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Abstract. We consider a finite difference scheme for a nonlinear wave equation, whose

solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order

to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,

which is a variant of what was successfully used in the case of nonlinear parabolic

equations. A numerical blow-up time is defined and is proved to converge, under a

certain hypothesis, to the real blow-up time as the grid size tends to zero.
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1. Introduction

In some evolution equations, a singularity appears in a solution spontaneously, al-

though everything prescribed is smooth. Here singularity implies a discontinuity of a so-

lution, of its derivative, or of its higher-order derivatives. In this broad sense, appearance

of shock waves in compressible fluid motion is included in blow-up phenomena. But many

researchers use blow-up in a little narrower sense. For instance, blow-up very often refers

to a singular behavior of solutions of

∂ u

∂ t
=∆u+ f (u), or

∂ 2u

∂ t2
=∆u+ f (u),

or of similar equations. Here f (u) is the nonlinear term such as f (u) = up with p > 1,

or f (u) = eu. The singularity appearing in these equations are different from the shock

waves of fluid motion in that a time-global weak solution does not exist in nonlinear heat

equation above (Baras & Cohen [5]), while a weak solution past a blow-up time is proved
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to exist in the case of compressible fluid motion. In the case of compressible fluid, we are

interested in computing solutions after the occurrence of a shock wave. On the other hand,

computation up to the blow-up time is the issue in the case of blow-up problem. We do not

know whether a global weak solution exists in the case of nonlinear wave equations. This

problem seems to be an open problem.

The purpose of the present paper is to consider finite difference approximations for

blow-up problems appearing in the nonlinear wave equation of one spatial variable:

∂ 2u

∂ t2
=
∂ 2u

∂ x2
+ u2. (1.1)

The nonlinear term is assumed to be u2 for the sake of simplicity. But our method is appli-

cable, if suitably modified, to other nonlinearity. The present paper can be considered to

be a sequel to [8,9], where a similar study on the nonlinear heat equation was carried out.

In the fluid dynamics contexts, the most famous blow-up problem would be that of the

3D Euler equations for incompressible inviscid fluid (see [7,23]). Numerical computations

on this problem and those related to it are abundant but we only cite [13, 15, 21]. The

problem is notoriously difficult and the occurrence of blow-up is yet to be decided. We

therefore think it worthwhile to develop a mathematical theory for a less difficult problem.

One of our purpose is to show that approximation for nonlinear partial differential equa-

tions of hyperbolic type is considerably more difficult than that for PDEs of parabolic type.

Accordingly, we point out mathematical issues which we cannot resolve, and we would

like to invite readers to numerical analysis of blow-up problems.

The present paper consists of five sections. We discuss the Constantin-Lax-Majda equa-

tion in Section 2. The nonlinear wave equation is considered from Section 3 to Section 5,

where ideas are explained in Section 3 and mathematical analysis is laid down in Sections

4 and 5. In Section 4, we consider a semi-discrete scheme whose solution blows up in

finite time and show the convergence of the numerical solution and the numerical blow-up

time. Then we apply the idea introduced in [8] and consider a full discrete scheme for the

nonlinear wave equation in Section 5. Several numerical examples are also shown there.

2. CLM equation

In order to show mathematical difficulty in hyperbolic or fluid-mechanical blow-up

problem, we here warm up ourselves by a simple model equation proposed by [10].

The Constantin-Lax-Majda equation, which we abbreviate to CLM, is the following

equation:
∂ u

∂ t
= u ·Hu, u(0, x) = u0(x), (2.1)

where H denotes the Hilbert transform. Let us restrict ourselves in the case of the periodic

boundary condition. H is then given as

Hu(x) =
1

2π

∫ π

−π
cot

�

x − y

2

�

u(y)dy (−π < x < π),
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where the integral denotes Cauchy’s principal part. If we use a theorem in [10] we have

Theorem 2.1. For all u0 ∈ H1(−π,π) with
∫ π

−π u0(x)dx = 0 and u0 6≡ 0, the solutions of

(2.1) blow up in finite time.

We now consider a semi-discrete approximation of CLM by the spectral method. Let N

be a positive integer. For

u(t, x) =

∞
∑

n=1

�

an(t) sin nx + bn(t) cos nx
�

,

we define

PN u(t, x) =

N
∑

n=1

�

an(t) sin nx + bn(t) cos nx
�

.

Then we consider the following spectral approximation:

∂ uN

∂ t
= PN

�

uN ·HuN

�

.

For the sake of simplicity, let us consider the case of odd functions:

u(0, x) =

∞
∑

n=1

a0
n sin nx ,

whence

u(t, x) =

∞
∑

n=1

an(t) sin nx .

Then we have

d

dt
a1(t) = 0,

d

dt
a2(t) = −

1

2
a2

1,
d

dt
a3(t) = −a1a2,

and, for k ≥ 1,

d

dt
a2k+2(t) = −

1

2
a2

k+1− a1a2k+1 − a2a2k − · · · − akak+2,

d

dt
a2k+1(t) = −a1a2k − a2a2k−1 − · · · − akak+1.

Therefore, a1(t) ≡ a0
1, a2(t) = a0

2− (a0
1)

2 t/2 and so on. We find that am(t) is a polynomial

in t of order m−1. This means that uN (t, x) exists for all t and N . Therefore the individual

semi-discrete solution never blows up. The blow-up in (2.1) can be observed only if we

extrapolate from {uN}1≤N .

Similar phenomena can be observed in the case of the finite difference approximation.

To see this, remember that for all x ∈ [−π,π]

lim sup
t→T

u(t, x)<∞, (2.2)
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although

lim sup
t→T
‖u(t, ·)‖∞ = +∞.

This can be seen from the following explicit formula given in [10]:

u(t, x) =
2u0(x)

�

2− tHu0(x)
�2
+ t2u0(x)

2
.

Note that if ξ(t) denotes the point where ‖u(t, ·)‖∞ is attained, then ξ(t) moves towards

one of the zeros of u0. (2.2) suggests that if only a finite number of spatial grid points are

available, the blow-up is not reproduced.

We now set

ζ(t, x) = u(t, x) + iHu(t, x).

It then satisfies (see [10])
∂ ζ

∂ t
=

1

2i
ζ2.

Suppose that we employ a finite difference approximation in such a way that ζn(t) approx-

imates ζ(t, 2πn/N −π) (1≤ n≤ N). Here, Hun is, by definition, the imaginary part of ζn.

We then see that

ζn(t) =
2iζn(0)

2i− ζn(0)t

is a solution. For any n = 1,2, · · · , N such that ζn(0) is not pure imaginary, ζn(t) does not

blow up. For those n such that ζn(0) is pure imaginary, un(t) ≡ 0. Therefore it does not

blow up, either. In fact it is not difficult to see that the solution is bounded in 0 ≤ t <∞
for any n= 1,2, · · · , N .

The results above do not imply that blow-up is impossible to numerically observe for

CLM. In fact, if we perform extrapolation from several numerical data, then we can guess

occurrence of a blow-up. Our result shows only that no single numerical experiment guar-

antees the existence of blow-up. However, it would be worthwhile to note this difficulty.

3. A nonlinear wave equation

In view of the difficulties we saw in the last section, we start with a rather modest goal.

We here consider a one-dimensional nonlinear wave equation

∂ 2u

∂ t2
=
∂ 2u

∂ x2
+ u2 (0< x < 1, 0< t). (3.1)

We consider it with the Dirichlet boundary condition u(t, 0) = u(t, 1) = 0 and the initial

condition:

u(0, x) = f (x), ut(0, x) = g(x). (3.2)

We hereafter consider the initial-boundary value problem (3.1)-(3.2).

Existence of solution local in time is known, see for instance, [19] or [26]. If we use

one of their theorems, we have
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Theorem 3.1. For all f ∈ H2(0,1) ∩ H1
0(0,1) and g ∈ H1

0(0,1), there exists a T > 0 such

that a solution of (3.1) and (3.2) exists uniquely in 0≤ t < T.

Here and hereafter, Hn denotes the usual Sobolev space. Proof is a simple application

of Theorem 1 of [26].

Blow-up in nonlinear wave equations is studied in [12,16,18,22]. There are also nice

surveys [4,17,20,26,30,31]. But those references are concerned mostly with the Cauchy

problem. The mixed problems, i.e., initial-boundary value problems, do not seem to be

completely studied. Exceptions are [19,20,26], where local existence theory is developed

for initial-boundary value problems. Many sufficient conditions for a solution to blow up

are known. But here we only quote a theorem in Levine [22]. If his Theorem I is used, we

have the following theorem.

Theorem 3.2. Suppose that f ∈ H2(0,1)∩ H1
0(0,1) and g ∈ H1

0(0,1). If

1

3

∫ 1

0

f (x)3dx >
1

2

∫ 1

0

h

�

f ′(x)
�2
+ g(x)2

i

dx ,

then the solution blows up in finite time.

Namely a sufficiently large initial data makes the solution blow up. There is, however,

a striking difference between parabolic and hyperbolic blow-up problems. Caffarelli and

Friedman [6] found that there exists the so-called blow-up curve t = B(x) such that the

solution u(t, x) satisfies |u(t, x)| <∞ if and only if t < B(x). The blow-up time is therefore

infx B(x), but in some part of the space-time region, the solution exists beyond the blow-up

time. We do not know, however, whether a weak solution exists in t > B(x).

A blow-up criterion different from Theorem 3.2 is obtained as follows: Let u(t, x) be a

solution of (3.1)-(3.2) and put ϕ(t) = π

2

∫ 1

0
u(t, x) sinπxdx . We then prove the following

theorem, which neither contains Theorem 3.2 nor is contained in it.

Theorem 3.3. Assume that the initial data satisfy

∫ 1

0

f (x) sinπxdx > 2π and

∫ 1

0

g(x) sinπxdx ≥ 0. (3.3)

Then ϕ(t) blows up in finite time. That is, there exists a finite T > 0 such that limt→T ϕ(t) =

∞.

Proof. The argument below is known as a convexity method, and the idea is not a new

one. However, as we will do a similar analysis later in this paper for a finite difference

scheme, we give here a proof as a warming-up for the discrete case. Observe first that

ϕ′′(t) =
π

2

∫ 1

0

ut t(t, x) sin(πx)dx

=
π

2

∫ 1

0

ux x (t, x) sin(πx)dx +
π

2

∫ 1

0

u2(t, x) sin(πx)d x .
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Since
∫ 1

0

ux x sin(πx)dx = −π2

∫ 1

0

u(t, x) sin(πx)dx

and

∫ 1

0

u2 sinπxdx ≥ 1
∫ 1

0
sinπxdx

 

∫ 1

0

|u| sinπxdx

!2

≥ π
2

 

∫ 1

0

u sinπxdx

!2

,

we have

ϕ′′(t) ≥ −π2ϕ(t) +
�

ϕ(t)
�2

. (3.4)

Note that (3.3) implies that ϕ(0)> π2,ϕ′(0)≥ 0. It is then easy to prove that

ϕ(t) > π2, ϕ′(t) > 0 (3.5)

for all t > 0 as far as ϕ(t) exists. By virtue of (3.4)-(3.5), we have

d

dt

�

ϕ′(t)2 − 2

3
ϕ(t)3 +π2ϕ(t)2

�

= 2ϕ′(t)
�

ϕ′′ −ϕ2 +π2ϕ
�

≥ 0.

Consequently,

ϕ′(t)2 ≥ 2

3
(ϕ(t))3 −π2ϕ(t)2 − 2

3
ϕ(0)3+π2ϕ(0)2 +ϕ′(0)2.

Put K = −2

3
ϕ(0)3+π2ϕ(0)2+ϕ′(0)2. The property (3.5) ensures that the right hand side

of the inequality above is always positive, hence we have

ϕ′(t) ≥
�

2

3
ϕ(t)3 −π2ϕ(t)2 + K

�1/2

.

This implies that ϕ(t)→∞ in finite time T , where

T ≤
∫ ∞

ϕ(0)

�

2

3
x3−π2 x2+ K

�−1/2

dx .

This completes the proof of this theorem. �

4. A semi-discrete finite difference scheme

A blow-up convergent finite difference scheme, discretized only in the space variable,

for nonlinear heat equation

ut = ux x + up (0< x < 1, t > 0)
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was considered by several authors, for instance see [1,2,14]. In this section, we are going

to consider an analogue for the nonlinear wave equation (3.1). That is, we consider the

following semi-discrete scheme

d2

d t2
u j(t) =

u j+1(t)− 2u j(t) + u j−1(t)

h2
+ (u j(t))

2 ( j = 1, · · · , N − 1), (4.1)

where u j(t) denotes the approximation of u(t, x j), Nh= 1, and x j = jh, j = 0, · · · , N . The

corresponding initial data are given by

u j(0) = f (x j),
d

d t
u j(0) = g(x j) ( j = 1, · · · , N − 1),

while the discrete boundary condition is given by

u0(t) = uN (t) = 0 (t ≥ 0). (4.2)

4.1. Blow-up of the numerical solution

Let

ψh(t) =
1

σ(h)

N−1
∑

j=1

hu j(t) sin(πx j), (4.3)

where

σ(h) =

N−1
∑

j=1

hsin(πx j). (4.4)

We assume that, corresponding to the assumption of Theorem 3.3, the initial data satisfy

ψh(0)> π
2, ψ′h(0)≥ 0. (4.5)

Then we have the following.

Theorem 4.1. Let {u j(t)} be the solution of (4.1)-(4.2). Assume that the initial data satisfy

(4.5). Then ψh(t) blows up in finite time. That is, there exists a finite Th > 0 such that

limt→Th
ψh(t) =∞.

Proof. Calculating directly, we have

1

σ(h)

N−1
∑

j=1

hsin(πx j)
u j+1(t)− 2u j(t) + u j−1(t)

h2

=−
�

sin
πh

2

�2 4

h2
ψh(t) ≥ −π2ψh(t),

as long as ψh(t) ≥ 0.
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On the other hand, by the Cauchy-Schwarz inequality, it follows that

1

σ(h)

N−1
∑

j=1

hsin(πx j)(u j(t))
2 ≥






1

σ(h)

N−1
∑

j=1

hsin(πx j)
�

�u j(t)
�

�







2

≥






1

σ(h)

N−1
∑

j=1

hsin(πx j)u j(t)







2

=
�

ψh(t)
�2

.

Combining the two inequalities we have

d2

d t2
ψh(t) ≥ −π2ψh(t) +

�

ψh(t)
�2

, (4.6)

so long as ψh(t)≥ 0. In fact, by (4.5) and (4.6), it is easy to prove that

ψh(t) > π
2, ψ′h(t) > 0,

for all t > 0 as long as ψh(t) exists. This implies that (4.6) holds for all t > 0 as long

as ψh(t) exists. Then, the same argument used in the proof of Theorem 3.3 yields that

ψh(t)→∞ in finite time Th, where

Th ≤
∫ ∞

ψh(0)

�

2

3
x3−π2 x2+ K̄

�−1/2

dx .

Here K̄ is a constant given by

K̄ = −2

3
ψh(0)

3+π2ψh(0)
2+ψ′h(0)

2.

This completes the proof of the theorem. �

4.2. Convergence of the numerical solution

Theorem 4.2. Let {u j(t)} be the solution of (4.1)-(4.2) and T be the blow-up time of the

solution of (3.1). Assume that the initial-boundary value problem (3.1)-(3.2) has a solution

u ∈ C2,4([0, T )× [0,1]). Let T0 < T. Then, for all t ≤ T0, we have

max
j=1,··· ,N−1

|u j(t)− u(t, x j)| ≤ Ch,

for h sufficiently small. Here C is a constant depending only on the initial data and T0.

Proof. Let

max
(t,x)∈[0,T0]×[0,1]

|u(t, x)| = R, max
(t,x)∈[0,T0]×[0,1]

|ux x x x(t, x)| = 12Q.
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Put e j(t) = u j(t)− u(t, x j). Then, by Taylor’s expansion, there exist 0 ≤ θ1,θ2 ≤ 1 such

that

d2

d t2
e j(t)−

e j+1(t)− 2e j(t) + e j−1(t)

h2

=
�

u j(t) + u(t, x j)
�

e j(t) +
h2

24

�

ux x x x(t, x j + θ1h) + ux x x x (t, x j − θ2h)
�

=
�

2u(t, x j) + e j(t)
�

e j(t) +
h2

24

�

ux x x x (t, x j + θ1h) + ux x x x(t, x j − θ2h)
�

. (4.7)

We need the following two lemmas:

Lemma 4.1. It holds that

N−1
∑

j=1

e′j(t)
e j+1(t)− 2e j(t) + e j−1(t)

h2
= −1

2

d

d t

N
∑

j=1

�

e j(t)− e j−1(t)

h

�2

.

The proof of this lemma is elementary and thus we omit it.

Lemma 4.2. It holds that

E(t) ≤






N
∑

j=1

h

�

e j(t)− e j−1(t)

h

�2






1/2

, (4.8)

where E(t) =max j=1,··· ,N−1 |e j(t)|.
Proof. It follows directly from the inequality

|e j(t)| =
�

�

�

�

�

j
∑

i=1

h
ei(t)− ei−1(t)

h

�

�

�

�

�

≤
j
∑

i=1

h

�

�

�

�

ei(t)− ei−1(t)

h

�

�

�

�

≤
 

N
∑

i=1

h

�

ei(t)− ei−1(t)

h

�2
!1/2

.

This completes the proof of the lemma. �

Now, we are in a position to prove Theorem 4.2. Multiplying (4.7) by he′j(t) and

summing from j = 1 to N − 1, by Lemma 4.1, we obtain

1

2

d

d t







N−1
∑

j=1

h(e′j(t))
2 +

N
∑

j=1

h

�

e j(t)− e j−1(t)

h

�2






=

N−1
∑

j=1

h
�

2u(t, x j) + e j(t)
�

e j(t)e
′
j(t)

+

N−1
∑

j=1

h
h2

24

�

ux x x x (t, x j + θ1h) + ux x x x (t, x j − θ2h)
�

e′j(t).
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Putting

Φh(t) =

N−1
∑

j=1

h(e′j(t))
2 +

N
∑

j=1

h

�

e j(t)− e j−1(t)

h

�2

,

then we have Φh(0) = 0 and, as long as Φh(t) < 1,

1

2

d

d t
Φh(t) ≤ (2R+ 1)

N−1
∑

j=1

h|e j(t)e
′
j(t)|+Qh2







N−1
∑

j=1

h(e′j(t))
2







1/2

≤ (2R+ 1)E(t)







N−1
∑

j=1

h(e′j(t))
2







1/2

+Qh2

≤ 2R+ 1

2






(E(t))2 +

N−1
∑

j=1

h(e′j(t))
2






+Qh2

≤ 2R+ 1

2
Φh(t) +Qh2.

Here, use has been made of Lemma 4.2. Thus, Φh(t) satisfies

Φh(t) ≤
�

exp((2R+ 1)t)− 1
�

�

2Q

2R+ 1
h2

�

, (4.9)

as long as Φh(t) < 1. Since, for h sufficiently small, the right-hand side of (4.9) is always

less than one for all t ≤ T0, this tells that (4.9) holds for all t ≤ T0. Putting

C2 =
�

exp((2R+ 1)T0)− 1
� 2Q

2R+ 1
,

by Lemma 4.2, we have the desired error estimate. �

4.3. Convergence of the numerical blow-up time

Theorem 4.3. Let T and Th denote the blow-up time of the solutions of (3.1) and (4.1),

respectively. Then, we have

lim
h→0

Th = T. (4.10)

Proof. First, we assume that T∗ = lim infh→0 Th < T and derive a contradiction. If

T∗ < T , then there exists a sequence {hi} such that hi → 0 as i→∞ and that

Thi
< (T + T∗)/2< T.

Let {uhi

k
(t)} be the corresponding solutions. Thus, by Theorem 4.2, we have a contradiction

since

max
j=1,··· ,N−1

u
hi

k
(t)→∞ as t → Thi

<
T + T∗

2
,
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while maxx∈(0,1) u(t, x) remains bounded for all t ≤ (T + T∗)/2.

Next, we assume that

T ∗ = lim sup
h→0

Th > T.

Then there exists a sequence {h′i} with limi→∞ h′i = 0 such that Th′
i
> (T + T ∗)/2 > T . Let

δ = (T ∗ − T )/2. Since

∫ ∞

ψh(0)

�

2

3
s3 −π2s2 + K̄

�−1/2

ds <∞,

there exists R such that
∫ ∞

y

�

2

3
s3 −π2s2 + K̄

�−1/2

ds <
δ

2
, for all y ∈ [R,∞). (4.11)

On the other hand, we note that there exist 0< T0 < T such that

ϕ(t) =
π

2

∫ 1

0

u(t, x) sin(πx)d x ≥ 2R, for all t ∈ [T0, T ).

Then, by virtue of Theorem 4.2, for any t ∈ �T0, (T0 + T )/2
�

, there exists a subsequence

{h′n j
} of {h′i} such that

ψh′n j
(t) ≥ ϕ(t)− R> R, for all t ∈

�

T0,
T0 + T

2

�

.

Therefore, we have

Th′n j
≤ T0 +

∫ ∞

ψh′n j
(T0)

�

2

3
s3 −π2s2 + K̄

�−1/2

ds < T +
δ

2
< Th′n j

. (4.12)

This is a contradiction. Thus, we have

lim inf
h→0

Th ≥ T and lim sup
h→0

Th ≤ T,

which yields the desired result. �

5. A full-discrete finite difference scheme

Let N be a positive integer and let h = 1/N . We define the grid points x j by x j = jh

for j = 0,1,2, · · · , N . In this section, we consider the following difference scheme for

(3.1)-(3.2):






1

τn

 

un+1
j
− un

j

∆tn

−
un

j − un−1
j

∆tn−1

!

=
un

j+1 − 2un
j + un

j−1

h2
+
�

un
j

�2

,

un
0 = un

N = 0 (n= 0,1,2, · · · ),
(5.1)
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with the initial condition

u0
j = f (x j), u1

j = f (x j) +∆t0 g(x j) ( j = 1, · · · , N − 1),

where un
j denotes the approximation for u(tn, x j). ∆tn is defined by

∆tn = τmin

¨

1,
1

H(‖un‖p)

«

, (5.2)

where ‖un‖p denotes

‖un‖p =






N−1
∑

j=1

h|un
j |p






1/p

if 1≤ p <∞, and

‖un‖∞ = max
j=1,··· ,N−1

|un
j |.

τ is a prescribed constant, and H(s) is a prescribed function satisfying the following con-

ditions (a)-(c):

(a) H is monotone increasing and lims→∞H(s) =∞;

(b) the mapping s 7−→ s+τ
G(s)

H(s)
is monotone increasing;

(c)
∫∞

H−1(1)

G′(z)dz

G(z)H(z)
<∞, where G(z) will be defined in (5.6).

A typical example is H(s) =
p

s. τn =
1

2
(∆tn +∆tn−1). We define

tn =

¨

0, if n= 0,

tn−1 +∆tn−1, if n> 0.

The definition of ∆tn implies that while un is small, ∆tn is equal to τ and that once un

becomes large, ∆tn becomes smaller. How rapidly it decreases is measured by the function

H and its choice is a crucial issue. On the other hand, the spatial grid x j are fixed.

Remark 5.1. In the computation of the Euler equations and the nonlinear Schrödinger

equation, adaptive spatial grid points are often used, and we know that they are effec-

tive. See, for instance [13, 27]. However, rigorous error analysis is very difficult for such

methods. We therefore do not touch those problems.

The definition (5.2) is originally due to Nakagawa [25] and was used successfully for

parabolic blow-up problems, see [3, 8, 9]. In what follows we will demonstrate that it

works also in the case of hyperbolic blow-up problems.

Definition 5.1. We define

T (τ,h) =

∞
∑

k=0

∆tk = lim
n→∞ tn

and call it a numerical blow-up time.
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At this stage there is no guarantee that T (τ,h) is finite. Rather, a construction of a

scheme which guarantees T (τ,h) < ∞ is an issue. In fact, if ∆tn ≡ τ is employed, then

obviously T (τ,h) =∞. Therefore the choice of the function H is important. Note that, if

the solution blows up and ‖un‖p tends to infinity, then ∆tn = τ/H(‖un‖p) tends to zero.

5.1. Local convergence

The following assumption seems to hold true.

Assumption (C) Let {un
j } be the solution of (5.1). Let an arbitrary T0 < T be given, where

T denotes the blow-up time of (3.1)-(3.2). Suppose that τ ≤ h. Then, for sufficiently smooth

initial data,

lim
h→0

max
j=1,··· ,N−1

|un
j − u(tn, x j)|= 0

holds so far as tn ≤ T0.

To prove this, we need some a priori estimates or stability in some norms, which are

available if ∆tn is independent of n. We found that the proof is quite difficult, since

we are dealing with the scheme where ∆tn decreases indefinitely. In fact the stability in

the case of variable ∆tn is not completely well-known even in the case of linear wave

equations. [11, 24, 28] propose stable schemes but they either do not admit decreasing

∆tn or is implicit, meaning that we have to solve a nonlinear problem in each time step.

In particular, we could not prove the stability in the case where ∆tn ↓ 0 as n → ∞. We

therefore leave Assumption (C) to the future work and assume its validity in the present

paper. Later in this paper we show some numerical examples which seem to support our

assumption.

Suppose that the initial data is large in the sense that the solution blows up in finite

time, but it is not so large as H(‖u0‖p)> 1. Then ∆tn ≡ τ until H(‖un‖p)> 1. At the time

when ∆tn is changed from τ to τ/H(‖un‖p), by Assumption (C), the error ‖u(tn, ·)− un‖
can be controlled as small as we want by choosing a sufficient small h. With this ’fact’ in

mind, we may not lose generality if we assume that the initial data is large enough so that

∆tn = τ/H(‖un‖p) for all n= 0,1,2, · · · . We henceforth assume this.

5.2. Convergence of numerical blow-up time

With Assumption (C) at hand, we are now going to prove that T (τ,h) is finite and

converges to T . Let {un
j } be a solution of (5.1). We first define ϕh by

ϕh(tn) =
1

σ(h)

N−1
∑

j=1

hsin(πx j)u
n
j ,

where σ(h) is given by (4.4). Assume that, corresponding to the assumptions in Theorem

3.3, the initial data satisfies

ϕh(t1)≥ ϕh(t0)> π
2. (5.3)
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Lemma 5.1. Let {un
j
} be the solution of (5.1) with time interval defined by (5.2). Assume

that (5.3) holds. Then ϕ(tn) is increasing in n and it holds that

ϕh(tn+1)−ϕh(tn)

∆tn

≥ ϕh(tn)−ϕ( tn−1)

∆tn−1

+τn

�

ϕh(tn)−π2
�

ϕh(tn) (5.4)

for all n= 1,2, · · · .

Proof. By (5.1), we have

1

τ1

�

ϕh(t2)−ϕh(t1)

∆t1

− ϕh(t1)−ϕh(t0)

∆t0

�

=
1

σ(h)







N−1
∑

j=1

hsin(πx j)
u1

j+1 − 2u1
j + u1

j−1

h2
+

N−1
∑

j=1

hsin(πx j)(u
1
j )

2






.

By a direct calculation, we obtain

1

σ(h)

N−1
∑

j=1

hsin(πx j)
u1

j+1
− 2u1

j
+ u1

j−1

h2

= − 1

σ(h)

�

sin
πh

2

�2 4

h2

N−1
∑

j=1

hsin(πx j)u
1
j

≥ −π2







1

σ(h)

N−1
∑

j=1

hsin(πx j)u
1
j






= −π2ϕh(t1).

On the other hand, by the Cauchy-Schwarz inequality, it follows that

1

σ(h)

N−1
∑

j=1

hsin(πx j)(u
1
j )

2

≥






1

σ(h)

N−1
∑

j=1

hsin(πx j)|u1
j |






2

≥






1

σ(h)

N−1
∑

j=1

hsin(πx j)u
1
j







2

=
�

ϕh(t1)
�2

.

Thus, we have

1

τ1

�

ϕh(t2)−ϕh(t1)

∆t1

− ϕh(t1)−ϕh(t0)

∆t0

�

≥ −π2ϕh(t1) +
�

ϕh(t1)
�2

,

the right hand side of which is positive by our assumption (5.3). This implies that

ϕh(t2)≥ ϕh(t1) (> π
2).



Blow-Up Solutions of Nonlinear Wave Equations 489

We now repeat this argument to obtain

1

τn

�

ϕh(tn+1)−ϕh(tn)

∆tn

− ϕh(tn)−ϕh(tn−1)

∆tn−1

�

≥ ϕh(tn)
�

ϕh(tn)−π2
�

and ϕh(tn+1)≥ ϕh(tn)> π
2. �

Lemma 5.2. For n≥ 1, we have

ϕh(tn+1)−ϕh(tn)

∆tn

≥
r

1

6
ϕh(tn)

3 − π
2

4
ϕh(tn)

2+ K0, (5.5)

where

K0 = −
1

6
ϕh(t0)

3+
π2

4
ϕh(t0)

2 +

�

ϕh(t1)−ϕh(t0)

∆t0

�2

.

Proof. By Lemma 5.1, we have

�

ϕh(tn+1)−ϕh(tn)

∆tn

�2

≥ ϕh(tn)−ϕh(tn−1)

∆tn−1

�

ϕh(tn)−ϕh(tn−1)

∆tn−1

+τn

�

ϕh(tn)−π2
�

ϕ(tn)

�

≥
�

ϕh(tn)−ϕh(tn−1)

∆tn−1

�2

+
1

2

�

ϕh(tn)−ϕh(tn−1)
�
�

ϕh(tn)−π2
�

ϕ(tn).

Therefore,

�

ϕh(tn+1)−ϕh(tn)

∆tn

�2

−
�

ϕh(t1)−ϕh(t0)

∆t0

�2

≥ 1

2

n
∑

k=1

�

ϕh(tk)−ϕh(tk−1)
�
�

ϕ(tk)−π2
�

ϕh(tk)≥
1

2

∫ ϕh(tn)

ϕh(t0)

x(x −π2)dx

=
1

6

�

ϕh(tn)
3 −ϕh(t0)

3
�

− π
2

4

�

ϕh(tn)
2 −ϕh(t0)

2
�

.

Thus, (5.5) holds true. �

Next, we define the function G(z) by

G(z) =

r

z3

6
− π

2z2

4
+ K0. (5.6)

Note that G is increasing in z ∈ [ϕh(t0),∞). We now consider the finite difference equation

vn+1− vn

∆sn

= G(vn) (n= 0,1,2, · · · ), v0 = ϕh(t0). (5.7)
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Here, ∆sn is defined by

∆sn = τ ·min

�

1,
1

H(vn)

�

,

Recall that we are dealing with a large data such that H(vn) > 1, whence ∆sn = τ/H(v
n)

for all n.

It was shown in Theorem 2.1 of [8] that limn→∞ vn =∞. Moreover, we have

∞
∑

k=0

∆sk ≤
∫ ∞

ϕh(t0)

dz

G(z)
+ Cτ, (5.8)

where C is a constant independent of τ.

Lemma 5.3. Let {un
j
} be the solution of (5.1) with initial data satisfying (5.3) and p =∞.

Then we have

T (τ,h) =

∞
∑

k=0

∆tk ≤ 2

 

∫ ∞

ϕh(t0)

dz

G(z)
+ Cτ

!

.

In particular, T (τ,h)<∞.

Proof. By the monotonicity of H and the fact that ‖u0‖p ≥ ϕh(t0) = v0, one obtains

∆t0 =
τ

H(‖u0‖p)
≤ τ

H(v0)
= ∆s0.

We are going to prove that

∞
∑

k=0

∆tn ≤ 2

∞
∑

k=0

∆sn.

To this end, we first note that either

∞
∑

k=0

∆tk ≤∆s0

or there exists an n1 such that

n1
∑

k=0

∆tk ≤∆s0 and ∆s0 <

n1+1
∑

k=0

∆tk.

The proof ends in the first case. In the second case, we have by (5.5), (5.7), and the
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monotonicity of G,

ϕh(tn1+2)≥ ϕh(tn1+1) +∆tn1+1G(ϕh(tn1+1))

≥ ϕh(tn1
) +∆tn1

G(ϕh(tn1
))+∆tn1+1G(ϕh(tn1+1))

≥ ϕh(tn1
) + (∆tn1

+∆tn1+1)G(ϕh(tn1
))

...

≥ ϕh(t0) +

 

n1+1
∑

k=0

∆tk

!

G(ϕh(t0))

≥ v0 +∆s0G(v0) = v1,

and

n1+1
∑

k=0

∆tk =

n1
∑

k=0

∆tk +∆tn1+1 ≤∆s0 +
τ

H(‖un1+1‖p)
≤∆s0 +

τ

H(ϕh(tn1+1))
≤∆s0 +

τ

H(ϕh(t0))
= 2∆s0.

Similarly, either

∞
∑

k=n1+2

∆tk ≤∆s1

holds or there exists an n2 such that

n2
∑

k=n1+2

∆tk ≤∆s1 and ∆s1 <

n2+1
∑

k=n1+2

∆tk.

Again, it is sufficient to consider the second case. By means of (5.5) and (5.7), we obtain

ϕh(tn2+2)≥ ϕh(tn2+1) +∆tn2+1G(ϕh(tn2+1))

≥ ϕh(tn2
) +∆tn2

G(ϕh(tn2
))+∆tn2+1G(ϕh(tn2+1))

≥ ϕh(tn2
) + (∆tn2

+∆tn2+1)G(ϕh(tn2
))

...

≥ ϕh(tn1+2) +







n2+1
∑

k=n1+2

∆tk






G(ϕh(tn1+2))

≥ v1 +∆s1G(v1) = v2,
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and

n2+1
∑

k=n1+2

∆tk =

n2
∑

k=n1+2

∆tk +∆tn2+1

≤∆s1 +
τ

H(‖un2+1‖p)
≤∆s1+

τ

H(ϕh(tn2+1))

≤∆s1 +
τ

H(ϕh(tn1+2))
≤∆s1 +

τ

H(v1)
= 2∆s1.

If we repeat this process, we can find {n j} satisfying ϕh(tn j+2)≥ v j and

n j+1+1
∑

k=n j+2

∆tk ≤ 2∆s j,

for all j ≥ 1. Thus,

∞
∑

k=0

∆tk = lim
r→∞







n1+1
∑

k=0

∆tk +

n2+1
∑

k=n1+2

∆tk + · · ·+
nr+1
∑

k=nr−1+2

∆tk







≤ 2 lim
r→∞

r−1
∑

k=0

∆sk

≤ 2

 

∫ ∞

ϕh(t0)

dz

G(z)
+ Cτ

!

,

where use has been made of (5.8). This yields the desired result. �

Now we are in a position to prove the convergence of the blow-up time.

Theorem 5.1. Let u be a solution of (3.1)-(3.2) which blows up in finite time, and let T

denote its blow-up time. Let τ/h < 1 and T (τ,h) be the discrete blow-up time. Assume that

∆tn is defined by (5.2) with p =∞. Assume finally that Assumption (C) holds true. Then we

have

lim
h→0

T (τ,h) = T.

Proof. Note first that, if h → 0, then τ, too, tends to zero because of the stability

condition τ/h< 1.

We now assume that

T∗ = lim inf
h→0

T (τ,h)< T.

Then there exists a subsequence {τi} and {hi} such that τi → 0 as i→∞ and that

T (τi,hi)≤ T∗ + δ < T,
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where δ = 1

2
(T − T∗). Let {un

j
(τi,hi)} be the solution corresponding to the parameter τi

and hi . Thus, we have

tn(τi,hi)≤ T∗ + δ < T (0≤ n),

while ‖un(τi,hi)‖p→∞ as n→∞. This contradicts to Assumption (C). That is,

lim inf
h→0

T (τ,h)≥ T. (5.9)

Next, we assume that

T ∗ = lim sup
h→0

T (τ,h)> T.

Then for all 0< ǫ < 1

2
(T ∗− T ), there exists a subsequence {τ′

i
} and {h′

i
} such that

T (τ′i,h
′
i)> T + ǫ,

with τ′i/h
′
i < 1 and hi → 0 as i →∞. Since ϕ(t) blows up in finite time T , for all K > 0

there exists t′ < T such that ϕ(t′) > 2K . Let θ < 1

2
(T − t′). By virtue of Assumption (C),

there exists subsequences {τ′ni
} and {h′ni

} of {τ′i} and {h′i}, respectively, such that there

exists a positive k(ni)> 0, corresponding to τ′ni
, satisfying that

t′ ≤ tk(ni)
< T, ϕh(tk(ni)

)≥ ϕ(tk(ni)
)− K ≥ K .

Thus, we have

T (τ′ni
,h′ni
) = tk(ni)

+

∞
∑

n=k(ni)

∆tn < T + 2

�∫ ∞

K

dz

G(z)
+ Cτ′ni

�

.

Since K can be taken so large and τ′ni
can be chosen so small that

2

�∫ ∞

K

dz

G(z)
+ Cτ′ni

�

< ǫ,

we have T (τ′ni
,h′ni
)< T + ǫ. This is a contradiction. Thus,

lim sup
h→0

T (τ,h)≤ T. (5.10)

By (5.9) and (5.10), we have limh→0 T (τ,h) = T . �

Remark 5.2. For 1≤ p <∞, we may consider instead of ϕh(tn) the discrete functional

ϕ̄h(tn) = σ(h)ϕh(tn) =

N−1
∑

j=1

hsin(πx j)u
n
j ,
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and assume corresponding to Theorem 3.3 that the initial data satisfy ϕ̄h(t1) ≥ ϕ̄h(t0) >

2π. Then the convergence of the numerical blow-up time, i.e. limh→0 T (τ,h) = T , follows

by the same arguments given above with G(z) in (5.6) being replaced by

Ḡ(z) =

r

πz3

12
− π

2z2

4
+ K1,

where

K1 = −
π

12
ϕ̄h(t0)

3+
π2

4
ϕ̄h(t0)

2 +

�

ϕ̄h(t1)− ϕ̄h(t0)

∆t0

�2

.

Remark 5.3. The reader may wonder if we could obtain an a priori error bound such as

|T (τ,h)− T | ≤ cτ. We found that this is a difficult problem. In fact no error bound has

been obtained even in the case of parabolic equations, see [8].

5.3. Numerical examples

We now present some numerical examples. First example is as follows. The initial data

is f (x) = 30 sin(πx) and g(x)≡ 0. The function H in (5.2) is H(s) = s1/2. h= 0.002,τ=

0.0016. As Fig. 1 shows the computation proceeds stably until max j un
j

reaches 12000.

0                                          x                                             1

5000

10000

u

t

Figure 1: Numeri
al example. f (x) =
30 sin(πx), g(x)≡ 0. 0                                        x                                      1

u/umax

Figure 2: Plot of un
k
/max j un

j
. f (x) =

30 sin(πx), g(x)≡ 0.
With the same initial data, we now set N = 1000 and τ/h= 0.02. We then plot

un
k

max j un
j

(k = 0,1, · · · , N).

The maximum is one and is always taken at x = 0.5 as is shown in Fig. 2. At the largest n,

max j un
j

is approximately 9.5× 106. With this large solution, the computation is stable.

Fig. 3 (left) shows the case where f (x) = 10 sin(πx) and g(x) = −200 sin(2πx). Here,

neither the assumption of Theorem 3.2 nor (3.3) is satisfied, but the solution seems to blow

up. In Fig. 3 (right), we consider ut t = ux x + u3 with f (x) = 30 sin(2πx), g(x)≡ 0. Here

H(s) = s. This example shows that our idea can be applied to not only the nonlinearity u2,

but also other nonlinearities.
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0                                           x                                               1

5000

10000

u

t

10000

5000

0                                        x                                                    1

u

Figure 3: f (x) = 10 sin(πx), g(x) =−200 sin(2πx) (left). f (x) = 30 sin(2πx), g(x) = 0 (right). N = 500,
τ/h= 0.8. Table 1: h(= 1/N) vs. T(τ, h) with some initial data.

T (τ,h)

N
f (x) = 300sin(πx)

g(x) = 0

f (x) = 500sin(πx)

g(x) = 20sin(2πx)

16 0.171645722923 0.131784930496

32 0.171474088158 0.131643996036

64 0.171383857597 0.131571709667

128 0.171339126667 0.131535079994

256 0.171315681332 0.131516641296

512 0.171303492901 0.131507390839

Next, we consider the dependence of T (τ,h) on τ and h. We put τ/h = 0.2. The

function H is given by H(s) = s1/2. The computation stops when max j un
j attains 106. From

Table 1, we observe that T (τ,h) monotonically decreases as τ ↓ 0, while the numerical

blow-up time for semi-linear heat equation increases as τ ↓ 0 (see [8]). Moreover, the

numerical results seem to suggest that the convergence order of the numerical blow-up

time is O (τ). (see Fig. 4). However, this problem still remains open.

 0.171

 0.1711

 0.1712

 0.1713

 0.1714

 0.1715

 0.1716

 0.1717

 0.1718

 0.1719

 0.172

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

h=1/N
 0.1312

 0.1313

 0.1314

 0.1315

 0.1316

 0.1317

 0.1318

 0.1319

 0.132

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

h=1/NFigure 4: f (x) = 300 sin(πx), g(x) = 0 (left). f (x) = 500 sin(πx), g(x) = 20 sin(2πx) (right).
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5.4. Discussion

In this section, we proposed a finite difference scheme (5.1) that reproduces the blow-

up for the nonlinear wave equation (3.1). Moreover, if we assume the validity of As-

sumption (C), namely, the convergence of our finite difference solution, we can show the

convergence of the numerical blow-up time (Theorem 5.1). However, the verification of

Assumption (C) is difficult to us.

Recalling the convergence results given in Section 4 and the discussion in Section 5.1,

we could say that the difficulty in proving Assumption (C) lies in the non-uniformity of the

time mesh. Thus, as a support of Assumption (C), we consider the following second order

ODE problem

u′′(t) = u2, (u(0) = a0 > 0, u′(0) = a1 > 0), (5.11)

and its difference analogue

1

τn

�

un+1 − un

∆tn

− un − un−1

∆tn−1

�

= (un)
2

, (5.12)

where τn =
1

2
(∆tn+∆tn−1) and ∆tn is given by

∆tn = τ ·min

�

1,
1

H(un)

�

.

Here, the function H is defined in a similar way as we did in the nonlinear wave equation.

That is, H satisfies: (a) H is monotone increasing and lims→∞H(s) =∞; (b) the mapping

s 7−→ s+τ
F(s)

H(s)
is monotone increasing; and (c)

∫ ∞

H−1(1)

F ′(s)ds

F(s)H(s)
<∞,

where F(s) is given by

F(s) =

�

2

3
s3 + a2

1 −
2

3
a3

0

�1/2

.

It is not difficult to show that the solution of (5.11) blows up in finite time T =
∫∞

a0

ds

F(s)
.

Moreover, one can prove mathematically that the finite difference solution (5.12) also

blows up in finite time T (τ) =
∑∞

n=0∆tn <∞ and that the numerical blow-up time T (τ)

converges to the real blow-up time T as τ ↓ 0. We remark that in the second order ODE

case, we can not only prove the convergence of the numerical solution and the numerical

blow-up time, but also show that the convergence order of the numerical blow-up time is

O (τ) for certain choices of the function H. The related results will be published elsewhere.
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