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Abstract. The immersed interface method is modified to compute Schrödinger equa-

tion with discontinuous potential. By building the jump conditions of the solution into

the finite difference approximation near the interface, this method can give at least sec-

ond order convergence rate for the numerical solution on uniform cartesian grids. The

accuracy of this algorithm is tested via several numerical examples.
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1. Introduction

Consider Schrödinger equation in different forms

Stationary : −1

2
ǫ2△ϕ+ Vϕ = Eϕ, (1.1)

Eigenvalue : −1

2
ǫ2△φ + Vφ = Eφ, (1.2)

Dynamic : iǫψt +
1

2
ǫ2△ψ= Vψ, (1.3)

where ǫ is the re-scaled Plank constant, x ∈ Ω ⊂ Rd denotes the computational domain,

and V = V (x ) is the potential. We can use different types of boundary conditions, e.g.,

transparent boundary condition, periodic boundary condition and reflection boundary con-

dition. In the stationary problem, the energy E is specified. In the eigenvalue problem, the

energy E is eigenvalue. In the dynamic problem, we need to specify the initial condition as

ψ(0, x ) = A0(x )e
iS0(x )

ǫ . (1.4)

Our goal is to compute the wave functions ϕ(x ), φ(x ) andψ(t, x ) on a uniform Cartesian

grid up to second order accuracy, even if the discontinuities curves of potential V (x ) are

not aligned with the grid.
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Schrödinger equation with discontinuous potential can be used to model motion of

electrons in quantum zones, e.g., quantum barrier, quantum well, quantum dot and p-

n junctions [11, 30, 37]. The quantum zone is an active region of electronic structure,

which connects to two highly conduct large reservoirs. The whole structure is a basic and

fundamental semiconductor device in modern industry, e.g., memory chip, microprocessor

and integrated circuit [9,10,31].

There have been numerous studies on direct numerical methods of Schrödinger equa-

tion, including the finite difference method [28,29,38], the discontinuous Galerkin method

[26,27,40], spectral type methods [7,8,13], the WKB scheme [3,4,36] and other related

technics [1, 2, 5, 17, 34]. However, none of these methods could satisfy all the following

requirements for solving Schrödinger equation with discontinuous potential: (i) at least

second order convergence, (ii) robust processing in interface conditions, (iii) easy gener-

alization to high dimensions, (iv) taking the advantages of the Cartesian grid.

The immersed interface method, originally developed for elliptic equations with dis-

continuous coefficients and singular sources [12,18,20–24], can maintain at least second

order accuracy on a uniform grid even when the discontinuities curves of potential are not

aligned with the grid. The idea is to modify the standard finite difference approximation

at grid points near the interface to keep jump conditions of solutions’ derivatives. Such

method has succeed in many applications, e.g., the heat equation [6, 25], the acoustic

wave equation [33,41], stokes flow and Navier-Stokes equations [15,16,19].

In this paper, we develop an immersed interface method to solve Schrödinger equation

with discontinuous potential. The solutions are shown to have at least second order con-

vergence in both one and two dimensions. A more interesting question is how to extend

such idea for the dynamic Schrödinger equation with discontinuous potential in the semi-

classical regime [14]. Based on the results here, we will propose two new methods in a

consecutive paper [39].

The paper is organized as follows. In Section 2, we show how the immersed interface

method is applied to Schrödinger equation with discontinuous potential. The method in

higher space dimensions is given in Section 3. In Section 4, we present numerical examples

to test the accuracy of the method. We make some conclusive remarks in Section 5.

2. One dimensional Schrödinger equation

We begin by considering the one dimensional stationary Schrödinger equation

−1

2
ǫ2ϕx x + Vϕ = Eϕ, (2.1)

on the computational domain [a, b]. The potential V (x) is split into a smooth part Vs(x) ∈
C∞([a, b]) and a discontinuous part Vd(x)

V (x) = Vs(x)+ Vd(x). (2.2)
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Here the discontinuous potential is given by

Vd(x) =

¨
Λ, c1 < x < c2,

0, else.
(2.3)

Remark 2.1. The discontinuous potential Vd(x) can be considered in a general form, in-

cluding more discontinuities. To concentrate on the key idea, we use (2.3) in this Section

without any special instructions.

Therefore, we have the following jump conditions (s = 1,2):




[V ]c1
= Λ, [V ]c2

= −Λ,
�
ϕ
�

cs
= 0,
�
ϕx

�
cs
= 0,

−1

2
ǫ2
�
ϕx x

�
cs
+ [V ]cs

ϕcs = 0.

(2.4)

Here [·]c represents the jump in a quantity at the point c
�
ϕ
�

c = ϕ
c+ −ϕc− = lim

x→c+
ϕ(x)− lim

x→c−
ϕ(x).

We would like to compute the numerical solution of ϕ(x) on a uniform grid

xn = nh+ a, n= 0,1, · · · , N ,

where h= (b− a)/N . The point cs will typically fall between grid points, say

xms
≤ cs ≤ xms+1.

We introduce ps1, ps2 ∈ [0,1] such that

ps1 + ps2 = 1, cs − xms
= ps1h, xms+1 − cs = ps2h.

For n 6= ms, ms + 1, the solution is smooth in the interval [xn−1, xn+1], and we can use the

standard approximation

− 1

2τ2

�
ϕn−1 − 2ϕn+ϕn+1

�
+ V nϕn = Eϕn, (2.5)

where τ= h/ǫ. This gives a local truncation error

T n = −1

2

ǫ2

h2

�
ϕn−1 − 2ϕn+ϕn+1

�
+ V nϕn − Eϕn = O (h2).

To design the finite difference scheme at n= ms, we firstly have

ϕ(xms−1) =ϕ
cs − (ps1+ 1)hϕcs

x +
1

2
(ps1+ 1)2h2ϕ

c−s
x x + O (h3),

ϕ(xms
) =ϕcs − ps1hϕcs

x +
1

2
p2

s1h2ϕ
c−s
x x + O (h3),

ϕ(xms+1) =ϕ
cs + ps2hϕcs

x +
1

2
p2

s2h2ϕ
c+s
x x + O (h3)

=ϕcs + ps2hϕcs
x +

1

2
p2

s2h2

�
ϕ

c−s
x x +

2 [V ]cs

ǫ2
ϕcs

�
+ O (h3),
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and

V (xms
)ϕ(xms

) = V c−s ϕcs + O (h),
Eϕ(xms

) = Eϕcs + O (h),
− 1

2
ǫ2ϕ

c−s
x x + V c−s ϕcs = Eϕcs .

Then we can write the modified approximation as [18]

γ
ms

1 ϕ
ms−1 + γ

ms

2 ϕ
ms + γ

ms

3 ϕ
ms+1 + V msϕms = Eϕms . (2.6)

This gives the local truncation error

T ms =γ
ms

1 ϕ(xms−1) + γ
ms

2 ϕ(xms
) + γ

ms

3 ϕ(xms+1) + V (xms
)ϕ(xms

)− Eϕ(xms
)

=γ
ms

1 ϕ(xms−1) + γ
ms

2 ϕ(xms
) + γ

ms

3 ϕ(xms+1) + V c−s ϕcs − Eϕcs + O (h)

=γ
ms

1

�
ϕcs − (ps1+ 1)hϕcs

x +
1

2
(ps1+ 1)2h2ϕ

c−s
x x

�
+ γ

ms

2

�
ϕcs − ps1hϕcs

x +
1

2
p2

s1h2ϕ
c−s
x x

�

+ γ
ms

3

�
ϕcs + ps2hϕcs

x +
1

2
p2

s2h2

�
ϕ

c−s
x x +

2 [V ]cs

ǫ2
ϕcs

��
+

1

2
ǫ2ϕ

c−s
x x + O (h)

=
�
γ

ms

1
+ γ

ms

2
+ γ

ms

3

�
1+ p2

s2τ
2 [V ]cs

��
ϕcs +
�
−(ps1+ 1)γ

ms

1
− ps1γ

ms

2
+ ps2γ

ms

3

�
hϕcs

x

+
1

2

�
(ps1+ 1)2γ

ms

1 + p2
s1γ

ms

2 + p2
s2γ

ms

3 +
1

τ2

�
h2ϕ

c−s
x x + O (h).

Therefore we have a linear system for the coefficients in (2.6)




γ
ms

1
+ γ

ms

2
+ γ

ms

3

�
1+ p2

s2τ
2 [V ]cs

�
= 0,

−(ps1+ 1)γ
ms

1 − ps1γ
ms

2 + ps2γ
ms

3 = 0,

(ps1+ 1)2γ
ms

1 + p2
s1γ

ms

2 + p2
s2γ

ms

3 = −
1

τ2
.

(2.7)

By a similar process, we can modify the finite difference approximation at n= ms + 1

γ
ms+1

1 ϕms + γ
ms+1

2 ϕms+1 + γ
ms+1

3 ϕms+2 + V ms+1ϕms+1 = Eϕms+1, (2.8)

in which the coefficients satisfy




γ
ms+1

1

�
1− p2

s1τ
2 [V ]cs

�
+ γ

ms+1

2 + γ
ms+1

3 = 0,

−ps1γ
ms+1

1 + ps2γ
ms+1

2 +
�

ps2 + 1
�
γ

ms+1

3 = 0,

p2
s1γ

ms+1

1 + p2
s2γ

ms+1

2 + (ps2+ 1)2γ
ms+1

3 = − 1

τ2
.

(2.9)

We can simply compute the local truncation error

T ms+1 =γ
ms+1

1
ϕ(xms

) + γ
ms+1

2
ϕ(xms+1) + γ

ms+1

3
ϕ(xms+2)

+ V (xms+1)ϕ(xms+1)− Eϕ(xms+1)

=O (h).
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Remark 2.2. As discussed in [18], only four grid points (independent of h) are involved.

Their O (h) local truncation errors are sufficient to ensure the numerical solution converges

at least quadratically.

For the one dimensional eigenvalue problem of Schrödinger equation

−1

2
ǫ2φx x + Vφ = Eφ, (2.10)

with potential (2.2)–(2.3), we have the same jump conditions as (2.4). The numerical

scheme is similarly given by (2.5)–(2.9).

At last, we consider the one dimensional dynamic Schrödinger equation

iǫψt +
1

2
ǫ2ψx x = Vψ, (2.11)

with potential (2.2)–(2.3), here ψ=ψ(t, x). The jump conditions are





[V ]c1
= Λ, [V ]c2

= −Λ,
�
ψ
�

cs
= 0,
�
ψx

�
cs
= 0,
�
ψt

�
cs
= 0,

−1

2
ǫ2
�
ψx x

�
cs
+ [V ]cs

ψcs = 0.

The time grid is

t l = lk, l = 0,1, · · · , L,

where k = T/L. For n 6= ms, ms+1 the solution is smooth in the interval [xn−1, xn+1], and

the Crank-Nicolson approximation can be used

ψl+1,n−ψl ,n

ω
=− 1

2τ2

1

2

�
(ψl+1,n−1 − 2ψl+1,n+ψl+1,n+1)

+ (ψl ,n−1− 2ψl ,n+ψl ,n+1)
�
+

V n

2

�
ψl+1,n+ψl ,n
�

,

with ω = k/(iǫ). This gives a local truncation error

T l ,n =
iǫ

k

�
ψ(t l+1, xn)−ψ(t l , xn)

�
+
ǫ2

4h2

�
ψ(t l+1, xn−1)− 2ψ(t l+1, xn)+ψ(t l+1, xn+1)

�

+
ǫ2

4h2

�
ψ(t l , xn−1)− 2ψ(t l , xn) +ψ(t l , xn+1)

�
− 1

2
V (xn)
�
ψ(t l+1, xn) +ψ(t l , xn)

�

=O (h2+ k2).
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For n= ms or n= ms + 1, the modified approximations are

ψl+1,ms −ψl ,ms

ω
=

1

2

�
(γ

ms

1 ψ
l+1,ms−1 + γ

ms

2 ψ
l+1,ms + γ

ms

3 ψ
l+1,ms+1)

+ (γ
ms

1
ψl ,ms−1 + γ

ms

2
ψl ,ms + γ

ms

3
ψl ,ms+1)
�
+

V ms

2

�
ψl+1,ms +ψl ,ms

�
,

ψl+1,ms+1 −ψl ,ms+1

ω
=

1

2

�
(γ

ms+1

1 ψl+1,ms + γ
ms+1

2 ψl+1,ms+1 + γ
ms+1

3 ψl+1,ms+2)

+ (γ
ms+1

1 ψl ,ms + γ
ms+1

2 ψl ,ms+1 + γ
ms+1

3 ψl ,ms+2)
�

+
V ms+1

2

�
ψl+1,ms+1 +ψl ,ms+1

�
,

where γm
i

are solutions of (2.7) and (2.9). Then the local truncation errors are

T l ,ms = O (h+ k2), T l ,ms+1 = O (h+ k2).

2.1. A special case for δ-potential

In this subsection, we consider the one dimensional stationary Schrödinger equation

(2.1) with δ-potential

Vd(x) = Λδ(x − c1).

Then the jump conditions are

�
ϕ
�
= 0,

1

2
ǫ2
�
ϕx

�
c1
= Λϕc1 ,
�
ϕx x

�
= 0,

from which we can derive linear systems for the coefficients in (2.6),





γ
ms

1 + γ
ms

2 + γ
ms

3

�
1+ 2ps2τΛ/ǫ
�
= 0,

−(ps1+ 1)γ
ms

1 − ps1γ
ms

2 + ps2γ
ms

3 = 0,

(ps1+ 1)2γ
ms

1
+ p2

s1γ
ms

2
+ p2

s2γ
ms

3
= − 1

τ2
,

(2.12)

and in (2.8), 



γ
ms+1

1

�
1+ 2ps1τΛ/ǫ
�
+ γ

ms+1

2 + γ
ms+1

3 = 0,

−ps1γ
ms+1

1
+ ps2γ

ms+1

2
+
�

ps2 + 1
�
γ

ms+1

3
= 0,

p2
s1γ

ms+1

1 + p2
s2γ

ms+1

2 + (ps2+ 1)2γ
ms+1

3 = − 1

τ2
.

(2.13)

These coefficients can be used analogously for the eigenvalue problem (2.10) and the

dynamic problem (2.11).
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3. Two dimensional Schrödinger equation

Now, we are turning to the two dimensional stationary Schrödinger equation

−1

2
ǫ2
�
ϕx x +ϕy y

�
+ Vϕ = Eϕ, (3.1)

on a computational domain Ω ⊂ R2. The potential V (x) is split into a smooth part

Vs(x , y) ∈ C∞(Ω) and a discontinuous part Vd(x , y):

V (x , y) = Vs(x)+ Vd(x), (3.2)

Vd(x , y) =

¨
Λ, (x , y) ∈ Ωd ⊂ Ω,

0, else.
(3.3)

Assume Ωd is a simply connected closed domain and Γd = ∂Ωd is a smooth curve lying in

Ω. Therefore, we can define a smooth indicate function F (x , y) such that

F (x , y)> 0, (x , y) ∈ Ωd \Γd ,

F (x , y) = 0, (x , y) ∈ Γd ,

F (x , y)< 0, (x , y) ∈ Ω \Ωd .

Remark 3.1. The discontinuous potential Vd(x , y) can be considered in a general form. To

concentrate on the key idea, we use (3.3) in this Section without any special instructions.

Let the computational domain be a square, say [a1, b1]× [a2, b2]. We would like to

compute the numerical solution of ϕ(x , y) on a uniform grid

xn = nh+ a1, n= 0,1, · · · , N ,

ym = mh+ a2, m = 0,1, · · · , M ,

where

h=
b1 − a1

N
=

b2 − a2

M
.

For a regular grid point (xn, ym),

F (xn, ym)F (xn′, ym′)> 0, ∀(xn′ , ym′) ∈ Sn,m,

Sn,m =
n
(xn, ym), (xn−1, ym), (xn+1, ym), (xn, ym−1), (xn, ym+1)

o
,

we can use the standard five points approximation

− ǫ
2

2h2

�
ϕn−1,m +ϕn,m−1 − 4ϕn,m+ϕn+1,m +ϕn,m+1

�
+ V n,mϕn,m = Eϕn,m,

with a local truncation error

T n,m = − ǫ
2

2h2

�
ϕn−1,m+ϕn,m−1 − 4ϕn,m+ϕn+1,m +ϕn,m+1

�
+ (V n,m− E)ϕn,m = O (h2).
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Figure 1: Interfa
e Γd in a two dimensional domain and the lo
al 
oordinate (ξ,η).
For irregular points, the standard five points are on the different sides of the interface,

which means that the standard approximation may not work. To design the new finite

difference scheme, we firstly look for (x0
n, y0

m) ∈ Γd , who is closest to (xn, ym). Taking

(x0
n, y0

m) as the original point, we construct a local coordinate (see Fig. 1) with the follow-

ing transformation �
x

y

�
=

�
cosθ − sinθ

sinθ cosθ

��
ξ

η

�
+

�
x0

n

y0
m

�
,

where ξ and η are in the normal and tangential directions of the interface, and θ is the

rotation angle. The stationary Schrödinger equation (3.1) can be rewritten in the local

coordinate system as

−1

2
ǫ2
�
ϕξξ +ϕηη
�
+ Vϕ = Eϕ.

Then we can give the jump conditions at (x0
n, y0

m):





[V ] = Λ,
�
ϕ
�
=
�
ϕξ
�
=
�
ϕη
�
= 0,

�
ϕξη
�
=
�
ϕηη
�
= 0,
�
ϕξξ
�
=

2

ǫ2
[V ]ϕ.

(3.4)

Here [·] represents the jump in a quantity at the point (x0
n, y0

m)

[ϕ] = ϕ+−ϕ−.

We use superscripts + or − to denote the limiting values of a function from one side (in

Ωd) or the other (in Ω \Ωd). It is easy to see there are six constraints, thus we need an

additional point (x∗n, y∗m) to close the system. We choose

(x∗n, y∗m) ∈ bSn,m =
n
(xn−1, ym−1), (xn−1, ym+1), (xn+1, ym−1), (xn+1, ym+1)

o
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to be the closest point to (x0
n, y0

m). Then we can define the following sets

Sn,m
∗ = Sn,m ∪ �(x∗n, y∗m)

	
,

S
n,m
+ = Sn,m

∗ ∩Ωd , S
n,m
− = Sn,m

∗ ∩
�
Ω \Ωd

�
.

We write the Taylor expansion for (x , y) ∈ S+n,m

ϕ(ξ,η) = ϕ+ +ϕ+
ξ
ξ+ϕ+ηη+

1

2
ϕ+
ξξ
ξ2 +ϕ+

ξη
ξη+

1

2
ϕ+ηηη

2 +O (h3),

and for (x , y) ∈ S−n,m

ϕ(ξ,η) = ϕ− +ϕ−
ξ
ξ+ϕ−ηη+

1

2
ϕ−
ξξ
ξ2 +ϕ−

ξη
ξη+

1

2
ϕ−ηηη

2 +O (h3).

Here ϕ,ϕ±
ξ

,ϕ±η ,ϕ±
ξξ

,ϕ±
ξη

and ϕ±ηη denote the corresponding limiting values of ϕ at point

(x0
n, y0

m). For (xn, ym) ∈ S+n,m, we have

V (xn, ym)ϕ(xn, ym) = V+ϕ+ + O (h),
Eϕ(xn, ym) = Eϕ+ + O (h),
− 1

2
ǫ2
�
ϕ+
ξξ
+ϕ+ηη

�
+ V+ϕ+ = Eϕ+.

We write the modified approximation as
∑

s∈S
n,m
+

γn,m
s ϕn,m

s +
∑

s∈S
n,m
−

γn,m
s ϕn,m

s + V n,mϕn,m = Eϕn,m. (3.5)

To make the equation clear, the indexes (n, m) are dropped
∑

s∈S+

γsϕs +
∑

s∈S−

γsϕs + Vϕ = Eϕ.

This gives the local truncation error

T =
∑

s∈S+

γsϕ(xs, ys) +
∑

s∈S−

γsϕ(xs, ys)+ (V (xn, ym)− E)ϕ(xn, ym)

=
∑

s∈S+

γs

�
ϕ+ +ϕ+

ξ
ξs +ϕ

+
ηηs +

1

2
ϕ+
ξξ
ξ2

s +ϕ
+
ξη
ξsηs +

1

2
ϕ+ηηη

2
s

�
+
�

V+− E
�
ϕ+

+
∑

s∈S−

γs

�
ϕ− +ϕ−

ξ
ξs +ϕ

−
ηηs +

1

2
ϕ−
ξξ
ξ2

s +ϕ
−
ξη
ξsηs +

1

2
ϕ−ηηη

2
s

�
+ O (h)

=
∑

s∈S+

γs

�
ϕ+ +ϕ+

ξ
ξs +ϕ

+
ηηs +

1

2
ϕ+
ξξ
ξ2

s +ϕ
+
ξη
ξsηs +

1

2
ϕ+ηηη

2
s

�

+
∑

s∈S−

γs

�
ϕ+ +ϕ+

ξ
ξs +ϕ

+
ηηs +

1

2

�
ϕ+
ξξ
− 2

ǫ2
[V ]ϕ+
�
ξ2

s +ϕ
+
ξη
ξsηs +

1

2
ϕ+ηηη

2
s

�

+
1

2
ǫ2
�
ϕ+
ξξ
+ϕ+ηη

�
+ O (h).
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Therefore we have a linear system for the coefficients




∑

s∈S∗

γs −
[V ]

ǫ2

∑

s∈S−

ξ2
s γs = 0,
∑

s∈S∗

ξ2
s γs = −ǫ2,

∑

s∈S∗

ξsγs = 0,
∑

s∈S∗

ξsηsγs = 0,

∑

s∈S∗

γsηs = 0,
∑

s∈S∗

η2
s γs = −ǫ2.

(3.6)

For (xn, ym) ∈ S
n,m
− , we have

V (xn, ym)ϕ(xn, ym) = V−ϕ− + O (h),
Eϕ(xn, ym) = Eϕ− + O (h),
− 1

2
ǫ2
�
ϕ−
ξξ
+ϕ−ηη
�
+ V−ϕ− = Eϕ−.

Then the coefficients for the modified approximation (3.5) satisfy the following linear

system 



∑

s∈S∗

γs +
[V ]

ǫ2

∑

s∈S+

ξ2
s γs = 0,
∑

s∈S∗

ξ2
s γs = −ǫ2,

∑

s∈S∗

ξsγs = 0,
∑

s∈S∗

ξsηsγs = 0,

∑

s∈S∗

ηsγs = 0,
∑

s∈S∗

η2
s γs = −ǫ2,

(3.7)

from which, we can compute the local truncation error

T =
∑

s∈S+

γsϕ(xs, ys) +
∑

s∈S−

γsϕ(xs, ys) +
�
V (xn, ym)− E
�
ϕ(xn, ym)

=O (h).
Remark 3.2. As discussed in [18], the irregular points, which are adjacent to the curve Γd ,

form a lower-dimensional set. Their O (h) local truncation errors are sufficient to ensure

the numerical solution converges at least quadratically, just as in one dimension.

For the two dimensional eigenvalue problem of Schrödinger equation

−1

2
ǫ2
�
φx x +φy y

�
+ Vφ = Eφ, (3.8)

and dynamic Schrödinger equation

iǫψt +
1

2
ǫ2
�
ψx x +ψy y

�
= Vψ, (3.9)

with potential (3.2)–(3.3), the numerical schemes can be similarly derived. We omit the

details and leave them to the readers.
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4. Numerical examples

In this section, we will present a few examples to test the order of accuracy for the

numerical scheme.

Example 1. We consider the one dimensional Schrödinger equation with the following

parameters

a = −1, b = 1, c1 = −
p

2

4
, c2 =

p
2

4
,

Λ = 1, Vs(x) = 0.1 sinπx .

(i) For the stationary Schrödinger equation (2.1) with the following transparent bound-

ary condition

ǫϕx(a) + i
p

2(E− V (a))ϕ(a) = 2i
p

2(E − V (a)),

ǫϕx(b)− i
p

2(E − V (b)))ϕ(b) = 0, (4.1)

where ǫ = 0.1, we output the l∞ errors of wave functions for different energies E and

mesh sizes h in Table 1. In Fig. 2, the wave amplitudes |ϕ(x)| are plotted versus different

energies E.
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0

0.5

1

1.5

2

E=0.5

−1 0 1

0

0.5

1

1.5

2

E=1.0

−1 0 1

0

0.5

1

1.5

2

E=1.5

Figure 2: Example 1-1, the wave amplitude |ϕ(x)| (blue solid lines) for di�erent energies E. The reddash-dot lines are the potential pro�le.
(ii) For the eigenvalue problem of Schrödinger equation (2.10) with the periodic bound-

ary condition (pbc)

φ(x + (b− a)) = φ(x),

or the reflection boundary condition (rbc)

φ(a) = φ(b) = 0,

where ǫ = 0.1, we output the l∞ errors of the first ten eigenvectors for different mesh size

h in Table 2. In Fig. 3, the wave functions of the first ten eigenvectors φ(x) are plotted.

Since the eigenvalues E are corresponding to the total energies ET = |p|2/2+ V , they can

be negative when the potential energy V (x) is negative.



High Order Scheme for Schrödinger Equation with Discontinuous Potential 587Table 1: Example 1-1, the l∞ errors of ϕ(x) for di�erent energies E and mesh sizes h. The numeri
alsolutions are 
omputed by both the standard �nite di�eren
e approximation (SFA) and the immersedinterfa
e method (IIM).
h 1

200

1

400

1

800

1

1600

E = 0.5 (SFA) 1.09× 10−1 6.19× 10−2 1.53× 10−2 7.59× 10−3

ratio −−− 1.76 4.05 2.02

E = 0.5 (IIM) 1.44× 10−3 3.86× 10−4 7.57× 10−5 1.76× 10−5

ratio −−− 3.73 5.10 4.30

E = 1.0 (SFA) 1.83× 10−1 6.60× 10−2 3.14× 10−2 1.15× 10−2

ratio −−− 2.77 2.10 2.73

E = 1.0 (IIM) 4.73× 10−3 1.18× 10−3 2.88× 10−4 5.73× 10−5

ratio −−− 4.01 4.10 5.03

E = 1.5 (SFA) 1.13× 10−1 5.51× 10−2 2.13× 10−2 8.88× 10−3

ratio −−− 2.05 2.59 2.40

E = 1.5 (IIM) 8.72× 10−3 2.17× 10−3 5.12× 10−4 1.03× 10−4

ratio −−− 4.02 4.24 4.97Table 2: Example 1-2, the l∞ errors of φ(x) for di�erent mesh sizes h.
h 1

200

1

400

1

800

1

1600

pbc (SFA) 5.44× 10−2 2.20× 10−2 1.03× 10−2 4.03× 10−3

ratio −−− 2.47 2.14 2.56

pbc (IIM) 1.92× 10−3 4.82× 10−4 1.09× 10−4 2.26× 10−5

ratio −−− 3.98 4.42 4.82

rbc (SFA) 6.76× 10−2 2.92× 10−2 1.25× 10−2 4.83× 10−3

ratio −−− 2.32 2.34 2.59

rbc (IIM) 1.97× 10−3 4.95× 10−4 1.12× 10−4 2.32× 10−5

ratio −−− 3.98 4.42 4.83

(iii) For the dynamic Schrödinger equation (2.11) with the periodic boundary condition

(pbc)

ψ(t, x + (b− a)) =ψ(t, x),

or the reflection boundary condition (rbc)

ψ(t, a) =ψ(t, b) = 0,

with ǫ = 0.02, T f = 0.54, and the initial data

ψ0(x) = e−400(x+0.6)2 e
i(x+1)

ǫ ,

we output the l∞ errors of wave functions for different mesh sizes h at time t = T f in

Table 3. In Fig. 4, the wave amplitudes |ψ(t, x)| are plotted. To investigate the stability of

the immersed interface method for the dynamic problem, we output the l∞ errors of the
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(a) Periodic boundary condition
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(b) Reflection boundary conditionFigure 3: Example 1-2, the wave fun
tions of the �rst ten eigenve
tors φ(x).
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(a) Periodic boundary condition.
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(b) Reflection boundary condition.Figure 4: Example 1-3, the initial and �nal wave amplitude |ψ(t , x)|.



High Order Scheme for Schrödinger Equation with Discontinuous Potential 589Table 3: Example 1-3, the l∞ errors of ψ(t , x) for di�erent mesh sizes h and time steps k.
(h, k)
�

1

1000
, 1

1000

� �
1

2000
, 1

2000

� �
1

4000
, 1

4000

� �
1

8000
, 1

8000

�

pbc (SFA) 6.32× 10−2 2.80× 10−2 1.18× 10−2 4.76× 10−3

ratio −−− 2.26 2.37 2.48

pbc (IIM) 9.23× 10−4 2.34× 10−4 5.58× 10−5 1.11× 10−5

ratio −−− 3.94 4.19 5.03

rbc (SFA) 6.20× 10−2 2.80× 10−2 1.20× 10−2 4.92× 10−3

ratio −−− 2.21 2.33 2.44

rbc (IIM) 1.52× 10−3 3.90× 10−4 9.15× 10−5 1.79× 10−5

ratio −−− 3.90 4.26 5.11Table 4: Example 1-3, the l∞ errors of ψ(t , x) for di�erent �nal times t = T f .
(h, k)
�

1

1000
, 1

1000

� �
1

2000
, 1

2000

� �
1

4000
, 1

4000

� �
1

8000
, 1

8000

�

pbc (T f = 0.54) 9.23× 10−4 2.34× 10−4 5.58× 10−5 1.11× 10−5

ratio −−− 3.94 4.19 5.03

pbc (T f = 1.08) 6.10× 10−3 1.52× 10−3 3.61× 10−4 7.22× 10−5

ratio −−− 4.01 4.21 5.00

pbc (T f = 2.16) 1.20× 10−2 3.08× 10−3 7.36× 10−4 1.47× 10−4

ratio −−− 3.90 4.18 5.01

rbc (T f = 0.54) 1.52× 10−3 3.90× 10−4 9.15× 10−5 1.79× 10−5

ratio −−− 3.90 4.26 5.11

rbc (T f = 1.08) 8.56× 10−3 2.12× 10−3 5.03× 10−4 1.01× 10−4

ratio −−− 4.04 4.21 4.98

rbc (T f = 2.16) 2.34× 10−2 6.13× 10−3 1.47× 10−3 2.94× 10−4

ratio −−− 3.82 4.17 5.00

wave functions for different final time T f in Table 4. We can see the convergence rate is

almost independent of time.

From all these data, we can observe that the numerical solutions of the immersed

interface method converges at least in second order.

Remark 4.1. In this example, together with later examples, the reference Schrödinger

solutions are computed by using the standard finite difference approximation. And we use

the discrete discontinuous function and delta function technical given in [32, 35]. Since

the standard finite difference approximation converges in about first order, we can believe

that the reference solutions are accurate enough if we take a very fine mesh size and a very

small time step, e.g.,

• For the stationary problem, we take h= 10−6.

• For the eigenvalue problem, we take h= 10−6.

• For the time dependent problem, we take h= k = 10−7.



590 H. Wu

Example 2. We consider the one dimensional Schrödinger equation on the computational

domain [−1,1] with δ-potential

V (x) = 2

�
x −
p

3

20

�2
− 1+

1

10
δ

�
x −
p

3

20

�
.

(i) For the stationary Schrödinger equation (2.1) with the transparent boundary condi-

tion (4.1), with ǫ = 0.1, we output the l∞ errors of wave functions for different mesh sizes

h in Table 5. In Fig. 5, the real and imaginary parts of wave function ϕ(x) are plotted.

(ii) For the eigenvalue problem of Schrödinger equation (2.10) with the reflection

boundary condition, with ǫ = 0.1, we output the l∞ errors of the first six eigenvectors

for different mesh sizes h in Table 6. In Fig. 6, the wave functions of the first six eigenvec-

tors φ(x) are plotted.

(iii) For the dynamic Schrödinger equation (2.11) with the periodic boundary condi-

tion, ǫ = 0.01, T f = 0.54, and the initial data

ψ0(x) = e−400(x+0.4)2 e2i(x+1)/ǫ ,

we output the l∞ errors of the wave functions for different mesh sizes h at time t = T f in

Table 7. In Fig. 7, the wave amplitudes |ψ(t, x)| are plotted at time t = 0, 0.23, 0.27, and

0.54. From which, we can draw the same conclusion as in Example 1.Table 5: Example 2-1, the l∞ errors of ϕ(x) for di�erent mesh sizes h.
h 1

200

1

400

1

800

1

1600

E = 1.5 (SFA) 2.31× 10−2 1.27× 10−2 7.30× 10−3 4.10× 10−3

ratio −−− 1.82 1.74 1.78

E = 1.5 (IIM) 9.33× 10−3 2.31× 10−3 5.47× 10−4 1.11× 10−4

ratio −−− 4.04 4.22 4.93Table 6: Example 2-2, the l∞ errors of φ(x) for di�erent mesh sizes h.
h 1

200

1

400

1

800

1

1600

rbc (SFA) 4.54× 10−2 2.41× 10−2 1.24× 10−2 6.31× 10−3

ratio −−− 1.88 1.94 1.97

rbc (IIM) 2.00× 10−3 5.00× 10−4 1.18× 10−4 2.45× 10−5

ratio −−− 4.00 4.24 4.82Table 7: Example 2-3, the l∞ errors of ψ(t , x) for di�erent mesh sizes h and time steps k.
(h, k)
�

1

1000
, 1

1000

� �
1

2000
, 1

2000

� �
1

4000
, 1

4000

� �
1

8000
, 1

8000

�

pbc (SFA) 8.60× 10−2 6.61× 10−2 4.37× 10−2 2.57× 10−2

ratio −−− 1.30 1.51 1.70

pbc (IIM) 4.65× 10−2 1.11× 10−2 2.61× 10−3 5.21× 10−4

ratio −−− 4.19 4.25 5.01



High Order Scheme for Schrödinger Equation with Discontinuous Potential 591

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5
E=1.5

Figure 5: Example 2-1, the real part (blue solid line) and imaginary part (green solid line) of wavefun
tion ϕ(x) for energy E = 1.5. The red dash-dot line is the potential pro�le.
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Figure 6: Example 2-2, the wave fun
tions of the �rst six eigenve
tors φ(x).
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Figure 7: Example 2-3, the wave amplitude |ψ(t , x)| at di�erent time.
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Example 3. We consider the two dimensional Schrödinger equation on the computational

domain Ω = [−0.5,1]× [−0.5,0.5] with potential

V (x , y) =

¨
0.3, (x − 0.5)2+ y2 < 0.093,

0, else.

(i) Consider the stationary Schrödinger equation (3.1) with the following boundary

condition

ϕ(x ,±0.5) = 0,

ǫ∂xϕ(−0.5, y) =
∑

E>Ek

i
p

2(E − Ek)(2ak−ϕl
k
)χk(y) +
∑

E≤Ek

p
2(Ek− E)ϕl

k
χk(y),

ǫ∂xϕ(1, y) =
∑

E>Ek

i
p

2(E− Ek)ϕ
r
kχk(y)−
∑

E≤Ek

p
2(Ek− E)ϕr

kχk(y),

where (Ek,χk(y)) are solutions of the eigenvalue problem




−1

2
ǫ2∂y yχ(y) = Eχ(y),

χ(±0.5) = 0, 〈χ(y),χ(y)〉 = 1,

(4.2)

and

ϕ(−0.5, y) =

∞∑

k=1

ϕl
kχk(y)≈

K∑

k=1

ϕl
kχk(y), with ϕl

k = 〈ϕ(−0.5, y),χk(y)〉,

ϕ(1, y) =

∞∑

k=1

ϕr
kχk(y) ≈

K∑

k=1

ϕr
kχk(y), with ϕr

k = 〈ϕ(1, y),χk(y)〉.

The re-scaled Planck constant is ǫ = 0.1. In Table 8, we present the first six eigenvalues

of (4.2). From which we can believe that K = 6 is accurate enough for the boundary

condition when E ≤ 0.7. The coefficients of incoming waves ak are given by

ak =

¨
1, k = 1,2,

0, else.

We output the l∞ errors of the wave amplitude for different energies E and mesh sizes h

in Table 9. In Fig. 8, the wave amplitudes |ϕ(x , y)| are plotted versus different energies E.Table 8: Example 3-1, the �rst six eigenvalues of (4.2).
k 1 2 3 4 5 6

Ek 0.049 0.197 0.444 0.790 1.234 1.777



High Order Scheme for Schrödinger Equation with Discontinuous Potential 593Table 9: Example 3-1, the l∞ errors of |ϕ(x , y)| for di�erent energies E and mesh sizes h. The numeri
alsolutions are 
omputed by the immersed interfa
e method.
h 1

40

1

80

1

160

E = 0.2 3.88× 10−2 9.04× 10−3 1.79× 10−3

ratio −−− 4.29 5.05

E = 0.4 3.42× 10−2 8.29× 10−3 1.69× 10−3

ratio −−− 4.13 4.91

E = 0.6 5.23× 10−2 1.26× 10−2 2.53× 10−3

ratio −−− 4.15 4.98

(ii) For the eigenvalue problem of Schrödinger equation (3.8) with the following bound-

ary condition,

φ(x ,±0.5) = 0,

φ(x + 1.5, y) = φ(x , y),

where ǫ = 0.1, we output the l∞ errors of the first six eigenvalues and eigenvectors for dif-

ferent mesh sizes h in Table 10. In Fig. 9, the wave amplitudes of the first six eigenvectors

|φ(x , y)| are plotted.Table 10: Example 3-2, the l∞ errors of E and |φ(x , y)| for di�erent mesh sizes h. The numeri
alsolutions are 
omputed by the immersed interfa
e method.
h 1

40

1

80

1

160

E 5.45× 10−4 1.28× 10−4 2.57× 10−5

ratio −−− 4.26 4.98

|φ(x , y)| 6.70× 10−2 1.65× 10−2 4.02× 10−3

ratio −−− 4.06 4.10

(iii) For the dynamic Schrödinger equation (3.9) with the following boundary condi-

tion,

ψ(t, x ,±0.5) = 0,

ψ(t, x + 1.5, y) =ψ(x , y),

ǫ = 0.05, T f = 0.6, and the initial data

ψ0(x , y) = e−40((x+0.05)2+y2)e
1.2i(x+1)

ǫ ,

we output the l∞ errors of the wave amplitude for different mesh sizes h at time t =

T f in Table 11. In Fig. 10, the wave amplitudes |ψ(t, x , y)| are plotted at time t =

0.15, 0.3, 0.45, and 0.6. From which, we can draw the same conclusion as in Example 1.
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Figure 8: Example 3-1, the wave amplitude |ϕ(x , y)| for di�erent energies E.
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Figure 9: Example 3-2, the wave amplitude of the �rst six eigenve
tors |φ(x , y)|.

Figure 10: Example 3-3, the wave amplitude of |ψ(t , x , y)|.



High Order Scheme for Schrödinger Equation with Discontinuous Potential 595Table 11: Example 3-3, the l∞ errors of |ψ(t , x , y)| for di�erent mesh sizes h and time steps k. Thenumeri
al solutions are 
omputed by the immersed interfa
e method.
(h, k)
�

1

40
, 1

160

� �
1

80
, 1

160

� �
1

160
, 1

160

�

|ψ(t, x , y)| 1.19× 10−1 2.90× 10−2 6.79× 10−3

ratio −−− 4.10 4.27

5. Conclusion

Since the discontinuous potential would effect the continuity of wave function’s deriva-

tives, standard numerical methods for the Schrödinger equation with discontinuous poten-

tial give low accuracy. Since the Schrödinger equation with discontinuous potential is a

basic model in many practical applications, a high order numerical method is required.

For this reason, we modify the famous immersed interface method to give a second order

scheme for this problem.

The issue of computing dynamic Schrödinger equation with discontinuous potential in

the semiclassical regime is another interesting topic. It will be studied in a forthcoming pa-

per [39]. The other interesting problem is how to design a high accurate, mass and energy

conservation numerical scheme based on the immersed interface method for the dynamic

Schrödinger equation with discontinuous potential. This topic is still under investigation.
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