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Abstract. Image restoration is often solved by minimizing an energy function consisting

of a data-fidelity term and a regularization term. A regularized convex term can usually

preserve the image edges well in the restored image. In this paper, we consider a class of

convex and edge-preserving regularization functions, i.e., multiplicative half-quadratic

regularizations, and we use the Newton method to solve the correspondingly reduced

systems of nonlinear equations. At each Newton iterate, the preconditioned conjugate

gradient method, incorporated with a constraint preconditioner, is employed to solve

the structured Newton equation that has a symmetric positive definite coefficient matrix.

The eigenvalue bounds of the preconditioned matrix are deliberately derived, which can

be used to estimate the convergence speed of the preconditioned conjugate gradient

method. We use experimental results to demonstrate that this new approach is efficient,

and the effect of image restoration is reasonably well.
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1. Introduction

In image restoration, the restored image x̂ ∈ R p is estimated based upon a degraded

data vector b ∈ Rq by minimizing an energy function J : R p → Rq, and the function J
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consists of a data-fidelity term and a weighted regularization term Φ. Thus, it holds that

x̂ = min
x∈R p

J(x),

J(x) = ‖Ax− b‖22 +βΦ(x),

where β > 0 is a regularization parameter. The data-fidelity term given above assumes that

b and x satisfy an approximate linear relation Ax≈ b, but that b is contaminated by noise.

The treatment of using such a data-fidelity term is popular in computations of many inverse

problems such as seismic imaging, non-destructive evaluation, and x-ray tomography; see,

e.g., [5,8]. Here, we consider regularization terms Φ of the form

Φ(x) =

r
∑

i=1

φ(gT
i x), (1.1)

where gT
i : R p → R , i = 1, · · · , r, are linear operators. Typically, {gT

i x}ri=1 are the first-

or the second-order differences between neighboring samples in x. For example, if x is a

one-dimensional signal, then it usually holds that gT
i
x = x i − x i+1, i = 1, · · · , p− 1, where

x= (x1, x2, · · · , xp)
T ∈ R p. Let G denote the r×p matrix whose ith row is gT

i
, i = 1, · · · , r,

such that

φ 6≡ 0 and ker(AT A)∩ ker(GT G) = {0}, (1.2)

where ker(·) denotes the kernel space of the corresponding matrix.

In this paper, we will focus on convex, edge-preserving potential functions φ :R →R
employed in (1.1), because they give rise to image and signal estimates of high quality

involving edges and homogeneous regions. Examples of such functions (see, e.g., [5,13])

are listed as follows:

φ1(t) = |t| −α log(1+ |t|/α), (1.3)

φ2(t) =
p

α+ t2 −pα, (1.4)

φ3(t) = log(cosh(αt))/α, (1.5)

φ4(t) =

¨

t2/(2α), if |t| ≤ α,

|t| −α/2, if |t| > α,
(1.6)

where α > 0 is a prescribed parameter. In general, we assume that φ is convex, even, C 2,

and satisfies

AT A is invertible and/or φ′′(t) > 0, ∀t ∈ R , (1.7)

where φ′′(t) denotes the second-order derivative of the function φ(t) with respect to t. It

is easy to see that the assumptions in (1.7) and (1.2) guarantee that, for every y ∈ R p, the

function J has a unique global minimum point.

However, the minimizers x̂ of the cost functions J involving edge-preserving regulariza-

tion terms are nonlinear with respect to x. Hence, their computations are quite complicated

and costly. To simplify such computations, a multiplicative half-quadratic reformulation of
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J was proposed in [10] and [11], whose basic idea is as follows: Construct an augmented

cost function J̃ : R p ×R r →R involving an auxiliary variable z = (z1, z2, · · · , zr)
T ∈ R r ,

i.e.,

J̃(x,z) := ‖Ax− b‖22 + β
r
∑

i=1

�

zi

2
(gT

i x)2+ψ(zi)

�

= ‖Ax− b‖22 +
β

2
(Gx)T diag(z) (Gx) + β

r
∑

i=1

ψ(zi), (1.8)

where diag(z) is a diagonal matrix with the diagonal entries being equal to {zi}ri=1, and

φ(t) =min
s∈R

�

1

2
t2s+ψ(s)

�

, ∀t ∈ R . (1.9)

Such a dual potential function ψ is then determined by using the theory of convex conju-

gacy. The condition (1.9) ensures that

J(x) = min
z∈R r

J̃(x,z), ∀x ∈ R p.

The minimizer (x̂, ẑ) of the augmented cost function J̃ is calculated by making use of an

alternating minimization technique. That is to say, from the solution (x(k−1),z(k−1)) at

iterate k− 1, we compute the solution (x(k),z(k)) at iterate k through finding

z(k) such that J̃(x(k−1),z(k))≤ J̃(x(k−1),z), ∀z ∈ R r ,

x(k) such that J̃(x(k),z(k))≤ J̃(x,z(k)), ∀x ∈ R p.

The major cost at each iterate of this approach is in computing x(k), which requires to solve

the system of linear equations

(2AT A+ βGT diag(z(k−1)) G)x(k) = 2AT b. (1.10)

In the spatial-invariant blurring, the matrix A is often a Toeplitz-like matrix [14]. In the

regularization term, G is usually the discretization matrix of the first-order difference op-

erator. Thus, the system of linear equations (1.10) can be solved fast and accurately by

an iterative method [13]. Numerical results have shown that the minimization using a

half-quadratic regularization can substantially accelerate the computations. However, the

main drawbacks of this approach are that the convergence rate is only linear [13] and the

cost for solving the linear system (1.10) is expensive.

In order to speed up the overall convergence rate of this approach, we may adopt the

Newton method to compute the minimizer of the augmented cost function J̃(x,z) in (1.8),

as the Newton method preserves quadratic convergence rate when the nonlinear function

is smooth enough and the initial point is close to the exact solution. Note that the Hessian

matrix of J̃(x,z) is given by

H(x,z) =

�

2AT A+ βGT diag(z) G βGT diag(Gx)

β diag(Gx) G
β

2
diag(ψ′′(z))

�

, (1.11)
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where diag(ψ′′(z)) is a diagonal matrix with the diagonal entries being given by {ψ′′(zi)}ri=1.

At each Newton step, we need to solve a structured linear system of the form

H(x,z)d = r. (1.12)

In this paper, we employ the preconditioned conjugate gradient (PCG) method, incorpo-

rated with a constraint preconditioner M := M(x,z) for H := H(x,z), to solve the Newton

equation (1.12). This results in an inexact Newton method; see [1,2,9]. From both theo-

retical analysis and numerical experiments we will show that this constraint preconditioner

is of high quality, and the resulting PCG is very effective for solving the edge-preserving

signal and image restoration problems.

The rest of the paper is outlined as follows. In Section 2, we construct the constraint

preconditioners and estimate eigenvalue bounds of the corresponding preconditioned ma-

trices. In Section 3, we present two special cases of the constraint preconditioning matrix

and estimate eigenvalue bounds of the corresponding preconditioned matrices, too. Ex-

perimental results are presented in Section 4 to demonstrate the performance of the PCG

method incorporated with the constraint preconditioner as well as the Newton method.

Finally, in Section 5 we give some brief concluding remarks.

2. The constraint preconditioning

In this section, we will construct and analyze a constraint preconditioner for the Hes-

sian matrix H := H(x,z) defined in (1.11), i.e.,

H :=H(x,z) =

�

H11(z) H12(x)

H21(x) H22(z)

�

,

where















H11 := H11(z) = 2AT A+ βGT diag(z) G,

H12 := H12(x) = βGT diag(Gx),

H21 := H21(x) = β diag(Gx) G,

H22 := H22(z) =
β

2
diag(ψ′′(z)).

Note that both H11 and H22 are symmetric positive definite matrices, with H22 being diag-

onal.

The following theorem describes the positive definiteness of the symmetric matrix H.

Theorem 2.1. Let H := H(x,z) be the Hermitian matrix defined in (1.11) with ψ′′(t) > 0

(∀ t ∈ R). Then under the condition (1.2), the matrix H is symmetric positive definite,

provided

ziψ
′′(zi)> 2(gT

i x)2, 1≤ i ≤ r. (2.1)
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Proof. It follows immediately from the expression of the Schur complement SH of the

matrix H with respect to its (1,1) block:

SH = H11 −H12H−1
22 H21

=
�

2 AT A+ β GT diag(z) G
�

− 2 β GT diag(Gx) diag(ψ′′(z))−1 diag(Gx) G

= 2 AT A+ β GT
�

diag(z)− 2 diag(Gx) diag(ψ′′(z))−1 diag(Gx)
�

G

= 2 AT A+ β GT diag(ψ′′(z))−1
�

diag(z) diag(ψ′′(z))− 2 (diag(Gx))2
�

G.

This completes the proof of the theorem. �

We consider the constraint preconditioner

M :=

�

M11(z) H12(x)

H21(x) H22(z)

�

:=

�

M11 H12

H21 H22

�

(2.2)

for the Hessian matrix H, where M11 is an approximation to the matrix block H11; see

[3,4,6,7,12].

The eigenvalues and eigenvectors of the preconditioned matrix M−1H are precisely

described in the following theorem.

Theorem 2.2. Let H := H(x,z) be the Hessian matrix defined in (1.11) satisfying the con-

ditions (1.2) and (2.1), with ψ′′(t) > 0 (∀ t ∈ R). Let M be the constraint preconditioner

defined in (2.2) for H, with M11 being an approximating matrix to H11. Denote by

N11 =M11 −H11 and S=M11 −H12H−1
22 H21. (2.3)

Then the eigenvalues of the preconditioned matrix M−1H are 1 with multiplicity r, and 1−
λ(S−1N11). Here and in the sequel, λ(·) denotes an eigenvalue of the corresponding matrix.

In addition, the eigenvectors of M−1H associated with the eigenvalue 1 are given by [ũ v]T ,

with ũ ∈ ker(N11) and v ∈ R r , and those associated with the eigenvalues λ 6= 1 are given by

�

ũ

−H−1
22

H21ũ

�

, (2.4)

with ũ being such that −S−1N11ũ = (λ− 1)ũ.

Proof. Because H =M+ (H−M), we have

M−1H= I+M−1(H−M) = I+M−1

�

−N11 0

0 0

�

.

We can factorize the preconditioning matrix M into the block-triangular product form

M=

�

I H12H−1
22

0 I

��

S 0

0 H22

��

I 0

H−1
22

H21 I

�

,
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where

S=M11 −H12H−1
22 H21

is the Schur complement of M with respect to its (1,1) block M11. It is easy to obtain

M−1 =

�

I 0

−H−1
22 H21 I

��

S−1 0

0 H−1
22

��

I −H12H−1
22

0 I

�

,

M−1

�

−N11 0

0 0

�

=

�

−S−1N11 0

H−1
22 H21S−1N11 0

�

.

Therefore,

M−1H=

�

I− S−1N11 0

H−1
22 H21S−1N11 I

�

.

It then follows that the eigenvalues of M−1H are 1 with multiplicity r, and 1−λ(S−1N11).

We now discuss the eigenvectors of the preconditioned matrix M−1H. To this end,

let λ be an eigenvalue of M−1H and w = [u v]T be a corresponding eigenvector, i.e.,

M−1Hw= λw, or
�

u

v

�

+

�

−S−1N11 0

H−1
22 H21S−1N11 0

��

u

v

�

= λ

�

u

v

�

.

Then, it holds that

−S−1N11u= (λ− 1)u

and

H−1
22 H21S−1N11u= (λ− 1)v.

So, if λ= 1, the eigenvectors are

�

ũ

v

�

, with ũ ∈ ker(N11), ∀ v ∈ R r ;

and if λ 6= 1, the eigenvectors are (2.4), with ũ being such that −S−1N11ũ = (λ− 1)ũ. �

3. Two specific choices

In actual applications, we may choose the approximating (1,1)-block matrix M11 ac-

cording to the following two cases:

(a) M11 = 0;

(b) M11 = 2AT A+ βτGT G,

where τ is a prescribed nonnegative constant. Note that for each case the resulting con-

straint preconditioning matrix M is symmetric, and it is indefinite for Case (a), and positive

definite for Case (b) under certain conditions.



Multiplicative Half-Quadratic Regularization Image Restorations 467

Theorem 3.1. Let M be the constraint preconditioner defined in (2.2), with

M11 = 2AT A+ βτGT G,

where τ is a prescribed nonnegative constant. Then M is symmetric positive definite, provided

the conditions (1.2) and (2.1) are satisfied, ψ′′(t) > 0 (∀ t ∈ R), and τψ′′(zi) > 2(gT
i x)2

(1≤ i ≤ r).

Proof. It follows straightforwardly from the positive definiteness of the Schur comple-

ment of the matrix M with respect to its (1,1) block. �

For the eigenvalues of the preconditioned matrix M−1H corresponding to these two

special choices, we have the following conclusion.

Theorem 3.2. Let H := H(x,z) be the Hessian matrix defined in (1.11) satisfying the con-

ditions (1.2) and (2.1), with ψ′′(t) > 0 (∀ t ∈ R). Let M be the constraint preconditioner

defined in (2.2) for H, with M11 being an approximating matrix to H11. Assume that the

vector x is such that all entries of Gx are nonzero. Denote by

ζmin = min
1≤i≤r
{zi}, ζmax = max

1≤i≤r
{zi},

σ2
min = inf

u6=0

βuT GT Gu

uT (2AT A+βGT G)u
, σ2

max = sup
u6=0

βuT GT Gu

uT (2AT A+ βGT G)u
,

δmin =
2

max{1,ζmax}
· min

1≤i≤r

¨

ω2
i

γi

«

, δmax =
2

min{1,ζmin}
· max

1≤i≤r

¨

ω2
i

γi

«

,

where γi =ψ
′′(zi) and ωi = gT

i x, 1≤ i ≤ r. Then

(a) when M11 = 0, one eigenvalue of the preconditioned matrix M−1H is 1 with multiplicity

r, and the other p eigenvalues are included in the interval
�

1− 1

δminσ
2
min

, 1− 1

δmaxσ
2
max

�

;

(b) when M11 = 2AT A+ βτGT G, with τ a prescribed nonnegative constant satisfying

τ ≥max

�

ζmax, 2 · max
1≤i≤r

¦

ω2
i /γi

©

�

,

one eigenvalue of the preconditioned matrix M−1H is 1 with multiplicity r, and the

other p eigenvalues are included in the interval [1− θmax, 1− θmin], where

θmin =
(τ− ζmax)σ

2
min min{1,ζmin}

max{1,ζmax}max

�

1,τ− 2 min
1≤i≤r

¦

ω2
i
/γi

©

� ,

θmax =
(τ− ζmin)σ

2
max max{1,ζmax}

min{1,ζmin}min

�

1,τ− 2 max
1≤i≤r

¦

ω2
i
/γi

©

� .
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Proof. According to Theorem 2.2, we only need to discuss the eigenvalues of the matrix

S−1N11. To this end, we denote by N11 =M11 −H11 and S=M11 −H12H−1
22 H21.

(a) When M11 = 0, we see that N11 = −H11 is nonsingular. Hence, it holds that

S−1N11 = (N
−1
11 S)−1 = (N−1

11 M11 −N−1
11 H12H−1

22 H21)
−1 = (H−1

11 H12H−1
22 H21)

−1.

It follows that all eigenvalues of the matrix S−1N11 are positive. Write

Ω := diag(ωi) =









gT
1 x

. . .

gT
r x









, Γ := diag(γi) =









ψ′′(z1)
. . .

ψ′′(zr)









.

Then we have

λ(H−1
11 H12H−1

22 H21) = λ(H
− 1

2

11 H12H−1
22 H21H

− 1

2

11 ).

Consequently,

max
¦

λ
�

(S−1N11)
−1
�©

= sup
u6=0

uT H12H−1
22 H21u

uT H11u

= sup
u6=0

uT · βGT
Ω · (1

2
βΓ)−1 · βΩGu

uT (2AT A+ βGT diag(z)G)u

= sup
u6=0

n

2β · uT GT
ΩΓ
−1
ΩGu

uT (2AT A+ βGT diag(z)G)u

o

≤ sup
u6=0

�

2β · max
1≤i≤r

nω2
i

γi

o

· uT GT Gu

uT (2AT A+βζminGT G)u

�

≤ sup
u6=0

�

2β · max
1≤i≤r

nω2
i

γi

o

· 1

min{1,ζmin}
· uT GT Gu

uT (2AT A+ βGT G)u

�

= δmaxσ
2
max.

Analogously, we can obtain,

min
¦

λ
�

(S−1N11)
−1
�©

≥ inf
u6=0

�

2β · min
1≤i≤r

nω2
i

γi

o

· uT GT Gu

uT (2AT A+ βζmaxGT G)u

�

≥ inf
u6=0

�

2β · min
1≤i≤r

nω2
i

γi

o

· 1

max{1,ζmax}
· uT GT Gu

uT (2AT A+ βGT G)u

�

= δminσ
2
min.

Now, from Theorem 2.2 we know that one eigenvalue of the preconditioned matrix M−1H

is 1 with multiplicity r, and the other p eigenvalues are included in the interval

�

1− 1

δminσ
2
min

, 1− 1

δmaxσ
2
max

�

.
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(b) As M11 = 2AT A+ βτGT G is nonsingular, we see that

N11 =M11 −H11 = βGT (τI− diag(z))G

is symmetric positive semidefinite and S−1N11 is similar to S−
1

2 N11S−
1

2 . Hence, all eigen-

values of S−1N11 are nonnegative reals. It follows that

max{λ(S−1N11)} = sup
u6=0

uT N11u

uT Su
≤ sup

u6=0

uT N11u

uT H11u
· sup

u6=0

uT H11u

uT Su
,

where

sup
u6=0

uT N11u

uT H11u
= sup

u6=0

βuT GT (τI− diag(z))Gu

uT (2AT A+ βGT diag(z)G)u

≤ τ− ζmin

min{1,ζmin}
· sup

u6=0

βuT GT Gu

uT (2AT A+ βGT G)u

≤ (τ− ζmin)σ
2
max

min{1,ζmin}
and

inf
u6=0

uT Su

uT H11u
= inf

u6=0

uT (M11 −H12H−1
22

H21)u

uT H11u

= inf
u6=0

uT (2AT A+ βGT (τI− 2Γ−1Ω2)G)u

uT (2AT A+βGT diag(z)G)u

≥
min

�

1,τ− 2 max
1≤i≤r

¦

ω2
i /γi

©

�

max{1,ζmax}
.

Thus, it holds that

max{λ(S−1N11)} ≤
(τ− ζmin)σ

2
max max{1,ζmax}

min{1,ζmin}min

�

1,τ− 2 max
1≤i≤r

¦

ω2
i
/γi

©

� = θmax.

Similarly, we can obtain

min{λ(S−1N11)} ≥
(τ− ζmax)σ

2
min min{1,ζmin}

max{1,ζmax}max

�

1,τ− 2 min
1≤i≤r

¦

ω2
i
/γi

©

� = θmin.

Now, from Theorem 2.2 we know that one eigenvalue of M−1H is 1 with multiplicity r,

and the other p eigenvalues are included in the interval [1− θmax, 1− θmin]. �

We remark that all eigenvalues of the preconditioned matrix M−1H are positive when

δminσ
2
min > 1 holds for Case (a), and when θmax < 1 for Case (b), respectively.
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4. Numerical results

In this section, we present experimental results to demonstrate the effectiveness of

the PCG method for solving the image restoration problem, in which the multiplicative

half-quadratic regularization technique is applied.

The Newton iteration is of the form

�

x(k+1)

z(k+1)

�

=

�

x(k)

z(k)

�

−µkH(x(k),z(k))−1∇J̃(x(k),z(k))T ,

where µk is the step-size determined by a line-search procedure of lower computational

cost. The PCG iteration method, incorporated with the constraint preconditioner M defined

in (2.2), is applied to solve the sub-system of linear equations H(x,z)d = r. In general, the

Newton method is more efficient than the alternating iteration method proposed in [13]

when an accurate solution is desired.

In the Newton method, the initial vector x(0) is set to be the observed image and z(0) is

set to be a constant vector, the iteration is stopped once the current residual satisfies

‖∇J̃(x(k),z(k))‖2
‖∇J̃(x(0),z(0))‖2

≤ 10−6,

and the PCG iteration at the k-th Newton iterate is stopped once the current residual, say,

r(k,ℓ), satisfies

‖r(k,ℓ)‖2
‖r(k,0)‖2

≤ 10−6,

where r(k,ℓ) represents the ℓ-th residual vector generated at the ℓ-th PCG iterate, with r(k,0)

the initial residual vector. In addition, all codes are written in MATLAB 7.01 and run on a

personal computer with 1.86GHz central processing unit and 512M memory.

We show the restorations for the different degraded images with different blurs. The

“Cameraman” and “Shapes” images are used in the experiments. The original “Camera-

man” image is shown in Fig. 1 (left), the contaminated image blurred by an averaging

function [15] and added a Gaussian white noise with the standard deviation 0.005 is

shown in Fig. 2 (left), and the contaminated image blurred by a two-dimensional Gaussian

function, say,

h(i, j) = e−2(i/3)2−2( j/3)2 ,

with size of 7×7 and added a Gaussian white noise with standard deviation 0.005 is shown

in Fig. 3 (left).

In actual computations, we take

τ = ave(z) :=
1

r

r
∑

j=1

z j
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Figure 1: The original �Cameraman� image (left) and �Shapes� image (right).
Figure 2: The blurred and noisy image by average blur (left) and the restored image (right).
Figure 3: The blurred and noisy image by Gaussian blur (left) and the restored image (right).

to be the average value of the vector z, and

M11 = 2AT A+ βτGT G.

With this choice, we obtain

S= 2AT A+ηGT G,

with

η = β
�

τ− β · ave(Gx)
�

.

Fig. 2 (right) shows the restored image using the regularization function φ1 in (1.3).

We see from this figure that the edge-preserving solution tends to sharpen the edges. The

first two lines of Table 1 summarize the computing results corresponding to this image
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al results for the restorations of images �Cameraman� and �Shapes�.
I M

Images Blurs IT PCG IT PCG CPU(s)

“Cameraman” Average 11 > 1000 11 37 194.7

Gaussian 11 > 1000 11 38 14.6

“Shapes” Average 11 > 1000 11 51 172.5

Gaussian 11 > 1000 11 53 171.9

restoration, where the column labelled with “I” represents the results without using a pre-

conditioner, while the column labelled with “M” represents the results using the constraint

preconditioner M. In addition, we use “IT” to denote the number of iteration steps of the

Newton method, “PCG” the average number of iteration steps of the PCG method, and

“CPU” the total computing time for the overall iteration process. From Table 1 we see that

the average number of PCG iteration steps is greater than 1000 when no preconditioner is

applied, and it is less than 40, however, when the constraint preconditioner is used. The

computing efficiency can be improved up to about 25 times when using the constraint pre-

conditioner. We remark that the image restoration effect and computing results of using

the other regularization functions φ2, φ3 and φ4 defined by (1.4)-(1.6), respectively, are

about the same.

Next, we present experimental results for the original “Shapes” image shown in Fig. 1

(right). Fig. 5 (left) shows the contaminated image blurred by the averaging function and

added a Gaussian white noise with the standard deviation 0.005, and Fig. 6 (left) shows

the contaminated image by the Gaussian function and added a Gaussian white noise with

standard deviation 0.005. Here, the averaging blur and the Gaussian blur added to image

“Shapes” are the same as those added to the “Cameraman” image. Again, we take

τ = ave(z) and M11 = 2AT A+ βτGT G.

The restored image using the edge-preserving regularization function φ1 in (1.3) is

shown in Figs. 5 (right) and 6 (right). The last two lines of Table 1 list the computing

results corresponding to this image restoration. The computing efficiency for this example

can be improved up to about 20 times when using the constraint preconditioner. Hence,

we can conclude that the constraint preconditioner shows about the same efficiency for

different image restorations degraded by different blurs.

Fig. 4 depicts the spectral distribution of the original matrix H and the preconditioned

matrix M−1H when the Newton method is applied to restore the “Cameraman” image by

averaging blur. This figure clearly shows that the matrices without preconditioning are

very ill-conditioned and, therefore, the corresponding conjugate gradient method may be

convergent slowly; the matrices with preconditioning are, however, well-conditioned as

they have tightly clustered eigenvalues and, therefore, the corresponding PCG method

converges faster.

Numerical implementations also indicate that using the other regularization functions

φ2, φ3 and φ4 defined by (1.4)-(1.6), respectively, and using different parameters α and

β , lead to similar numerical results.
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Figure 4: The spe
tral distributions without pre
onditioner (left) and with the 
onstraint pre
onditioner(right) for the �Cameraman� restoration by averaging blur.
Figure 5: The blurred and noisy image by the average blur (left) and the restored image (right).
Figure 6: The blurred and noisy image by Gaussian blur (left) and the restored image (right).

5. Concluding remarks

We have discussed the multiplicative half-quadratic edge-preserving regularization

techniques for image restoration problems and solved them by the Newton method in-

corporated with the preconditioned conjugate gradient process with the constraint precon-

ditioner. Both theoretical analysis and experimental results have shown that this approach

is more feasible and effective than the alternating iteration method studied in [13].
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