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Abstract. In this paper, a-posteriori error estimators are proposed for the Legendre
spectral Galerkin method for two-point boundary value problems. The key idea is to
postprocess the Galerkin approximation, and the analysis shows that the postprocess
improves the order of convergence. Consequently, we obtain asymptotically exact a-
posteriori error estimators based on the postprocessing results. Numerical examples are
included to illustrate the theoretical analysis.
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1. Introduction

A-posteriori error estimation has now become an accepted and even expected tool in
modern scientific computing. Many a-posteriori error estimators have been developed for
low order finite element methods (FEM) (see, e.g., [1, 4, 27], and references therein),
which are mainly based on the residual method [2, 3, 5, 8] or on the recovery method
[35,36].

In contrast to the low order FEM (h-FEM), a-posteriori error estimation for high order
methods such as the spectral methods, the p-version FEM and the hp-version FEM is much
less developed and lacks of substantial progress in the past two decades. There are only
few papers on this topic in the current literature, see, e.g., [9,12–16,22–24].

In the present paper, we develop a-posteriori error estimation for the Legendre spectral
Galerkin method [10,13,25,29] for a certain class of two-point boundary value problems.
We first construct a semi-H1 projection which plays an important role in the analysis of
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high order methods in one space dimension, and investigate it’s approximation property.
Following the classical superconvergence analysis of the h-FEM [4,11,21,28,32,34], some
superconvergence results are obtained. Then, we propose a postprocessing technique to
enhance the Legendre spectral Galerkin method. It is proved that the postprocess improves
the order of convergence of the Galerkin approximation. Actually, the postprocessing tech-
nique is essentially a correction for the Galerkin approximation, and the correction scheme
(4.5) in section 4 shows that the correction quantities to the numerical solution can be ex-
pressed by a sum of some higher order polynomials, and the overcost of the postprocessing
procedure is nearly negligible. Finally, it is possible to define recovery-based a-posteriori
error estimators that are asymptotically exact by using the postprocessing results.

This paper is organized as follows: in the next section we present the model prob-
lem and construct the Legendre spectral Galerkin approximation scheme. In Section 3,
we investigate the approximation properties of the semi-H1 projection. In Section 4, we
propose a postprocessing technique for the Galerkin approximation and the asymptotically
exact a-posteriori error estimators are analyzed. The analytical results are illustrated by
numerical examples in Section 5. We summarize the work and also discuss some possible
future works in the last section.

Let I ⊂ R be an open and bounded interval. In this paper, we adopt the standard
notation W m,q(I) for Sobolev spaces on I with the norm ‖ · ‖m,q and the seminorm | · |m,q.

In addition, We denote W m,2(I), W
m,2

0 (I) by Hm(I), Hm
0 (I), respectively. Hereafter, we

denote by C a generic positive constant independent of any function and N , the order of
the Galerkin approximation.

2. Legendre spectral Galerkin method

We consider the following two-point boundary value problem

¨

−u′′(x)+ b(x)u(x) = f (x), in I = (−1,1),
u(−1) = u(1) = 0,

(2.1)

with b(x)≥ 0, and we assume that b and f are sufficiently smooth for our analysis.
The weak form of (2.1) is to find u ∈ H1

0(I) such that

a(u, v) = ( f , v), ∀v ∈ H1
0(I),

where

a(u, v) =

∫

I

(u′v′+ buv)d x , ( f , v) =

∫

I

f vd x .

Let

Ln(x) =
1

2nn!

dn

d xn
[(x2− 1)n], n≥ 0
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be the Legendre polynomials which form an orthogonal basis of L2[−1,1]. For the proper-
ties of Legendre polynomials see [26]. We define

φ0(x) =
1− x

2
=

L0(x)− L1(x)

2
,

φ1(x) =
1+ x

2
=

L0(x)+ L1(x)

2
,

φk+1(x) =

r

2k+ 1

2

∫ x

−1

Lk(ξ)dξ, k ≥ 1.

(2.2)

The following properties are valid

φk+1(x) =

r

1

2(2k+ 1)
(Lk+1(x)− Lk−1(x)), k ≥ 1, (2.3)

φk+1(x) = −

r

2k+ 1

2

1

k(k+ 1)
(1− x2)L′k(x), k ≥ 1. (2.4)

Let VN = span{φ0,φ1 · · ·φN}. The Legendre spectral Galerkin method is to find uN ∈ V 0
N =

VN ∩H1
0(I), such that

a(uN , v) = ( f , v), ∀v ∈ V 0
N .

We end this section by listing some properties of L j ad φ j which will be used later:

‖L j‖
2
L2(I)

=
2

2 j+ 1
, j ≥ 0, (2.5)

‖φ j‖
2
L2(I)

=
2

(2 j+ 1)(2 j− 3)
, j ≥ 2, (2.6)

φ j(±1) = 0, φ′j(x) =

r

2 j− 1

2
L j−1(x), j ≥ 2. (2.7)

The proof of the above results is straightforward and we only verify the second one. In
fact, by (2.3) and (2.5),

‖φ j‖
2
L2(I)

=
1

2(2 j− 1)

� 2

2 j+ 1
+

2

2 j− 3

�

=
2

(2 j+ 1)(2 j− 3)
.

In the following section, we shall investigate the approximation properties of a semi-H1

projection.

3. Semi-H1 projection and super-approximation

Suppose that u ∈ H1(I). Then u′ ∈ L2(I), and consequently we have Legendre expan-
sion

u′(x) =

∞
∑

k=0

αk Lk(x)
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with αk = (k+
1
2
)(u′, Lk)I , k ≥ 0. It follows that

u(x) =

∞
∑

j=0

β jφ j(x), ∀x ∈ I ,

where φ j is defined by (2.2) and







β0 = u(−1), β1 = u(1),

β j+1 =

r

2 j+ 1

2
(u′, L j), j ≥ 1.

(3.1)

Let Π0
Nu be the Legendre projection which satisfies

(u−Π0
N u, v) = 0, ∀v ∈ PN ,

where PN stands for the set of all polynomials of degree at most N . We define the operator

ΠN : H1(I)→ VN (I), ΠNu(x) =

N
∑

j=0

β jφ j(x), ∀x ∈ I . (3.2)

Obviously, there always holds
(ΠNu)′ = Π0

N−1u′, (3.3)

which implies that ΠN is a semi-H1 projection operator.

Lemma 3.1. The operator ΠN has the following properties:

1) ΠNu = u, ∀u ∈ PN , ΠN u(±1) = u(±1).

2) (u−ΠN u, v)I = 0, ∀v ∈ PN−2, ((u−ΠN u)′, v)I = 0, ∀v ∈ PN−1.

Proof. From the definition of ΠN in (3.2), we can verify these properties directly. �

To derive approximation results, we introduce the Legendre-weighted Sobolev space
Hk,0(I) furnished with the norm

‖u‖2
Hk,0(I)

=

k
∑

l=0

∫

I

(1− x2)l |u(l)(x)|2d x .

Moreover, | · |Hk,0(I) is a semi-norm involving the k-th derivative only. Actually, Hk,0(I) is a
special case of the Jacobi-weighted Sobolev space Hk,β(I) with β = 0 (cf. [6,7,17–20]).

Note that it is always true that for k ≥ 0

‖u‖Hk,0(I) ≤ ‖u‖Hk(I). (3.4)
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Lemma 3.2. Let u ∈ Hk+1(I) with k ≥ 0. Then we have the following estimates

‖u−ΠNu‖m ≤ CN−(k+1−m)‖u′‖Hk,0(I) ≤ CN−(k+1−m)‖u‖k+1, m = 0,1. (3.5)

Proof. Let Π0
N−1u′ =
∑N−1

k=0 αk Lk(x) be the Legendre projection of u′(x) on PN−1. It can
be verified [17] that for l ≤ k

‖u′ −Π0
N−1u′‖H l,0(I) ≤ CN−(k−l)‖u′‖Hk,0(I). (3.6)

Recalling the fact that for any integers n≥ 0 and k ≥ 0 there holds [10]
∫ 1

−1

(1− x2)L′n(x)L
′
k(x)d x = n(n+ 1)

∫ 1

−1

Ln(x)Lk(x)d x ,

which, together with (2.4) and (3.1), gives

‖u−ΠN u‖20 = ‖
∞
∑

k=N+1

βkφk‖
2
0 = ‖

∞
∑

k=N+1

r

2

2k− 1
αk−1φk‖

2
0

≤
∞
∑

k=N+1

2

(k− 1)k(2k− 1)
|αk−1|

2 =

∞
∑

k=N

2

k(k+ 1)(2k+ 1)
|αk|

2

≤
∞
∑

k=N

1

k2

2

(2k+ 1)
|αk|

2 ≤ N−2‖u′ −Π0
N−1u′‖20

≤ CN−2(k+1)‖u′‖2
Hk,0(I)

.

The above results, together with (3.3) and (3.6), implies (3.5). �

An important weak error estimate will be given as follows.

Theorem 3.1. Let N ≥ 2. Then the following basic estimates hold for m = 1,2

|a(u−ΠN u, v)| ≤ CN−(k+1+m)‖u‖k+1‖v‖m, ∀v ∈ V 0
N . (3.7)

Proof. With the aid of Lemma 3.1, we have

a(u−ΠN u, v) = (u−ΠN u, bv), ∀v ∈ V 0
N (I). (3.8)

Let w = bv. It follows from Lemmas 3.1 and 3.2 that for N ≥ 2

|(u−ΠN u, w)| = |(u−ΠNu, w −ΠN−2w)|

≤ ‖u−ΠNu‖0‖w −ΠN−2w‖0

≤ CN−(k+1)‖u‖k+1N−m‖w′‖Hm−1,0(I)

≤ CN−(k+1)N−m‖u‖k+1‖w
′‖m−1,I

≤ CN−(k+1+m)‖u‖k+1‖v‖m. (3.9)

Consequently, the desired result follows from (3.8). �



A-Posteriori Error Estimation for Legendre Spectral Galerkin Method in 1D 45

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then,

|a(u−ΠN u,ΠNφ)| ≤ CN−(k+3)‖u‖k+1‖φ‖2, ∀φ ∈ H2(I)∩H1
0(I). (3.10)

Proof. By inspecting the proof of Theorem 3.1, it suffices to prove

‖(bΠNφ)
′‖H1,0(I) ≤ C‖φ‖2. (3.11)

It follows from (3.4)-(3.6) that

‖(bΠNφ)
′‖H1,0(I) = ‖b

′ΠNφ + bΠ0
N−1φ

′‖H1,0(I)

≤ C
�

‖ΠNφ‖H1,0(I)+ ‖Π
0
N−1φ

′‖H1,0(I)

�

≤ C
�

‖ΠNφ −φ‖H1,0(I)+ ‖φ‖H1,0(I) + ‖Π
0
N−1φ

′ −φ′‖H1,0(I) + ‖φ
′‖H1,0(I)

�

≤ C
�

‖φ‖H1,0(I) + ‖φ
′‖H1,0(I)

�

≤ C‖φ‖2,

which completes the proof of (3.11). �

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. If b(x) = 0, then,

a(u−ΠN u, v) = 0, ∀v ∈ V 0
N , N ≥ 1.

Consequently, ΠNu = uN , where uN is the corresponding Galerkin approximation.

The main result in this section is presented in the following theorem. It is shown that
the Galerkin approximation uN is a better approximation to the semi-H1 projection than to
the solution u itself.

Theorem 3.2. Let uN be the Galerkin approximation to Eq. (2.1), and let N ≥ 2. Then we

have the super-approximation estimates

‖uN −ΠN u‖m ≤ CN−(k+3−m)‖u‖k+1, m = 0,1. (3.12)

Proof. Using Theorem 3.1 gives

‖uN −ΠN u‖21 ≤ Ca(uN −ΠN u,uN −ΠN u)

= Ca(u−ΠNu,uN −ΠN u)

≤ CN−(k+2)‖u‖k+1‖uN −ΠN u‖1

which implies that (3.12) holds for m = 1. For m = 0, we consider the auxiliary problem:
¨

−φ′′(x)+ b(x)φ(x) = ϕ(x), in I = (−1,1),
φ(−1) = φ(1) = 0,

with ϕ ∈ L2(I). Then the equation has a unique solution φ ∈ H2(I)∩H1
0(I), and

‖φ‖2 ≤ C‖ϕ‖0. (3.13)
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Note that φ satisfies the variational equation

a(φ, v) = (ϕ, v), ∀v ∈ H1
0(I). (3.14)

Let φN ∈ V 0
N be the Galerkin approximation to (3.14). Applying Theorem 3.1 and (3.12)

with m = 1, we obtain

a(φ −ΠNφ,uN −ΠNu)

= a(φN −ΠNφ,uN −ΠN u)

= a(φN −ΠNφ,u−ΠNu)

≤ CN−(k+2)‖u‖k+1‖ΠNφ −φN‖1

≤ CN−(k+5)‖u‖k+1‖φ‖2. (3.15)

Let ϕ = |uN −ΠNu|sgn(uN −ΠN u) ∈ L2(I). Combining (3.13), (3.15) and Corollary 3.1,
we obtain

‖uN −ΠN u‖20 = (ϕ,uN −ΠNu) = a(φ,uN −ΠNu)

= a(φ −ΠNφ,uN −ΠN u) + a(ΠNφ,uN −ΠNu)

= a(φ −ΠNφ,uN −ΠN u) + a(u−ΠN u,ΠNφ)

≤ CN−(k+5)‖u‖k+1‖φ‖2 + CN−(k+3)‖u‖k+1‖φ‖2

≤ CN−(k+3)‖u‖k+1‖ϕ‖0, (3.16)

which is (3.12) for m= 0. This completes the proof of the theorem. �

4. The postprocessed method and a-posteriori error estimation

Under certain regularity assumptions on the exact solution, [30,31] considered spectral
collocation methods and the p-version FEM for two-point boundary value problems, and
obtained some natural superconvergent points. In this section, we shall propose a postpro-
cessed method to enhance the spectral Galerkin approximation. A similar postprocessing
technique was first developed for the h-version FEM in [33], where global superconver-
gence results are obtained. Based on the postprocessing results we can define a-posteriori
error estimators that are asymptotically exact.

Let u ∈ Hk+1(I) be the exact solution of Eq. (2.1). Then

u′′ = bu− f . (4.1)

Note that for l ≥ 2

βl =

r

l −
1

2
(u′, Ll−1)

= −(u′′,φl) = ( f − bu,φl )

= ( f − buN ,φl) + (b(uN − u),φl). (4.2)
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Let
β∗l = ( f − buN ,φl). (4.3)

Thanks to the well-known estimate ‖u− uN‖0 ≤ CN−(k+1)‖u‖k+1, it follows that

|βl − β
∗
l | = |(b(uN − u),φl)| ≤ CN−(k+1)‖u‖k+1‖φl‖0. (4.4)

Let

u∗N = uN +

M
∑

l=N+1

β∗l φl , M ≥ N + 1. (4.5)

Then u∗N is a corrected value of uN which can be easily calculated, and it is a high accurate
approximation to u.

Theorem 4.1. Suppose that u and uN be the exact solution and the Galerkin approximation

to Problem (2.1), respectively. Let u∗N be the correction value determined by (4.5), and let M be

the minimum integer not less than N1+σ with 0< σ < 1. Then we have the superconvergence

estimates

‖u− u∗N‖m ≤ CN−(k+1−m)−αm‖u‖k+1, m= 0,1, (4.6)

where α0 =min{σ(k+ 1), 1} and α1 =min{σk, 1− σ
2
}.

Proof. Note that

u− u∗N = (u−ΠM u) + (ΠNu− uN ) +
�

ΠM u−ΠN u−
M
∑

l=N+1

β∗l φl

�

.

Using Lemma 3.2, we get

‖u−ΠM u‖m ≤ C M−(k+1−m)‖u‖k+1, m= 0,1. (4.7)

It follows from (2.6) and (4.4) that













ΠM u−ΠN u−
M
∑

l=N+1

β∗l φl













0
=













M
∑

l=N+1

(βl − β
∗
l )φl













0

≤ CN−(k+1)‖u‖k+1

M
∑

l=N+1

‖φl‖
2
0

≤ CN−(k+2)‖u‖k+1. (4.8)

Here we have used the fact that

M
∑

l=N+1

‖φl‖
2
0 ≤

M
∑

l=N+1

1

l2 ≤
M
∑

l=N+1

1

l(l − 1)
≤

1

N
.
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Combine (4.7), (4.8) and (3.12) to conclude that

‖u− u∗N‖0 ≤ ‖u−ΠM u‖0 + ‖ΠN u− uN‖0 +













M
∑

l=N+1

(βl − β
∗
l )φl













0

≤ CN−(k+1)
�

N−σ(k+1)+ N−2 + N−1
�

‖u‖k+1

≤ CN−(k+1)−α0‖u‖k+1,

with α0 =min{σ(k+ 1), 1}, which is m= 0 for (4.6).
Analogously, by Cauchy-Schwarz inequality we have













ΠM u−ΠN u−
M
∑

l=N+1

β∗l φl













1

=













M
∑

l=N+1

(βl − β
∗
l )φl













1

≤ CN−(k+1)‖u‖k+1

M
∑

l=N+1

‖φl‖0‖φl‖1

≤ CN−(k+1)N−
1
2 ‖u‖k+1

� M
∑

l=N+1

‖φl‖
2
1

� 1
2

≤ CN−(k+
3
2
)(M − N)

1
2 ‖u‖k+1

≤ CN−(k+1−σ
2
)‖u‖k+1. (4.9)

Combine (4.7), (4.9) and (3.12) to conclude that

‖u− u∗N‖1 ≤ ‖u−ΠM u‖1 + ‖ΠN u− uN‖1 +













M
∑

l=N+1

(βl − β
∗
l )φl













1

≤ CN−k(N−σk+ N−2 +N
σ
2
−1)‖u‖k+1

≤ CN−k−α1‖u‖k+1

with α1 =min{σk, 1− σ
2
}, which is m = 1 for (4.6). �

Remark 4.1. Obviously, the best choice of σ ∈ (0,1) is σ = 1
k+1

for m = 0, and σ = 2
2k+1

for m = 1 such that the equality σk = 1−σ
2

holds, and then α0 = 1,α1 =
2k

2k+1
. Accordingly,

we have

‖u− u∗N‖0 ≤ CN−(k+2)‖u‖k+1, (4.10)

‖u− u∗N‖1 ≤ CN
−(k+ 2k

2k+1
)‖u‖k+1. (4.11)

We now introduce the error estimators ηm, m = 0,1 for the two-point boundary value
problems (2.1)

ηm = ‖u
∗
N − uN‖m =













M
∑

l=N+1

β∗l φl













m

, (4.12)
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where β∗
l

are computed as in (4.3). Let E = u− uN . The following result shows that ηm

are asymptotically exact.

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 are satisfied and that

‖E‖m = ‖u− uN‖m ≥ CN−(k+1−m), m= 0,1. (4.13)

Then the error estimators ηm are asymptotically exact, i.e.,

lim
N→∞

ηm

‖E‖m
= 1, m = 0,1. (4.14)

Proof. Employing the splitting

E = (u∗N − uN ) + (u− u∗N )

and (4.6), we have

‖E‖m− CN−(k+1−m)−αm ≤ ηm ≤ ‖E‖m + CN−(k+1−m)−αm . (4.15)

The desired result follows from (4.13) and (4.15). �

5. Numerical experiments

In this section, we present some computational examples to illustrate the preceding
discussions and we will focus on the robustness of the proposed error estimators.

The quality of the error estimators is expressed as usual in terms of the effectivity index

θm =
ηm

‖E‖m
=
‖u∗N − uN‖m
‖u− uN‖m

, m= 0,1.

As the first example, we consider the problem
¨

−u′′ + bu= f in I = (0,1),
u(0) = u(1) = 0,

with the exact solution u(x) = x9/2− x and b(x) = ex+3. Then u ∈ H5−ǫ(I)∩H1
0(I),ǫ > 0.

Obviously, the proposed method can be applied here by a simple scaling. Let M = N6/5.
Then various norm errors, estimators and effectivity indices are computed with varying N

and results are summarized in Table 1, where ‖E‖0 and ‖E‖1 denote the L2 and H1 norm
errors, respectively. It is shown that the error estimators ηm are asymptotically sharp,
which coincide with the predicted theoretical results.

As the second example, we consider the problem
¨

−u′′+ bu = f in I = (−1,1),
u(−1) = u(1) = 0,
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tivity indi
es for Example 1 with M = N 6/5.
N ‖E‖0 η0 θ0 ‖E‖1 η1 θ1

3 0.0133 0.0143 1.0790 0.2601 0.2722 1.0464
4 6.8284e-004 7.1763e-004 1.0510 0.0173 0.0178 1.0287
5 3.2420e-005 3.3784e-005 1.0421 0.0010 0.0010 1.0182
6 4.2590e-006 4.3461e-006 1.0204 1.6079e-004 1.6282e-004 1.0126
7 8.6355e-007 8.7175e-007 1.0095 3.8279e-005 3.8632e-005 1.0092
8 2.2800e-007 2.2806e-007 1.0043 1.1651e-005 1.1731e-005 1.0068
9 7.2287e-008 7.2410e-008 1.0017 4.1948e-006 4.2168e-006 1.0052
10 2.6263e-008 2.6271e-008 1.0003 1.7099e-006 1.7162e-006 1.0037Table 2: Errors, estimators and e�e
tivity indi
es for Example 2 with M = N + 2.
N ‖E‖0 η0 θ0 ‖E‖1 η1 θ1

3 0.0918 0.1097 1.1948 0.4714 0.5357 1.1363
4 0.0146 0.0165 1.1269 0.0962 0.1040 1.0805
5 0.0018 0.0019 1.0838 0.0143 0.0151 1.0538
6 1.7762e-004 1.8799e-004 1.0584 0.0017 0.0017 1.0386
7 1.4664e-005 1.5292e-005 1.0428 1.5704e-004 1.6159e-004 1.0290
8 1.0394e-006 1.0735e-006 1.0328 1.2582e-005 1.2866e-005 1.0226
9 6.4554e-008 6.6226e-008 1.0259 8.7183e-007 8.8757e-007 1.0181
10 3.5673e-009 3.6421e-009 1.0210 5.3187e-008 5.3974e-008 1.0148

with the exact solution u(x) = (1− x2)ex and b(x) = x2 + 3. For this smooth solution,
we let M = N + 2, and the results are listed in Table 2. Note that the value of M slightly
larger than N is enough to improve the accuracy of the approximation, and the overcost
of the postprocessing procedure is nearly negligible. It can be also observed from Table 2
that the effectivity indices approach 1 as N increasing, and the excellent properties of the
proposed estimators are confirmed again.

6. Conclusion

In this paper, we develop a-posteriori error estimation for Legendre spectral Galerkin
method for two-point boundary value problems. Applying the postprocessed method, su-
perconvergence properties for the Galerkin approximation are obtained, which play essen-
tial role in the analysis of recovery-based a-posteriori error estimation.

In fact, those results obtained and techniques used can be extended to one dimensional
parabolic equations and the hp-version FEM. However, the generalization of the results to
the higher-dimensional tensor product case is not straightforward. It is hoped that we can
apply the proposed method to recovery the internal boundary flux in the p-version FEM,
this in turn can be used to develop residual-based a-posteriori estimation. The work pre-
sented in previous sections is just the beginning, and a comprehensive study on a-posteriori
error analysis for high order methods, such as the spectral method, the p-version FEM and
the hp-version FEM in two or higher dimensional problems is needed. Nevertheless, it cer-
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tainly present a new way of thinking, a new approach, and a new direction, which seem
encouraging and promising.
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