 19, 768, 314 6.48 3, 052, 394 0.61

24 35, 737, 554 10.23 3, 494, 356 0.47

32 35, 717, 938 7.97 4, 480, 648 0.45

48 76, 603, 682 10.62 7, 215, 973 0.49

60 76, 540, 224 9.30 8, 232, 786 0.45

given in Table 1, The speedup and parallel efficiency obtained with this example are shown

in Fig. 8. By observing Fig. 8 we see that the performance of the refinement algorithm

scales as Pα. Using the data in Table 1 one gets by least square fit α ≈ 0.82 for the

DeepComp 1800, and α ≈ 0.80 for the Origin 3800. Thus, for example, the parallel

efficiency is expected to be between 25% and 29% on 1024 processes for these kinds of

parallel computers, which is quite satisfactory for us.

In the second example, the domain is (0,1)3 \ (1

2
, 1)3. i.e., the unit cube with one of its

corners removed. The initial mesh contains 42 tetrahedra. In each refinement, tetrahedra

which touch the spherical surface

�

x −
1

2

�2

+

�

y −
1

2

�2

+

�

z −
1

2

�2

=

�

3

5

�2

are selected for refinement, thus the tetrahedra in the final mesh concentrate towards

the surface. Fig. 9 shows the initial mesh, a refined mesh with 42,546 tetrahedra, and a

partitioned mesh. The serial refinement algorithm is first repeatedly performed to bring

Parallel Refinement of Tetrahedral Meshes 83

Figure 9: The initial mesh (top left), a re�nement mesh with 42,546 tetrahedra (top right) and apartitioned mesh (bottom) for the se
ond example.
 30

 20

 10

 1

 64 48 32 24 16 12 8 6 4 3 2

re
fin

em
en

t t
im

e

number of processes

P4/Myri., with LB
P4/Myri., without LB

O3800, with LB
O3800, without LB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 64 48 32 24 16 12 8 6 4 3 2

pa
ra

lle
l e

ffi
ci

en
cy

number of processes

P4/Myri., with LB
P4/Myri., without LB

O3800, with LB
O3800, without LBFigure 10: The re�nement time (left) and the parallel e�
ien
y (right) against the number of pro
essesfor the se
ond example.

the number of tetrahedra to 16,044, then the mesh is partitioned and distributed, and

the parallel refinement algorithm is repeatedly performed on the distributed mesh, until

the final mesh, which contains 13,044,234 tetrahedra, is obtained. In this example, if

84 L.-B. ZhangTable 2: Some statisti
s and results for the se
ond example.
Lenovo DeepComp 1800, 2GHz Pentium IV/Myrinet 2000

With mesh redistribution Without mesh redistribution

Nprocs Wall time (s) Efficiency Wall time (s) Efficiency LIF

4 8.30 1.00 8.30 1.00 1.03

6 5.19 1.07 5.19 1.07 1.04

8 3.92 1.06 4.24 0.98 1.12

12 2.57 1.08 2.62 1.06 1.12

16 1.98 1.05 2.10 0.99 1.20

24 1.40 0.99 1.42 0.97 1.15

32 1.10 0.94 1.28 0.81 1.37

48 0.93 0.74 1.04 0.67 1.50

64 0.87 0.60 1.01 0.51 1.78

SGI Origin 3800, 600MHz MIPS R14000

With mesh redistribution Without mesh redistribution

Nprocs Wall time (s) Efficiency Wall time (s) Efficiency LIF

2 31.29 1.00 31.29 1.00 1.02

4 15.75 0.99 15.16 1.03 1.03

6 11.51 0.91 12.62 0.83 1.03

8 8.55 0.91 10.05 0.78 1.06

12 6.85 0.76 5.13 1.02 1.06

16 4.05 0.97 4.37 0.90 1.17

24 3.38 0.77 3.36 0.78 1.14

32 2.78 0.70 2.70 0.72 1.18

60 1.73 0.60 2.71 0.36 1.79

no mesh repartitioning or redistribution is performed, the load imbalance factor LIF (the

maximum number of tetrahedra over the average number of tetrahedra in the submeshes)

in the final mesh varies between 1.1 and 2.0 for different number of processes. Two sets

of tests have been run. In the first set of tests, after each mesh refinement, if the LIF

exceeded 1.1, then a new mesh partitioning was computed using the ParMETIS functionParMETIS_V3_AdaptiveRepart and the submeshes were redistributed. In the second

set of tests, no mesh redistribution was performed. Table 2 and Fig. 10 show the refinement

time and parallel efficiency for various number of processes. For this example, since the

size of the final mesh is fixed, the sizes of the submeshes become smaller with increasing

number of submeshes, which makes more efficient use of memory cache of the computers,

resulting in super-linear speedups in some cases.

The mesh redistribution times in the second set of tests are given in Table 3, they

include times spent in ParMETIS_V3_AdaptiveRepart and times for migrating and re-

connecting branches of the subtrees. The time for the refinement step just before mesh

redistribution is also given in the table. The redistribution times are typically one order of

magnitude longer than corresponding refinement times. Our current mesh redistribution

code is mainly a functional implementation which works reliably but has rather poor per-

formance, which is a subject of our future study. More results on the mesh redistribution

Parallel Refinement of Tetrahedral Meshes 85Table 3: Mesh redistribution time on Lenovo DeepComp 1800 for the se
ond example, �re�nementtime� refers to the time spent in the re�nement step prior to mesh redistribution, �ratio� is the ratio ofmesh redistribution time to re�nement time.
Nprocs Nbr tetrahedra Refinement time Redistr. time Ratio

8 789264 0.2080 1.4756 7.09

12 789264 0.1467 1.2353 8.42

16 411432 0.0481 0.5182 10.76

24 3226062 0.3177 3.2919 10.36

32 789264 0.0783 0.7646 9.76

48 3226062 0.2092 2.4773 11.84

64 13044234 0.6549 8.8240 13.47

time will be given in the next example to show their influence in the context of adaptive

finite element computations.

The third example consists of solving the Poisson equation

−∆u= f

with Dirichlet boundary condition in the unit cube (0,1)3. This is an example used in the

adaptive finite element toolbox ALBERTA [23]. It was used to verify the suitability of our

underlying distributed mesh infrastructure for adaptive finite element applications, and

evaluate the performance of various parts of our code.

The equation is solved using Lagrange elements of orders 1 to 4. The initial mesh

contains 5 tetrahedra. Elements are selected for refinement using the following a posteriori

error estimator:

η2
t = h2

t‖∆uh+ fh‖
2
0;t +

1

2

∑

f ∈F (t), f 6⊂∂Ω

h f ‖[▽uh · n f] f ‖
2
0; f ,

where uh denotes the finite element solution, ht the diameter of the element t, h f the

diameter of the face f , n f the unit normal vector of the face f , and [·] f the jump across

the face f . The exact solution

u(x , y, z) = e−10(x2+y2+z2)

was used in the computations. The linear systems were solved using PETSc with its default

solver (GMRES(30)) and preconditioner (ILU(0)) [24], and the rtol value was set to1e-10. In the adaptation loops, the numerical solution was interpolated to the new mesh

after mesh refinement which was used as the initial solution of the linear system.

The computations were performed on the Lenovo DeepComp 1800. In each run, the

computation was started with one process, new processes were added when the average

number of elements per process exceeded 200 until all processes available were used, and

submeshes were redistributed whenever the load imbalance factor exceeded 1.2.

Fig. 11 shows the convergence of the numerical solution for the 4-th order Lagrange

element, for both uniform refinement and adaptive refinement.

86 L.-B. Zhang

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 120 1200 12000 120000 1.2e+06

number of degrees of freedom

adaptive refinement
uniform refinement

a line with slope -4/3
‖u
−

u
h
‖

Figure 11: Convergen
e history of the 4-th order Lagrange element for the third example.Table 4: Wall times (in se
onds) in some adaptation steps of various parts of the
omputations. Thenumbers in parentheses following the solution times are the numbers of iterations.
Ele- Number Linear system Esti- Refine- Redistr-

ment Nprocs elements Assembly Solution mate ment ibution

16 2434024 1.67 3.44 (166) 1.48 1.41 9.34

P1 32 6721346 2.61 8.79 (269) 2.04 2.27 13.95

64 35506914 6.41 41.63 (413) 5.37 6.19 13.95

200 35506908 2.13 11.49 (423) 1.89 4.29 58.80

16 2786314 17.31 16.70 (47) 3.99 1.82 8.37

P2 32 5652030 17.90 17.60 (47) 4.03 2.47 12.06

64 9752578 15.62 13.19 (40) 3.55 2.33 22.10

200 16669782 9.00 6.36 (27) 2.14 2.08 49.59

16 173594 8.30 4.40 (37) 1.31 0.19 0.64

P3 32 2106842 53.97 15.02 (9) 6.39 1.07 4.20

64 3174854 40.49 10.74 (6) 4.96 0.76 5.65

200 3945754 15.93 4.94 (5) 3.08 0.58 6.70

16 63544 13.67 3.64 (13) 1.17 0.11 0.31

P4 32 425378 46.98 11.13 (5) 4.78 0.29 1.20

64 571640 32.49 7.23 (4) 2.83 0.39 1.87

200 485785 8.56 2.71 (4) 0.91 0.21 2.51

Table 4 gives some timing results from the computations. In order to exhibit costs of

mesh redistributions, only the times for the last adaptation step, i.e.,

“solve⇒estimate⇒refine⇒redistribute” loop,

in which mesh redistribution occurred were shown. The refinement times in the table

Parallel Refinement of Tetrahedral Meshes 87

include the time for interpolating uh and evaluating f at new elements, and the redistri-

bution times include the time for migrating finite element and geometric data (including

barycentric Jacobian, normal vectors, diameters, etc.). Since the linear solver used was

not the best one available for this problem, the solution times should only be regarded

as a rough indication. The mesh redistribution time represents an important part in over-

all computational time, especially with low order elements, so it is important to reduce

the number of mesh redistributions. One way to reduce the number of mesh redistribu-

tions is to predict refinement of elements using the a posteriori error estimates, and use

this information when computing the mesh partitioning (see, e.g., the work by Bank and

Holst [22]).

7. Conclusion

A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisec-

tion is presented. The algorithm uses the newest vertex approach and is characterized by

allowing simultaneous refinement of submeshes to arbitrary levels before synchronization

between submeshes and without the need of a central coordinator process for manag-

ing new vertices. Independence of the resulting mesh on the processing order and mesh

partitioning is proved using the concept of canonical refinement. The scalability of the

refinement algorithm is satisfactory. Based on this algorithm, we have implemented the

core part of our adaptive finite element toolbox PHG which consists of modules for mesh

import and initialization, refinement, coarsening, and redistribution. We have also finished

the basic data structures for parallel adaptive finite element computations, and a linear al-

gebra module for sparse matrix/vector operations, including linear solvers and interfaces

to many publicly available external linear and eigen solvers such as PETSc, HYPRE, Su-

perLU, MUMPS, ARPACK, LOBPCG, etc. Work is undergone to complete the functionality

of the toolbox, such as support for h-p adaptivity and multigrid, and apply the toolbox to

solve application problems, like the Maxwell’s equations.

Acknowledgments This work was supported by the 973 Program of China

2005CB321702 and China NSF 10531080.

References

[1] I. Kossaczky, A recursive approach to local mesh refinement in two and three dimensions, J.

Comput. Appl. Math., 55 (1994), pp. 275–288.

[2] D. N. Arnold, A. Mukherjee, and L. Pouly, Locally adapted tetrahedral meshes using bisection,

SIAM J. Sci. Comput., 22 (2000), No. 2, pp. 431–448.

[3] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM J.

Sci. Comput., 16 (1995), No. 6, pp. 1269–1291.

[4] E. Bänsch, An adaptive finite-element strategy for the three dimensional time dependent

Navier-Stokes equations, J. Comput. Appl. Math., 36 (1991), pp. 3–28.

[5] E. G. Sewell, Automatic generation of triangulation for piecewise polynomial approximation,

Ph.D. Thesis, Purdue Univ., West Lafayette, IN, 1972.

88 L.-B. Zhang

[6] W. F. Mitchell, Unified multilevel adaptive finite element methods for elliptic problems, Ph.

D. Thesis, Report no. UIUCDCS–R–88–1436, Dept. Comput. Sci., Univ. Illinois, Urbana, IL,

1988.

[7] W. F. Mitchell, Adaptive refinement for arbitrary finite–element spaces with hierarchical bases,

J. Comput. Appl. Math., 36 (1991), pp. 65–78.

[8] W. F. Mitchell, The full domain partition approach to parallel adaptive refinement, Grid Gen-

eration and Adaptive Algorithms, IMA Volumes in Mathematics and its Applications, 113

(1998), pp. 151–162.

[9] W. F. Mitchell, http://math.nist.gov/phaml/, The Parallel Hierarchical Adaptive Multi-

Level Project.

[10] J. M. Maubach, Local bisection refinement for N -simplicial grids generated by reflection,

SIAM J. Sci. Comput., 16 (1995), pp. 210–227.

[11] M. T. Jones and P. E. Plassmann, Parallel algorithms for adaptive mesh refinement, SIAM J.

Sci. Comput., 18 (1997), No. 3, pp. 686–708.

[12] W. J. Barry, M. T. Jones, and P. E. Plassmann, Parallel adaptive mesh refinement techniques

for plasticity problems, Advances in Engineering Software, 29 (1998), No. 3, pp. 217–225.

[13] J. G. Castanos and J. E. Savage, Parallel refinement of unstructured meshes, Proceedings of

the IASTED International Conference on Parallel and Distributed Computing and Systems,

November 3–6, 1999, MIT, Boston, USA.

[14] M. C. Rivara, Mesh refinement processes based on the generalized bisection of simplices,

SIAM J. Numer. Anal., 21 (1984), pp. 604–613.

[15] A. Plaza and M. C. Rivara, Mesh refinement based on the 8-tetrahedra longest-edge partition,

Proceedings, 12th International Meshing Roundtable, Sandia National Laboratories, pp. 67–

78, Sept. 2003.

[16] M. C. Rivara, D. Pizarro, and N. Chrisochoides, Parallel refinement of tetrahedral meshes us-

ing terminal-edge bisection algorithm, Proceedings 13th International Meshing Roundtable,

Williamsbourg USA September 19–22 2004.

[17] P. P. Pébay and D. C. Thompson, Parallel mesh refinement without communication, Proceed-

ings 13th International Meshing Roundtable, Williamsbourg USA September 19–22 2004.

[18] R. Aggarwal, K. Schloegel, V. Kumar, and S. Shekhar, METIS — Family of Multilevel Parti-

tioning Algorithms, http://www-users.
s.umn.edu/~karypis/metis/
[19] R. E. Bank, A. H. Sherman, and A. Weiser, Refinement algorithms and data structs for regular

local mesh refinement, Scientific Computing, R. Stepleman et al., ed., IMACS/North-Holland

Publishing Company, Amsterdam, 1983, pp. 3–17.

[20] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378.

[21] H. L. de Cougny and M. S. Shephard, Parallel refinement and coarsening of tetrahedral

meshes, Int. J. for Num. Meth. in Eng., 46 (1999), pp. 1101–1125.

[22] R. E. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM J.

Sci. Comput., 22 (2000), pp. 1411–1443.

[23] A. Schmidt and K. G. Siebert, Design of adaptive finite element software: The finite element

toolbox ALBERTA, Springer LNCSE Series 42 (2005).

[24] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith,

and H. Zhang, PETSc Web page, http://www.m
s.anl.gov/pets

[25] http://www.llnl.gov/CASC/linear_solvers/, HYPRE — high performance precon-

ditioners,

[26] X. S. Li and J. W. Demmel, SuperLU_DIST: A scalable distributed-memory sparse direct solver

for unsymmetric linear systems, ACM Trans. Mathematical Software, 29 (2003), No. 2, pp.

110–140.

Parallel Refinement of Tetrahedral Meshes 89

[27] http://mumps.enseeiht.fr/, MUMPS: a MUltifrontal Massively Parallel Sparse direct

solver.

[28] http://www.
aam.ri
e.edu/software/ARPACK/
[29] A. Knyazev, Block Locally Optimal Preconditioned Eigenvalue Xolvers,http://www-math.
udenver.edu/~aknyazev/software/BLOPEX/

