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Abstract. This paper presents alternating direction finite volume element methods for
three-dimensional parabolic partial differential equations and gives four computational
schemes, one is analogous to Douglas finite difference scheme with second-order split-
ting error, the other two schemes have third-order splitting error, and the last one is an
extended LOD scheme. The L? norm and H' semi-norm error estimates are obtained
for the first scheme and second one, respectively. Finally, two numerical examples are
provided to illustrate the efficiency and accuracy of the methods.
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1. Introduction

Finite volume element methods (FVEMs) [1-3] or generalized difference methods [4]
discretize the integral form of conservation laws of differential equation by choosing linear
or high order finite element space as the trial space. The method lies in between finite ele-
ment method and finite difference method in concept and implementation. In recent years,
some literature focused on the error estimates of finite volume element methods, espe-
cially for two dimensional problems, see the references [5-13]. Recently, the author [14]
combines finite volume element methods and alternating direction methods for two di-
mensional parabolic differential equations and presents some alternating direction finite
volume element schemes. Here, we further extend the method to three-dimensional par-
tial differential equations. As an efficient technique, alternating direction method [15,16]
successfully converts multidimensional problems to a collection of one dimensional prob-
lems, which can be solved very easily. Because ADI finite difference methods and alternat-
ing direction finite element methods are unconditionally stable and highly efficient, they
have been applied in many areas of applied sciences [17,18]. It is worth mentioning that
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Professor Douglas et al. [16] presented an LOD finite difference scheme with third-order
perturbation term. In this paper, we write the finite volume element method as tensor
product form by perturbing the differential equations, so we can convert the method to a
series of one dimensional problems. We give four kinds of alternating direction schemes,
the first one is similar to Douglas scheme [15] with second-order splitting error, the second
and third are also Douglas schemes with third order splitting error [16]. The last one is
an extended locally one dimensional (LOD) scheme [19]. It is worth mentioning that the
LOD scheme in this paper completely decomposes multidimensional problems to a collec-
tion of one dimensional problems and the method is valid for nonhomogeneous differential
equations with nonhomogeneous boundary conditions.

The remainder of the article is outlined as follows. In Section 2, we obtain a class
of finite volume element method with tensor product form by perturbing the differential
equation. We present four kinds of computation schemes. In Section 3, taking the fist
scheme and the second one as two examples, we further analyze these schemes. By defin-
ing discrete L? norm and H' semi-norm, we obtain L? norm and H! semi-norm error
estimates for the first scheme and the second one. Finally, in Section 4, we provides two
numerical examples to illustrate the effectiveness of the four schemes.

Throughout the article C will denote a generic (sometimes large) constant and € a
generic small one independent of mesh-size h, where C and € can have different values in
different places.

2. Alternating direction FVEM for 3D parabolic equations

Consider the following three-dimensional parabolic problem on domain Q = [0,1]3

u
T —Au=f(x,y,3,t), (x,y,2)eQ, te(0,T], 2.1)
ulpa =0, u(x,y,2,0)=uy(x,y,z), (2.2)

where f(x,y,2,t) is sufficiently smooth.
First, give a cuboidal partition Qj for Q and the nodes are denoted by (x;,Y;, %),
i(j,k)=0,1,-+ ,Ny(N,,N,). Let
hf =X T X1 h}Y =Y~ Yj-1 hi =2k — Zk-1>

h,= max h¥, h,= max Kk, h,= max K2, h=max(h,h,,h,).
¥ asisn, Y U agjen, J7 P a1zkew, K (e, iy, hz)

Further let

1
Xi-1 :xi_gh?’ Xiyl :xi+§h?+1’
1 1
— y — y
Yi-1=Yi— 5l Y =Yt Shi

b4

1 1
Zk_%ZZk—Ehi, Zk+%:Zk+§hk+1'
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Then

Vijr = [Xi—%’xi+§J X [yj—%’yj-i-%] X [zk—%’zk-i-%]

is a control volume or dual element of node (x;, y;,2;). All control volumes constitute the
dual partition Q) of domain Q. Next, make a uniform partition for [0, T] with time step
At and denote by t" = nAt. Integrate (2.1) over [t”_l, t”} , then by trapezoidal rule, we
have

-yl Aut+ At 1 (0 ( Y _'_Rn—% 2.3)
— = — t)dt .
At 2 At tn_lf X,Y,2, 1 >
where
i1 (¢ )
2 _ _4n _en—
Ry =0 . Aug, (6,(0) (t—t )(t t )dt. (2.4)
Denote by

dv =dxdydz, 0Vy=[x_1,x1]x [y, 1,51,

etc.. Integrate (2.3) over Vjj, (i(j,k) = 1,---,N, — 1(N, — 1,N; — 1)). Then by Gauss
formula for diffusive term, the conservative integral form of (2.3) reads, finding u"
Hj(€2), such that

n—

u" —u"! 1 1 1 (¢ n-1
—dV+—Bl-jk(un+u" )=— favde + R; %av, (2.5)
At 2 At n—1
Vijk t Vijk Vijk

where

By (u) = U )= e )] dydz+ Ay LT
R = oV, ax 73T gy ity | YR v, LOY Vi3 dy Vjrg)| GFAX

du ou
+ - E(Zk_%)—g(zk_’_%) dxdy.
ij

In order to derive alternating direction schemes from (2.3), we need to add some necessary
perturbing terms to (2.3), which are

At? a°
8 0x20y?0z%

At o4 N o4 4 o4 (
4 \ 0y?0z> 0z%0x> 0x%0y?

n n—l)
J

u" —u W —u™).

These terms also need to be integrated over the control volume V;j.. For convenience,
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denote by
Y3 [ 0%u 2%u
Dij(w) = .. |3ves —(x, Yj+l ,Zk+1) 3y2 (X yj__,zk+1)
82 82
ayaz( y)+ )Zk—l)-"_ (x yJ——’zk_l) dx

]+2 82 Zu
+ azax(xi+%ay:zk+%)_m(xi—%ay:zk+%)
Y.

j-

(NE

d%u d%u
a ax(xl+ ’y’zk——)+ (Xl__,}’,zk_l) dy

k+2 82u azu
| Feay T YD " gy Ceep Yiep?)
k

2%u 2%u
_m(xi+%,y<_%,2)+M(Xi_%,yj_%,z) dZ,
23%u 23u
Vvijk(u)zW(xi-q.%:yj-q.%:zk_;-%)_m(xi_%ayﬂ-%azk-q.%)
o L )
axdydz Vi Fe) T Gxayag ity ity Fe)
23%u d3u
+—(xi—l’yj—lazk+l)+—(xi_l:yj+l:zk_l)
0x0ydsz 2 2 27 O0x0ydsz 2 2 2
23u d3u

(Xi41,¥j-1,%1) = (Xi1,¥j-1,%-1).

+ 0xdyoz 0x0yoz

Further denote 7tu by the piecewise trilinear interpolating function of u over Q;,. Replacing
u by tu in (2.5) and perturbing (2.5), we have

mu" — mut 1 0 1
Tdv + EBijk(Tcu + mu™")
Vijk

2

At
Djj(mu" — mu"” By — 3 l-jk(ﬂ:u”—ftu”_l)

n—l n—1l n—l
J J dedt+J R, 2dV+R, *+R, 2, (2.6)
1]k

1]k

1
n—s . .
where (R, % is the perturbing error)

n—% mu® — nun—l u — un—l
R2 = Tdv - Tdv
Vijk Vijk

1 1
+ EBijk(n'u” + mu™ ) — EBijk(u” +u™ 1), 2.7)
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At . A
Ry * = —D;j(nu" — mu""") + —

3 2 5 Wik (ru™ — mu™ ). (2.8)

Suppose that U, C Hcl)(Q) is a finite element space over partition Qy,, which is obtained
by piecewise trilinear interpolating functions. Assume that {a;(x)} (i = 0,1,---,N,),
{6;(»)} (=0,1,---,N,) and {ri(2)} (k=0,1,---,N,) are the base functions of interpo-
lation in x, y and z directions, respectively, then {a;(x)B;(y)ri(2)} are the base functions

for Uy,. That is, for uj, € Uy, we have (u;j, =y, (xi,yj,zk))

Z
=z

N,

a; () B;(y v (2 )uyji-
k=0

_.
Il

o
¥

o

J

Dropping the error terms and substituting wu by u;, € Uy in (2.6), we obtain the finite
volume element scheme for (2.1) and (2.2)

uz_un—l 1 n—1 At n n—1 Atz n n—1
A—dV+ =Bjji(uy tup )+ — 2 Djj(uy —uy )+?Wijk(uh—uh )

1]k

f J flx,y,z, t)dvdt. (2.9)
Uk

Let U be a vector composed of u;j;, arranged k first from O to N,, j second from 0 to N,,
and i last from O to N,, and

Xird
C, = an(x)dx ,
-1 (N —1)X (N, +1)
_ / /
A= [am (xi—%) ~ %m (Xi+l)](1v —Dx(N+1)’

T

;= |: f J f(x,y,2, t)dth] ,

(N =1)x(Ny, —1)x(N,—1)

where T2 is a vector arranged k first from 1 to N, —1, j second from 1 to N, —1 and i last
from 1 to N, — 1. C,, C, are defined analogously to C, and A, A, are defined analogously
to A,, respectively. Use the above notations, (2.9) can be written as

c U~ Ut +QU”+ Ut LAty
E A 2 4

Atz n n—1 n—-1
+_8 Axyz(U —-U ):]" 2, (2.10)
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where
Coyz =Cc®C,®C,, Ay, =A,®A QA,
Q=A,®C,®C,+C,®A,®C,+C, ®C, ®A,
S=A,®A,®C,+C,®A, ®A,+A, ®C, ®A,

and ® represents Kronecker tensor product. For piecewise trilinear interpolation, a straight-
forward calculation shows

Ry 3(RY +hY) 5
1 h 3(hy +hY) R
Co== : . : , (21D
8 . s g
R, 3(hy_ +hY) R
11 1 1
(. 1 1 )
o om R h
1 1 1
A = h3 hy R h : (2.12)
1 1 '+ 1 1
N R hy,

Cy, C, are analogous to C, and A, A, are analogous to A, respectively.
(2.10) can convert to a collection of one dimensional problems, which can be solved
alternately. Give the following four computational schemes.

1. By introducing intermediate vectors U™! and U™2, (2.10) is decomposed as

At - At -
Cot S Ac | ®IQIUM = (G, — —A, | ®C, ®C.U

~At[C,®A, ®C,+C, ®C, ®A, | U™ + AtG" 7, (2.13)
At n,2 n,1 At n—1
1@ C,+5A, | I =UM + —104,@CU", (2.14)
At n n,2 At n—1
I181@(C+ A, | U =U"+ 119U, (2.15)

1
where G2 =T""2. The splitting error of scheme (2.13)-(2.15) is second-order accuracy
with respect to At.

2. In order to raise the splitting error to @(At3), let

At At?
GV =TT SN UM A, (U U, 216)

By eliminating the intermediate vectors U™! and U™?, the splitting error of scheme (2.13)-
(2.15) with (2.16) has truly third-order accuracy with respect to At.
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3. Noting that the third term of the right hand side of (2.16) has already third-order
accuracy with respect to At, we further let

G'I=T""3 + —S(U” L_pyn2). (2.17)

Then scheme (2.13)-(2.15) with (2.17) has also third-order splitting accuracy with respect
to At.
Scheme (2.13)-(2.15) with (2.16) or (2.17) is a three-level scheme. In practical com-

putation, we must first compute U! in an efficient and accurate manner, which can be
stated as follows.

(i) Compute the approximate vector U! to U' by two-level scheme (2.13)-(2.15).

(ii) Compute
LAt AL ~
=TI2 +TS(U -U )+TAxyz(U -U )

N =

G

(iii) Compute new approximate vector of U! by (2.13)-(2.15), still denote by U".

(iv) Repeat (ii), (iii) until the accuracy is satisfied, then we get U®.

4. Decompose (2.10) as locally one dimensional scheme. Because F"_% #01in (2.10),
1 1
it must be treated first. Approximate I'"" 2 as C,,,,F"" 2, where

F'3 = (F”+F"_1) /2, F'= I:fn(xiiyj’zk):|

1
Adding perturbation term %AtZSF "3 for I3 and introducing intermediate vectors U™!
and U™?, we obtain the following locally one dimensional (LOD) scheme:

Nx:Ny Nz
i,j,k=0

At n,1 At n—1 n-1
Cx+7Ax RIRQIU™ = CX_TAX RIRIU +AtCX®I®IF 2, (2.18)
At n,2 At n,1 n-1
® Cy+?Ay RQIU™=IQ® Cy—7Ay QR IU —At1®cy®IF 2, (2.19)
At At 5 1
I®I® Cz-i-?AZ Ul=I1QIQ® CZ_TAZ u™ +AtI®I®CZFn 2, (2.20)

For the purpose of practical computing, we further rewrite (2.18)-(2.20) as component
forms

n1 _,n—1 nl . n-1 n1l _ ,n—1
1 Wik~ Wik . Uik “Wige 1 Yigrje ~ Yigjk
§hi At *3 (h Fhin At + §hl+1 At
1u1 1]k+ul 1,]k+(i+ 1 ) 1]k+u1]k 1 ul+1]k+ul+1]k
X X X X
h‘ 2 h? th 2 th 2

n

3 -1
= _hxf 1] k +3 (hx + hf—{—l)fl l+1 1+12] k> (2.21)
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un,2 _ un,l un,2 _ un,l un,2 _ un,l
Ly Zimtk = Bijmrk 3y 4y Pk~ Bk 1y Bk Bk
8 At g~ il At 8 J+tl At
n,2 n,1 n,2 n,1 n,2 n,1
1 U Tl (i 4 1 ) Wik Wi 1 Wi e Tl
Y y Ty y
h; 2 hy o higg 2 i 2
1 Tl—l 3 n—l ]. n—l
— _ 1Y 2 _ Y y 2 _ 1Y 2
=—ghifiiie — gy TS — ghinfiie (2.22)
un _ un,2 un _ un,2 un _ un,2
1 Wijk—1"%ijk-1 3, . Lk~ Yige 1 Wik T Yijktr
2 t ot ) ——— +t gl
8 At 8 At 8 At
n n,2 n n,2 n n,2
1 U e—1 Tk ( 1 N 1 ) Ui Tk 1 Wi Tk
Z Z Z Z
hk 2 hk hk+1 2 hk+1 2
_ 1hz n—3 3 h + K2 n—3 1hz n—3 2
) kfi,j,k—l + g( kT k+1)fi,j,k + g k+1/ij k41 (2.23)

By eliminating the intermediate vectors U™! and U™? in (2.18)-(2.20), we get

ur-urt o Ut+uUtTt At At?
-1 -1
Cyyz N +Q 5 +TS(U”—U” )+TAW(U"+U” )

1
= CyaF" 2+ ZAPSF' 2, (2.24)

We see from (2.24) that the splitting errors of U and F are both second-order accuracy
with respect to At. In general, if the source term f(x,y,2,t) is smooth enough, then we
can modify the scheme to eliminate the perturbing effect of f(x, y, 2, t) partly, that is, let

A [ B4F o4f o4f
+ + = f.
4 \ 0x20y? 0y?0z> 09z%0x?

f_

The advantage of scheme (2.18)-(2.20) or (2.21)-(2.23) is that (2.18) or (2.21) is
solved only in x direction and (2.19) or (2.22) is solved only in y direction, etc.. In prac-
tical computation, we must treat the boundary values of U™! and U™ first. For example,
for scheme (2.21)-(2.23), let u}}, =0 for i = O,N,, j = O,Ny, k=0,1,---,N,, u’}; =0
for i = O,N,, j =0,1,---,N,, k=0,N, and i = 0,1,---,N,, j = O,N,, k = 0,N,. By
solving (2.23), we can obtain the boundary conditions for u?]zk
can obtain the boundary conditions for u?}lk Then by solving (2.21) we get U™! and again

and by solving (2.22), we

by solving (2.22) we get U™2. Finally, we obtain the final results U" by solving (2.23).

3. Error estimates

We have derived four alternating direction finite volume element schemes in Section
2. In this section, we further analyze the convergence of these schemes with respect to L?

norm or H! semi-norm. We first consider scheme (2.13)-(2.15) with G”_% = 1"”_%, which
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Py Pr(wi,yj, 2k)
Ps P
o
. Py Ps
Py (zi1,Yj-1,2k-1) P,

Figure 1: llustration for an element and its nodes.

is equivalent to (2.9). Let e = mu — uy and subtract (2.9) from (2.6), the error equation
reads

e — en—l 1 n n—1 At n n—1 Atz n n—1
TdV+EBijk(e +e )+TDijk(e —e )+?Wijk(€ —e")
Vijk
1

_1 _1 1
=J‘ R} 2dV+R, *+R; 2. 3.1
V;

ijk

Multiply (euk + elf"j;l)/Z on the two sides of (3.1) and add from 1 to N, — 1, N, — 1
and N, — 1 for i, j, k respectively. Denote the terms of the left hand side of the result by
Ly, Ly, L3, Ly and the terms of right hand side by Ty, T,, T3, sequentially. Assume that
Qp is a quasi-uniformly regular cuboidal partition. Denote || - ||; or || - ||; o and | - | or | - |5 o
by continuous norm and continuous semi-norm of order s in Sobolev space respectively.
Further define discrete H' semi-norm and discrete L2 norm respectively by

1

2 2
=] T toae} ||soh||0h—{2||<ph||0hE}, Verel, G2

E€Qy EeQy

where
E=PyPy---P;Pg = [x;_1,%;] X [}’j—bJ’j] X [2—1,2k]s
depicted as in Fig. 1 and
1Yz en(Pre) — (PN en(Piy1) — en(PD\?
|(ph|1hE hl hj,hk4 Z ( hx +hl hj,hk4 Z K
t J

1=1,3,5,7 [=2,6

en(P) = on(P_a)\* .yl 1 @n(Piis) — on(P)Y?
+lz( w(Py thh (- ) }+hih§hk21_§34( h 1+4hi h 1)’ 3.3)

Z (P

4.8
}’
]

2
lenllZ, s =
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Let Q.(x.,Y.,2.) be the center of E and

A =20 —xJ/hf, Ay=2(y —yI/h, 2As=2(z—z)/h,

then E is transformed to E = [—1,1]%. Constructing trilinear base functions of interpola-
tion over E, we have

N, = %(1 —2A)A=2,)(1=23), Ny= %(1 +2A)(1—=2A)(1 = 2A3),
N; = %(1 +A)A+2A)(1=A3), Ny= %(1 — A1+ 2A)(1 = A3),
N5 = %(1 — A1) =2A)(1+A3), Ng= %(1 +A)(1 = 2A)(1+A3),
N, = %(1 +A)A+2A)(1+A3), Ng= %(1 — A+ 2A)(1+ A3).

Lemma 3.1. For Yy, € Uy, |¢ply p is equivalent to |pp|y and [[@pllo 4 is equivalent to |[¢plo,
that is, the following inequalities hold

1 V3
§|<Ph|1,h <lenli < lenl1p 7||90h||o,h < llenllo < llenllop- (3.4)

Proof. Depicted as in Fig. 1, we have

$h =
l

Kl 2 1 hoh
(ﬂ) dv==-"LoTys,
£\ Ox 36 h

8
Or(PN(A1, Az, A3)
=1

in element E and

where
¢r(Py) — pp(P1) 4 2 21
©n(P3) — wp(Ps) 2 41 2
d = and M=
©r(Ps) — @p(Ps) 21 4 2
0r(P7) — pp(Ps) 122 4

The eigenvalues of matrix M are 1,3,3,9. Similar results can be obtained for fE(aa_?)de

and fE(%)ZdV. According to the definitions of |¢p|; g and |pplq g, the first inequality of
(3.4) is proved. Analogously, a straightforward computation can prove the second one of
(3.4). O

Lemma 3.2. For Vy, Yy € Uy, denote by @i = ¢p(xy, ¥, 21), Yije = Yr(Xi, ¥j» 21,

|||<Ph|||§,h = Z LPiij ppdV,
V.

i,j,k ijk
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where the summation (i, j,k) is for 1 <i <N,, 1 < j <N, and 1 <k <N,. Then

1
Z [#’ijkjv ondV — 9k ¢th} =0, |llenlllop= ﬁ”@h”o,h-

i,j,k ik Vijk

In addition, for ¥ w € L%(2), we have

D @ik J wdV| < [[ollollenllos
V.

i,j,k ijk

509

3.5)

(3.6)

Proof. Depicted as in Fig. 1, we convert the integrals in control volumes to the relevant

elements. A straightforward calculation shows

R hE 1
wi'kf opdV = Ik yTue,
;; ’ Vijk EGZQh 8 64
where
(¥a(Py) [ on(P1) (27 9 3 9 9 3 1 3)
Yp(Py) ©n(Py) 9 27 9 3 3 9 3 1
Yp(P3) on(P3) 3 9 27 9 1 3 9 3
v | @D g e 9 3 9 27 3 1 3 9
Pr(Ps) | on(Ps) |’ 9 3 1 3 27 9 3 9
Yp(Ps) ©n(Pg) 3 9 3 1 9 27 9 3
Yp(P;) on(P7) 1 3 9 3 3 9 27 9
\ ¥n(Pg) ) \ #n(Ps) / \3 1 3 9 9 3 9 27/

We note that the matrix M is symmetric and positive definite and the eigenvalues of the

matrix are 8,16,16,16,32,32,32, 64, from which we can get (3.5).
As for (3.6), denote Sy, by the volume of the dual element V;j, then

27 2
f codV)
V'jk

13

1
2
Z%jk fv. wdV) = Z LpiZJ'kSVijk Z o (

i,j,k ik i,j,k i,j,k Svijk
< llwllollenllo,n-

Then (3.6) holds.

Lemma 3.3. For YV, € Uy, denote by

an(pn, Yn) = Z#’ijkBijk(@h),

L),k

where the summation (i, j,k) is for 1 <i <N,, 1 <j <N, and 1 <k <N,. Then

1
an(en, Yr) = ap(Pn, or), Z|<Ph|ih < ap(on, pn) < |<Ph|ih-

3.7)
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Proof. Depicted as in Fig. 1, we have

2y
;{wukJ |: 3xh( 1——) (X1+1):| dydz

= > { [Yn®) — ¥u(P)] f

Eth

1
’ f —(xl_;)dydz
2

30
+ [n(Py) = n(Py)] f f "Bk 1)dyds

Vi3 o
+ [Yn(Pg) — ¢h(P5)J J E(xi_l)dydz

+ [n(Pr) — ¥u(P)] f f %(xi_%)dydz

\I!TM<I>
EZQ sare
where
Yp(Py) — Yp(Py) ©p(Py) — pp(Pr) 9 3
o= Yp(P3) — Yp(Py) ®— on(P3) — @n(Ps) M= 3 9
Yyr(Pe) —Yu(Ps) |’ ©on(Ps) — ¢n(Ps) |’ 31
Yp(P7) — Yp(Pg) on(P7) — pn(Ps) 1 3

W o = W

T. Wang

O W W

Similar results can be obtained for the last two terms of a;(¢y,Yy,). Because the matrix M
is symmetric and positive definite and the eigenvalues of the matrix are 4,8,8,16, (3.7) is

proved.

Lemma 3.4. For YV, € Uy, we have

Z YijiDij(pr) — Z oiikDij(Pr) =0,

i,j,k i),k

2 2 2
Z Do (o) > 1 (|| 2%¢n 9%pn 9%pn
& Pijk i\ Ph) = 2 |||dxdy 0yodz 0z0x
i,j,k 0,h 0,h 0,h

O

(3.8)
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Proof. Depicted as in Fig. 1, for V), € Uy, we have in element E

2

ax?;( ) = h"hy [¥r(P1) = Yn(Py) +9Pn(Ps) — Yn(Py)l,
2

.- wh( )= hth [Yr(Ps) = Yp(Ps) +Pp(Py) — Yp(Pg)].

Transforming the summations of the left hand side of (3.8) in each element and using the
above formula, we have

3| 9%p 9%pn
”kauk f | [M(xi+%,yj+%,z)—M(xi_%,yﬁ%,z)
T2
0% ¢y 9% pn
—8xay(xi+%,yj_%,2)+axay(xi_%,yj_%,Z) dz
9% pn
3 (Z0 0 2000) (2 2) axay V)
Zk—1 2k 2 )
EeQ, oxdy 13 " (%)
dxdy
from which (3.8) can be proved. O
Lemma 3.5. For Vo, € Uy, we have
83(Ph Bwh x1.Y 1.2
Zwukwljk(@h) Z axayaz ﬁxayﬁzhl th (3.9)

i,j,k EeQy
Proof. Depicted as in Fig. 1, for V), € Uy, we have in element E

%y [
0x0ydz h"hyhZ

+ 1(Ps) = Yn(Pe) + u(Py) — u(Pe) |

Yp(Py) — Yu(Pr) + Yp(Ps) — Yp(P3)

Transforming the summations of the left hand side of (3.9) in each element and using the
above formula, we can get (3.9). O

Lemma 3.6. For Yu € H*(Q) N Hy () and Vv, € Uy, we have

ZwijkBijk(u — mu)

i,j,k

< Ch2|u|3|¢h|1,h, (3.10)

where C is independent of mesh size h.
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Proof. Noting that the proof of Lemma 3.3, using imbedding theorem and Bramble-
Hilbert Lemma [20], we can prove the lemma. O

Lemma 3.7. For Vu € H*(Q), we have

Z¢ijkDijk(u — Tu)

L,j,k

< Cllllonlulsq, (3.11)

where C is independent of mesh size h.

Proof. Noting that the proof of Lemma 3.4, we have

Zer 1 2(y — 2(y —
D, (W) :zi,);wijkfzk% {%(m%’yﬁ%’z)—%a;u)(xi_;,yﬁ;,z}
9%(u — mu) 9%(u — mu)
_W(xi_l_%,yj_%,z)-l- W(xi_%,yj_%,z)} dz
4 (°32(u-nuw
|« B a2y, ER hk) J_l 32,0, (0.0,23)d2s
_EEZQ,] 2 (axﬁy(zk_l)’ axay(z")) 4 flaz(u_m)(oo)t)dl ’
nek! o 9202 RIS

As in Fig. 1, we have by computation

L) := 082(”_””)(oox)dx
o\U) 1= B 97,02, ,U, A3 3

0 a2y 1
= J_1 57,0042 = 16 [ 3P — u(P)) + 3(u(Py) ~ u(Py)

+ (u(Ps) — u(Pe)) + (u(Py) — u(Py) . (3.12)

As a linear functional of u € H*(Q), I,(u) satisfies |I,(u)| < C||u||2’oo,g. In addition,
H*(E) — C2%(E). Hence,

I1,(w)] < Cllull, 5-
A straightforward calculation shows I,(u) = 0 for u = A{l Agzl?, Y1+7v2+7v3 < 3. By

Bramble-Hilbert Lemma, |I(u)| < Clul, 3. By an integral transformation, noting that E is
a quasi-uniformly regular element, we have

[I(u)] < ChRY 2 uly .
Thus, we have
1
2

prscr] 120 ey 20 i g,
- = oxdy oxdy ik ’
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Analogously, the other two terms of »_1); ik Diji(u — mu) have similar estimates. Hence, by
inverse estimate, we have

Z¢ijkDijk(u — mu)

L],k

< Chz|1.b|2,h

ulgq < Clllloplulsq-

Lemma 3.7 is proved. O

Lemma 3.8. For an arbitrary element E = [x;_1,%;] X [¥j_1,¥;] X [2x—1,%¢] and for Yu €
H>(Q), we have
2% (u— mu)

1
olu—mu)r < ol
dxdydz (Xl_%’yl—%’zk—%) < Chz|uls . (3.13)

Proof. Carry out the coordinate transformations, we have

23(u — mu)
0x0yoz (37 p5t)

=0 L2 (g 0,00- L[ ute)+up—u(py)
TRWE |\ 0MAAs 8 P TS

+u(Py) + u(Ps) — u(Pg) + u(P;) — u(Py) | }

6
= I5(w). (3.14)
hfh?hk

As a linear functional of u € H>(Q), I3(u) satisfies |I3(w)| < Cllull; . z- In addition,
H®(E) < C3(E). Hence, |I5(u)| < Cllull5 7. A straightforward calculation shows I(u) = 0
foru = A{lkgzlgﬂ 71+ 72+ 73 < 4. By Bramble-Hilbert Lemma, |I3(u)| < Cluls z. By an
integral transformation, noting that E is a quasi-uniformly regular element, we have

[I3(w)| < ChhYHzh2 uls 5.

Substitute the estimate into (3.14), then (3.13) holds. O

By Lemmas 3.2-3.5, it is easy to obtain the estimates of Ly, L,, L3 and L4, which are

1]e" +em 2
Lz—[enz— e”_lz], Lyz—-|———| , (3.15)
1= g M= e, ] 22 3l ——]
At n n n—1 n—1
L3 = ? [eijkDijk(e )—eijk Dijk(e )] 5 (3.16)
i,j,k
Atz n n n—1 n—1
L=~ [el.jkwijk(e )= e I Wiele )]. 3.17)

L],k
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Now we estimate T;, T, and Ts. For Ty, by (3.6), we have

n—1 2
+CJ (Rl 2) dv.
Q

Noting that (2.4), further using Holder inequality for the above inequality, we obtain
2

dt. (3.18)
2,02

n n—1 2
e +e

T <C

0,h

2 n
e ! 3 ‘ 2u
_ + CAt

0,h et

T,|<C
|1|— atz

By the formula

ut+unt 1 e de+ * bu th 4 1 p
—_— = udt — | t————|dt],
2 At o -1 at 2
1

Tl—g .
R can be rewritten as

2
3(u—7ru)
———dVdt — — Uk(u—nu)dt
l]k
o(u— mu) th 4!
B - @ - -
AL ”k( ot )(t 2 )dt

Thus, by (3.6) and Lemma 3.6, using Cauchy-¢e inequality, we have

2 2
n4 el ch* oul? e et
|T,| <C — —| dt+e|——
2 on At Jaua|0t|yg 2 h
cht [V e 2
+— |u|§,9dt+Ch4AtJ = dt. (3.19)
At tnfl tnfl t 3,9

From (2.8), we can rewrite Ty = T3; + T3y + T33 + T34, Where

. _At +_ o Amu-w)
31_4.. 2 ijk ot ’
i,j,k

T, = 2 uk+e?ﬂ<1 Pu_ % gy
32_41.].k Uk aXZayzat 0y20z20t = 9z20x%0t ’

1
At? 1Jk+e?]k d(mu—u)
T33 = 3 Z 5 Wle (T) dt,

i,j,k

1
I, = AC ”k+e?]k __C dtdv
78 l]k o 8x28y28228t ’
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T, is estimated by Lemma 3.7 and Ts, is directly estimated, then

t" 2

e+ et 2
Ot |40

dt+C
2

|T31| + T3 < CAtBJ

tn—l

0,h

By Lemma 3.5, we have

8 2

At2 t" 33 ny =173\ p4 _
Tys = _J (e ‘ ) (o — ) Rt
tn 1 E Q

3, 0x0ydz Oxdydzdt

By Lemma 3.8, using inverse estimate and Cauchy-e inequality, we have

th 2 n n—1 2
5 e"+e
|7?33| f; CAt - (it + €
tn—l at 50 1,h
It is directly estimated for T3y,
2 n en—l 2
Tyl < CAE® dvdt+C
IToql = f f (ﬁxzﬁyzﬁzzﬁt)
0,h
From (3.20)-(3.22), we have
n 2 2
| T5] <CAt3Jt Oul” dt+C et + e
3 = e
tn— 1 at 49 2 2 1h

du

+CAt®
th— 1

By the estimates of L; (I =1,2,3,4) and T; (I =1,2,3), we have

2
1 B 1|e"+et !
g Ll = e 13, ] + 7 | =5 +1a+Ls
1,h
2 2 n
e +e1 e +en1 cht (* du? 5
<C|———— +e€ + —| tlulsq |dt
2 2 h At Jaa \ |9t |ng ’
oul? A t" ul?
+cAt’ | |z dt +Ch*At —| dt
e | |9t 9t |40 ;1] 0t |3

2,0
27u >
+CAt® dt+ — | dVdt|.
|:Jt” . 5.0 J J (8x28y28228t) :|

2
dt dvdte | .
5.0 +J J (3x28y23228t) :|

515

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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In (3.24), take € < }1, multiply by 2At and add for n, note that (3.5), (3.8), (3.9), (3.16)
and (3.17), then discrete Gronwall Lemma implies

2
el + V2AL2 ||| 82" 02" %" V2Ac2 || 93
€ lion
4 oxdy on dyoz on 0z0x on 4 0x0ydz on
t" 2 t" 2
G, 0
SCh4At2J e dt+Ch4J u +lulz, | dt
0 tsa 0 It |50 ’
t" 22y 2 t" 2
+CAt4J — dt+CAt4J - dt
o |9t o |9t
™ o 2
+ CAt® —| dt+ dvdte | . 3.25
|:L At |sq f f (3x28y23223t) :| (3.2)

From the fact that |lu — mullq < Ch?|u|, for piecewise trilinear interpolation, we have by
(3.25) and Lemma 3.1
lu™ — uflly < C(AL* +h?). (3.26)

The above discussion can be summarized as follows.

Theorem 3.1. Assume that f(x,y,z,t) is sufficiently smooth and u € H?(0, T;Hé(ﬂ) N
HO()) is the solution to Eq. (2.1) with (2.2). Then the solution uy of alternating direction
finite volume element scheme (2.9) converges to u with respect to L? norm and the error is
estimated by (3.26).

The LOD scheme (2.18)-(2.20) can be estimated analogously. Now we consider the
convergence of scheme (2.13)-(2.15) with (2.16). Let " = e — 2¢™" 1 4 "2, We know
the error equation of (2.13)-(2.15) with (2.16) is

2

e — en—1 1 el At n At n
TdV-i— Bl]k(e +e )+ 1]k(€ )+ ijk(g )
V;

ijk
1

_1 _1 1
ZJ R} 2dV+R, *+R, 2, 3.27)
Vi

ijk

-1 At ) | At _2
R ZITDUk (nu —2mu" 4 Ut )-i—?Wl]k (nu —2mu" 4+ " ) (3.28)

Denote by d,e™ = (e" — e" 1)/ At, multiply dte?jk on the two sides of (3.27) and add from
1toN,—1, N,—1and N, — 1 for i,j and k, respectively. Denote the terms of the left
hand side of the result by Ly, L,, L3, L4 and the terms of right hand side by T;, T,, Ts,
sequentially. From Lemma 3.2 and Lemma 3.3, we have

~ 1 ~
2 2 1 -1
L= |||dten|”0’h = g”dten”()’ha Ly = et :| .

Ta7 [an(eh e —ay(e" e
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It is easy to prove for V a;, a,, by, b,
31 a, — b1
1 3 1) (a) 1 3 1) (b
>~ (01, a) (1 3) (az) =5 (b1, b2) (1 3) (bz). (3.29)

By (3.29), from the proof of Lemma 3.4, we have

~  At? _ _
Ly = ?;; [(dten)ijkDijk(dten) — (dee" )i Dyjr(d,e” 1)] :

From Lemma 3.5, we have

- At 2

23d,e"
I,>
16

0xdydz

anten—l
0xd0ydz

0,h 0,h

Analogous to the estimates of T; and T,, by inverse estimate, we have

, " |52, 2
T,| <elld.e|| . +cat® —| dt,
| 1| H t HO,h et o2
2,Q
Tyl <e Jdeer]? +—Ch4f oul® g,
21 = t A,
0Oh At o1 |0t o
cr? [ "\ oul?
+— lul2 ,dt+Ch®At —| dt.
At Jtnl B’Q tnfl at 3,9

Using the formula

tn tnfl
d%u d%u

Ut —2ut U = t"—t)dt + t —t"2)dt,
tnfl a tz ( ) tn72 a t2 ( )
we can rewrite
T3 =Ts + Tgp + T3z + Ty,
where

~ At e 2?%(mu —u)
T3 = Tzdte?jk U Djjk (T (t" —t)dt
t 1

i),k "

tnfl 2
0 —
+J D (—(guz u)) (t— t”_z)df} ;
tn72 t
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2*u,, 2*u,, 34u”
T32=— d.e’ k[f f ( +-— + == (t"—t)dtdV
= t 0x%20y? 0y?0z> 0z%0x
d%u,, d%u,, d%u,,
+ t —t"2)dtdV |,
JkJ (8 20y? 8y282 0220 x?2 ( )
Vij
32(nu—u)
Zd el U l]k EP ) (t" —t)dt

1]k
o2 —
( (ru u)) (- Z)dt}

~ At? ¢ o8u "
Tag=— Zd euk [J fﬂ_l 3xzay23223t2(t —t)dtdV
i,j,k Vijie v/ t

tn—l S
+ ou (t —t"2)dtdV
Ve J 2 0x20y20220t2 '

By Lemma 3.7 and Holder inequality, we have

2
d%u

dt.

o
| T | + | Tss| < € Hdte"”ih + CAtSJ
e 40

| ot?

Without loss of generality, assume that
At = o(h).
By Lemma 3.8 and inverse estimate, we have

2

dt
5,Q
2

~ 7 ¢ 8211
|Tasl < €Az |dpe"| J >3
tn72

2%u

| ot2

.
< efjde"|2, +car f
’ e 5,0

It is directly estimated for Ts,, we have

e o8u 2 2
~ 7 n
T34 < CAt ftn_z fﬂ (8x23y28228t2) dth—l—eHdte ||0,h'
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From the estimates of fl, fz, ZB, Z4 and Tl, TZ, Tgl (1=1,2,3,4), we have

1 1
el + 5 [an(e™ ") — ap(e™, e )]

2At
2
N At? 23d,e" d3de" !
16 0xdydz o 0xdydz ok
Atz n n n—1 n—1
+TZ [(dte )ijiDiji(dee™) — (dee™ )i Dijr(dee )]
i,i,k
,  Ch* [V |aul? ch? ("
<elldee||o,+—— —| dt+-— ulZ , dt
AL Jaea |9t pg At Joa 7
n n 2 n 2
5 “ loul? 3 ©18%u s © 0%
+ Ch*At — dt + CAt = dt + CAt Pl dt
n—1 at 3.0 n—1 t n—2 at
t , t 2,0 t 40
n 2 n
+CA " |2 dt +CAt’ t o%u 2dth (3.30)
2 | O3 ;2 )g \ 0x?0y20220t2 ' '
5,0

In (3.30), taking € < %, multiplying by 2At and adding from 2 to n, noting that (3.7) and
(3.8), we have

2 2 2 2
4 A |||a2d,e | die’ | | 2%der Att]] a3d,en
€™ 5 > 13vavan
2 Oxdy on dydz on 020X on 2 ||0xdydz on
2 2 2 2
112 3 d%d,e! d%d,e! d%d,e! Attt || 33d,e!
’ oxdy Jydsz 0z0x 2 ||0xdydz
0,h 0, 0, 0,h
n n T n 2
4 “loul? 5 ‘ 9 5| 0u 2 4 “182%u
+ Ch —| dt+Ch luly o + A" | — dt+ CAt ——| dt
0 9t |aq 0 ’ at 30 | o |9 20
n 2 2 n
+CAt® s |2 + ou dt+cCcAt® t ou 2dth
0 at? ot? o Jo \ 9x20y20z20t2 '
4,0 5,0
(3.31)

Because u,ll is computed by iteration method, we can assume
1 2
le*|;n < C(h+ At?).

From the fact that |u — mu|; < Ch|u|, for trilinear interpolation, we have by (3.31) and

Lemma 3.1
|lln — ll}rllll’ﬂ < C1h2 + C2h + C3At2 + C4At3 + CsAt4. (332)
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The fourth and fifth terms of the right hand side of inequality (3.32) represent the pertur-
bation errors, from which we know the splitting error of scheme (2.13)-(2.15) with (2.16)
are least third-order accurate with respect to At. The above argument can be stated as the
following theorem.

Theorem 3.2. Suppose that u € H?(0, T;Hé(Q) NH%(Q)) is the solution of equation (2.1)
with (2.2). Then the solution uy, of scheme (2.13)-(2.15) with (2.16) converges to u with
respect to H! semi-norm on condition that At = @(h) and the error is estimated by (3.32).

Because scheme (2.13)-(2.15) with (2.17) is just a simple one of scheme (2.13)-(2.15)
with (2.16) by dropping a third-order perturbing term, Theorem 3.2 also holds for scheme
(2.13)-(2.15) with (2.17).

4. Numerical examples

In this section, we give two numerical examples to illustrate the effectiveness of the
1
schemes in this paper. For convenience, we denote scheme (2.13)-(2.15) with G"" 2 =

F”_% by scheme 1, scheme (2.13)-(2.15) with (2.16) by scheme 2, scheme (2.13)-(2.15)
with (2.17) by scheme 3 and scheme (2.18)-(2.20) by scheme 4, respectively.

Example 4.1. In (2.1)-(2.2), let Q = [0,1]? and the exact solution to (2.1)-(2.2) is cho-
sen to be u = sin27t sin27(x + y + z). The source term f(x,y,2,t) and the initial and
boundary conditions are obtained based on the exact solution.

Giving a uniform partition for Q with h, =h, = h, = h and using At = %, we compute
the example by schemes 1,2,3,4 until T = 1. The maximum discrete L2 norm errors,
defined by Eugj, = max, |[u" —upllo 5, and CPU times are shown in Table 1.

Table 1: Euyj, and CPU times (second) computed by schemes 1,2,3 4 in Example 4.1.
Scheme 1 Scheme 2 Scheme 3 Scheme 4
Eugy Time Eugy Time Eugy Time Eugy Time
5.55E-3 2.4 1.10E-4 | 3.15 | 4.83E-4 | 3.06 | 2.82E-2 | 1.86
1.34E-3 | 40.9 | 8.30E-5 | 51.3 | 1.02E-4 | 50.3 | 3.99E-3 | 35.1
3.27E-4 | 741.6 | 2.74E-5 | 915.5 | 2.85E-5 | 897.3 | 8.08E-4 | 615.5

|- 151

h—
h—
h—

1

o
-

Table 1 shows that the perturbation errors sometimes may be so large that the two-level
alternating direction schemes are not accurate as theoretical analysis. The shortcoming
could be overcome in some extent by schemes 2 and 3. As for the CPU times of the
four schemes costing, scheme 4 costs least CPU times because it does not compute tensor
products. On the other hand, because scheme 4 adds more perturbation terms, it is not
accurate as other three schemes.

Example 4.2. In (2.1)-(2.2), let 2 = [0, 1]® and the exact solution to (2.1)-(2.2) is chosen
to be u = exp(—3t)sin(x + y + %), hence f = 0.
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Giving a uniform partition for Q with h, =h, = h, =h and using At = h, we compute
the example by schemes 1,2,3,4 until T = 1. The maximum discrete L? norm errors Eugp
and CPU times are shown in Table 2.

Table 2: Eu,, and CPU times (second) computed by schemes 1,2,3 4 in Example 4.2.
Scheme 1 Scheme 2 Scheme 3 Scheme 4
Eugy Time | Eugyp Time Euyy | Time | Eugp Time
3.16E-6 | 0.19 | 8.14E-5 | 0.27 | 8.04E-5 | 0.28 | 1.07E-5 | 0.16
8.42E-7 | 3.06 | 1.82E-5 | 4.13 | 1.81E-5 | 4.06 | 2.68E-6 | 2.54
2.17E-7 | 52.9 | 4.38E-6 | 68.0 | 4.37E-6 | 66.6 | 6.71E-7 | 47.6

B3RS

h—=
h—=
h—

=
(=3
(=}

Table 2 tells us when the perturbation errors are relatively small, scheme 1 and scheme
4 could get satisfactory results and scheme 4 is the fastest one of the four schemes.

Further denote numerical convergence order by r = log,(Eug/Eug /). Observing
Tables 1 and 2, we know r & 2 for each scheme, which illustrates all the schemes are
second-order accurate with respect to discrete L? norm.
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