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Abstract. We consider an optimal control problem with an 1D singularly perturbed
differential state equation. For solving such problems one uses the enhanced system of
the state equation and its adjoint form. Thus, we obtain a system of two convection-
diffusion equations. Using linear finite elements on adapted grids we treat the effects
of two layers arising at different boundaries of the domain. We proof uniform error
estimates for this method on meshes of Shishkin type. We present numerical results
supporting our analysis.
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1. Introduction

Let us consider the following optimal control problem governed by a linear convection-
diffusion equation

min
y,q

J(y,q)≔min
y,q

�

1

2
‖y − y0‖20 +

λ

2
‖q‖20
�

(1.1)

subject to

Ly ≔ −ǫ y ′′ + a y ′ + b y = f + q, in (0,1), (1.2a)

y(0) = y(1) = 0. (1.2b)

We assume
0< ǫ≪ 1,λ > 0, |a(x)| ≥ α > 0, for x ∈ (0,1)
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and a, b, f , y0 to be sufficiently smooth. It is well-known (cf. [10]) that then there is an
adjoint state p such that

λq+ p = 0, (1.3a)

L∗p = −ǫp′′ − ap′ + (b− a′)p = y − y0, (1.3b)

p(0) = p(1) = 0. (1.3c)

Consequently, y and p solve the system

− ǫ y ′′ + a y ′ + b y +
1

λ
p = f , y(0) = y(1) = 0, (1.4a)

− ǫp′′ − ap′ + (b− a′)p− y = −y0, p(0) = p(1) = 0. (1.4b)

Discretization methods for system (1.4) (even in the two-dimensional case) are ana-
lyzed in [1, 4, 8]. Let us denote the numerical solutions of the given system by (yN ,qN ).
Furthermore we denote the numerical solution of the state equation with a given right-
hand side by ỹN (likewise the numerical solution of the adjoint equation for a given right-
hand side by p̃N ). Based on the inequality

‖y − yN‖20 +λ‖q− qN‖20 ≤
1

λ
‖p− p̃N‖20 + ‖y − ỹN‖20,

the authors are able to estimate first the L2-norm of y − yN and q − qN based on the L2

errors for the discretization of the primal problem (1.2) and the adjoint problem (1.3) for a
given right-hand side. In a second step stability estimates are used to prove error estimates
in a stronger norm.

The estimates obtained in these papers contain H2-norms of y and p which tend, in
general, to infinity for ǫ→ 0. The influence of boundary layer terms is not discussed. But if
layers exist, the technique just described is not adequate: in the singularly perturbed case
one first estimates in a natural energy norm (and not in the L2-norm) because optimal L2

error estimates are more difficult to obtain.
In this paper we present a new technique for analyzing finite element discretizations of

problem (1.1) on layer-adapted meshes based on information concerning the layer struc-
ture.

System (1.4) is a special case of the following system

L(u1,u2)≔

�

−ǫu′′1 + a1u′1 + b11u1 + b12u2

−ǫu′′2 − a2u′2 − b21u1 + b22u2

�

=

�

f1
f2

�

,
u1(0) = u1(1) = 0,
u2(0) = u2(1) = 0.

(1.5)

Assuming

a1, a2 ≥ α > 0, (1.6a)

b11, b22 ≥ 0, (1.6b)

b12 b21 > 0, |b12|, |b21| ≥ β > 0, (1.6c)
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we want to discuss (1.5), (1.6) in the paper at hand. For simplification in writing we
assume furthermore

b12, b21 ≥ β > 0,

but the results can easily be generalized to include the case b12 ≤ −β < 0, b21 ≤ −β < 0.
In [2] the assumption

min{b11 + b12, b21 + b22} ≥ γ > 0, b12, b21 < 0, (1.7)

is used for analyzing the system (1.5), while the analysis in [5,7] is based on

Γ−1 ≥ 0 with Γ≔







1 −









b12

b11










∞
−









b21

b22










∞
1






. (1.8)

At least for constant coefficients our analysis is more general (with exception of the less
interesting cases with b12 = 0 or b21 = 0) and does not need any further requirements
like (1.7) or (1.8).

Based on the assumptions (1.6) we shall prove bounds for the first and second order
derivatives of u ≔ (u1,u2) in Section 2. In Section 3 we will use the proven bounds to
analyze the error of a finite element discretization on a Shishkin mesh.

We assume that the data ai , bi j , fi , (i, j ∈ {1,2}) are sufficient smooth.

2. Properties of the exact solution

In this paper we denote the Hk-seminorm by | f |2
k
=
∫ 1

0
( f (k))2 dx , where Hk is the

Sobolev space of functions such that weak derivatives of order up to k are in L2. Likewise

we use the Hk-norm defined by ‖ f ‖2
k
=
∑k

j=0 | f |2j , consequently the L2-norm is referred
to as ‖ · ‖0. The L∞-norm is denoted by ‖ f ‖∞ = ess supx∈(0,1) | f (x)|. We also need an

ǫ-weighted H1-norm which is defined by ‖ f ‖2ǫ ≔ ‖ f ‖20 + ǫ | f |21.
Throughout this paper C , C̃ and C̄ denote constants that are independent of the per-

turbation parameter ǫ and the mesh size N .
First we formulate sufficient conditions for the existence of a weak solution of the

system (1.5).

Theorem 2.1. If the assumptions

2b11 b21 − (a1 b21 + ǫb′21)
′ ≥ 0, (2.1a)

2b22 b12 + (a2 b12 − ǫb′12)
′ ≥ 0, (2.1b)

hold the system (1.5) has a unique weak solution u ∈ H1
0(0,1).

Proof. First we multiply the first and second equation of the system (1.5) by b21 and
b12, respectively. This leads to an equivalent system. Using the Lax-Milgram lemma one



Numerical Analysis of Singularly Perturbed Convection-Diffusion Equations 565

can show this system has an unique solution if the bilinear form

ã(u, v)≔

∫ 1

0

ǫb21u′1v′1 + (a1 b21 + ǫb′21)u
′
1v1 + (b11 b21u1 + b12 b21u2)v1 dx

+

∫ 1

0

ǫb12u′2v′2 − (a2 b12 − ǫb′12)u
′
2v2 + (b22 b12u2 − b21 b12u1)v2 dx (2.2)

is V -elliptic. This is assured by the condition (2.1). Notice that we use the fact, that the
terms b12 b21u2v1 and −b21 b12u1v2 cancel each other in case of ui = vi. �

As a consequence we immediately get the a priori estimate

ǫ
�

|u1|21+ |u2|21
�

≤ C
�

‖ f1‖20 + ‖ f2‖20
�

. (2.3)

As a next step we want to prove precise bounds for the derivatives of u1 and u2. While
in [5] the inverse monotony of the matrix Γ (cf. (1.8)) is used to prove these bounds, we
use an asymptotic expansion.

Let us consider the reduced problem

a1u′1,l + b11u1,l + b12u2,l = f̃1,l , u1,l(0) = g1,l , (2.4a)

−a2u′2,l + b22u2,l − b21u1,l = f̃2,l , u2,l(1) = g2,l . (2.4b)

Theorem 2.2. Assume

b11 b22 + b12 b21 − a2 b12

�

b11

b12

�′
≥ 0, (2.5a)

or b11 b22 + b12 b21 + a1 b21

�

b22

b21

�′
≥ 0. (2.5b)

Then the reduced problem (2.4) has an unique solution u which smoothness depends on the

smoothness of f1,l and f2,l .

Proof. The system (2.4) can be transformed to a second order boundary value prob-
lem in two ways. Condition (2.5) ensures the unique solvability of one of the resulting
boundary value problems. �

For sufficient smooth coefficients this lemma implies the relation

‖u1,l‖k+2+ ‖u2,l‖k+2 ≤ C
�

‖ f̃1,l‖k+1+ ‖ f̃2,l‖k+1

�

. (2.6)

Remark 2.1. In case of constant coefficients b11, b12, b21 and b22 the prerequisites (1.6)
imply the requirement (2.5). If additionally a1 and a2 are constant the prerequisites also
imply condition (2.1).
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Remark 2.2. The system

− ǫu′′1 + a1u′1 + b11u1 + b12u2 = f1, u1(0) = u1(1) = 0, (2.7a)

− ǫu′′2 + a2u′2 + b22u2 + b21u1 = f2, u2(0) = u2(1) = 0, (2.7b)

with a1, a2 > 0 is significantly different from our system (1.5). First, the reduced problem
leads to an initial value problem which always has a unique solution. Second, the trans-
formation ui = eµx vi, i ∈ {1,2} leads to a system where we can choose µ in such a way
that condition (1.8) is satisfied. Therefore the coefficients b11, b12, b21, b22 have little
influence on the behavior of the solution of system (2.7). These are significant differences
to the system (1.5) we study here.

Next we construct an asymptotic expansion for u1, u2 and introduce the local variables
ξ≔ x/ǫ, η≔ (1− x)/ǫ:

u1 =

n
∑

l=0

ǫ lu1,l +

n
∑

l=1

ǫ l vl(ξ) +

n
∑

l=0

ǫ lwl(η) + R1,n, (2.8a)

u2 =

n
∑

l=0

ǫ lu2,l +

n
∑

l=0

ǫ l rl(ξ) +

n
∑

l=1

ǫ lsl(η) + R2,n. (2.8b)

For details see Appendix A.
Combining the results for the asymptotic expansion we get:

Theorem 2.3. If the data are sufficient smooth and the assumptions (2.1) and (2.5) hold the

solution of system (1.5) can be decomposed in

u1 = S1 + E10 + E11,

u2 = S2 + E20 + E21

with







S
(k)
1










0
≤ C ,








S
(k)
2










0
≤ C , (2.9a)

�

�

�E
(k)
10 (x)

�

�

�≤ Cǫ1−ke−α
x

ǫ ,
�

�

�E
(k)
11 (x)

�

�

�≤ Cǫ−ke−α
1−x

ǫ , (2.9b)
�

�

�E
(k)
20 (x)

�

�

�≤ Cǫ−ke−α
x

ǫ ,
�

�

�E
(k)
21 (x)

�

�

�≤ Cǫ1−ke−α
1−x

ǫ (2.9c)

for k ≤ 2. Here the generic constant C is independent of ǫ.

Proof. To show the result we consider the asymptotic expansion for n = 1. Thus
estimate (A.3) of the Appendix gives

‖Ri,1‖2 ≤ C , for i ∈ {1,2}.
Furthermore we can use estimate (2.6) to get

‖ui,0‖2 ≤ C , ‖ui,1‖2 ≤ C . (2.10)
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Combining this results we get for

Si =

1
∑

l=0

ǫ lui,l + Ri,1 (2.11)

the estimate
‖Si‖2 ≤ ‖ui,0‖2 + ǫ‖ui,1‖2 + ‖Ri,1‖2 ≤ C . (2.12)

From the Theorem A.2 we know that the boundary term E11 of the asymptotic expan-

sion (2.8) has the form
∑1

l=0 ǫ
l
Pl(x/ǫ)exp(−x/ǫ). Differentiation proves the estimation.

Analogously one can prove the bounds for the other layer terms E10, E20, E21. �

This result also yields estimates for ‖u‖∞ and ‖u′‖∞.
In the next chapter we want to use this estimates to prove an a priori estimate for the

error of a finite element method.

3. Error estimates for linear FEM on Shishkin meshes

In this section we discretize the system (1.5)

− ǫu′′1 + a1u′1 + b11u1 + b12u2 = f1, u1(0) = u1(1) = 0,

− ǫu′′2 − a2u′2 − b21u1 + b22u2 = f2, u2(0) = u2(1) = 0,

with linear finite elements. We start from the weak formulation

ã(u, v) =



f , v
�

, for all v ∈ V =
�

H1
0(0,1)
�2

,




f , v
�

≔

∫ 1

0

f v dx ,

ã(u, v)≔

∫ 1

0

ǫb21u′1v′1+ (a1 b21 + ǫb′21)u
′
1v1+ (b11 b21u1 + b12 b21u2)v1 dx

+

∫ 1

0

ǫb12u′2v′2− (a2 b12 − ǫb′12)u
′
2v2 + (b22 b12u2 − b21 b12u1)v2 dx .

Denoting our finite element space by V N ⊂ V , the finite element method reads: Find
uN ∈ V N such that

ã(uN , v) =



f , v
�

, for all v ∈ V N .

Based on the information from Theorem 2.3 concerning the layer structure we use a
Shishkin mesh for the discretization. Because u1 has a strong layer at x = 1 and u2 at x = 0,
we use different meshes for the two solution components. We neglect the weak layers for
the construction of the mesh. A Shishkin mesh is a piecewise equidistant mesh. To cope
with a boundary layer at x = 0 one chooses the transition point σ0 ≔min{1/2,2ǫ ln N/β}
and uses for the two subdomains [0,σ0], [σ1, 1] an equidistant mesh with N/2 nodes.
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Analogously one chooses the transition point σ1 ≔max{1/2,1−2ǫ ln N/β} to take account
for a boundary layer at x = 1. This leads to meshes of a form shown in Fig. 1.

Now we will prove a priori estimates for our Galerkin method (stabilized methods will
be studied in future work) in the ǫ-weighted H1-norm. Denoting the nodal linear inter-
polant of u by uI , we first bound the interpolation error ‖u− uI‖ǫ by using the inequalities
of formula (2.9).

For some terms we use on the fine part Ω f of the mesh an other estimation than on the
coarse part Ωc. We will denote the norms for the subdomains by attaching an Ω f and Ωc

as a subscript, respectively. Analogously we denote the locally constant mesh size by hΩ f

and h= hΩc
.

σ0 = 2ǫ ln N/β σ1 = 1− 2ǫ ln N/β

u1

u2 Figure 1: Used Shishkin mesh.
Theorem 3.1. Provided the solution of the system (1.5) has a decomposition that satisfies the

bounds of formula (2.9) for k ≤ 2 the interpolation error satisfies

‖u− uI‖ǫ ≤ CN−1 ln N . (3.1)

Proof. By standard interpolation results we can estimate

‖S1− S I
1‖0 ≤ C̃h2|S1|2 ≤ 4CN−2, (3.2a)

‖E11 − E I
11‖0,Ω f

≤ C̃h2
Ω f
|E11|2,Ω f

≤pǫ N−2 ln2 N , (3.2b)

|S1− S I
1|1 ≤ C̃h|S1|2 ≤ 2CN−1, (3.2c)

|E11 − E I
11|1,Ω f

≤ C̃hΩ f
|E11|2,Ω f

≤ Cǫ−
1
2 N−1 ln N , (3.2d)

Using the decaying of the boundary terms we can furthermore derive

‖E11 − E I
11‖0,Ωc

≤ ‖E11‖0,Ωc
+ ‖E I

11‖0,Ωc
≤ 2 supΩc

|E11|= 2N−2, (3.2e)

|E11− E I
11|1,Ωc

≤ |E11|1,Ωc
+ |E I

11|1,Ωc

≤ supΩc
|E′11|+ h−1

Ωc
supΩc

|E11| ≤ Cǫ−
1
2 N−2 + N−1. (3.2f)

These estimates are all attained by well-known techniques used e.g. in [6]. The interpola-
tion error of the weak boundary layer can be bounded by

|E10− E I
10|1 ≤ C̃h|E10|2 ≤ Cǫ−

1
2 N−1, (3.2g)

‖E10 − E I
10‖0 ≤ C̃h|E10|1 ≤ Cǫ

1
2 N−1

and ‖E10 − E I
10‖0 ≤ C̃h2|E10|2 ≤ Cǫ−

1
2 N−2.
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which follows from the usual interpolation error estimates. This implies

‖E10 − E I
10‖0 ≤ C min
�

ǫ
1
2 N−1,ǫ−

1
2 N−2	 ≤ CN−

3
2 . (3.2h)

The bounds of the terms S2, E20 and E21 can be proved similarly. Combining all these
results proves the theorem. �

From the previously attained interpolation error estimates we can deduce an error
estimate for ‖u− uN‖ǫ:
Theorem 3.2. If the solution of the system (1.5) has a decomposition that satisfies the esti-

mates (2.9) for k ≤ 2 the finite element error satisfies

‖u− uN‖ǫ ≤ CN−1 ln N .

Proof. In the following we use the abbreviations χ ≔ uI − uN and ψ ≔ uI − u. The
coercivity of ã(· , · ) and the Galerkin orthogonality of our method provide

γ‖χ‖2ǫ ≤ã(χ,χ) = ã(ψ,χ)

≤ǫ C |χ|1|ψ|1+ C ‖χ‖0 ‖ψ‖0 + C

�

�

�

�

�

∫

Ω

χ1ψ
′
1 dx

�

�

�

�

�

+ C

�

�

�

�

�

∫

Ω

χ2ψ
′
2 dx

�

�

�

�

�

. (3.3)

To estimate the remaining integral terms we split ψ as we did in (3.2). This way we get
for the smooth part S1 of the solution u using estimate (3.2a)
�

�

�

�

�

∫

Ω

χ1

�

S1 − S I
1

�′
dx

�

�

�

�

�

≤ ‖χ1‖0









�

S1− S I
1

�′





0
≤ CN−1‖χ1‖0 ≤ CN−1‖χ1‖ǫ. (3.4a)

For the estimation of the boundary layer terms we transform the integral via integration
by parts
�

�

�

�

�

∫

Ω

χ1

�

E − E I
�′

dx

�

�

�

�

�

=

�

�

�

�

�

∫

Ω

−χ ′1
�

E − E I
�

dx

�

�

�

�

�

≤ ‖χ ′1‖0




E − E I






0 .

Using this transformation we can estimate analogous to estimate (3.2h)
�

�

�

�

�

∫

Ω

χ1

�

E10 − E I
10

�′
dx

�

�

�

�

�

≤‖χ ′1‖0




E10 − E I
10







0

≤ǫ1/2CN−1|χ1|1 ≤ CN−1‖χ1‖ǫ. (3.4b)

For the strong boundary layer term we split the integral at the mesh transition point and
use an inverse inequality on the coarse part of the mesh domain. This leads to the following
formulas
�

�

�

�

�

∫

Ω f

χ1

�

E11 − E I
11

�′
dx

�

�

�

�

�

≤ C
p
ǫN−2 ln N‖χ ′1‖0,Ω f

≤ CN−1‖χ1‖ǫ,Ω f
, (3.4c)

�

�

�

�

�

∫

Ωc

χ1

�

E11 − E I
11

�′
dx

�

�

�

�

�

≤ C̃N−2‖χ ′1‖0,Ωc
≤ CN−1‖χ1‖ǫ,Ωc

. (3.4d)
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The integral containing χ2 can be estimated analogously. Combining (3.3), (3.4), (3.1)
and their equivalents for χ2 we get the result

‖uI − uN‖ǫ = ‖χ‖ǫ ≤ C̃‖ψ‖ǫ + C̄N−1 ≤ CN−1 ln N .

A triangle inequality completes the proof. �

For a single convection-diffusion equation it is well-known that supercloseness of the
type

‖uI − uN‖ǫ ≤ C(N−1 ln N)2 (3.5)

leads to the optimal estimate

‖u− uN‖0 ≤ C(N−1 ln N)2. (3.6)

Remark that in the singularly perturbed case it is not possible to use the Aubin-Nitsche-trick
to attain optimal L2-estimates that are independent of ǫ.

For our system the interpolation error estimate (3.2h) indicates that we do not have
optimal L2-error bounds if we ignore the weak layers for the mesh construction (cf. nu-
merical experiments in Section 4).

If we, however, use two equal meshes for u1 and u2 with a refinement at each side of
the domain we can adopt the proofs for a single equation (cf. [6]). The estimates of the
weak boundary layer do not longer pose a problem; due to the refinement of the grid they
can be handled the same way the strong layers are. Consequently we obtain

‖uI − uN‖ǫ ≤ C
�

N−1 ln N
�2

and ‖u− uN‖0 ≤ C
�

N−1 ln N
�2

.

4. Computational results

In the following we solve the test problem

− ǫu′′1 +
p

2u′1 + u2 = 2, u1(0) = u1(1) = 0, (4.1a)

− ǫu′′2 −
p

2u′2 − u1 = 1, u2(0) = u2(1) = 0 (4.1b)

numerically. Because this problem has constant coefficients obviously our theory from the
previous chapters applies.

An explicit solution of the system (4.1) is given by

u1 = −1+
4
∑

i=1

ūi eλi x , u2 = 2+
4
∑

i=1

ūi pi eλi x

with

λi ≔±
Æ

1±
p

1− ǫ2

ǫ
, pi ≔ (ǫλi −

p
2)λi.
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Here ūi ∈ R are the solution of the linear equation system










1 1 1 1
eλ1 eλ2 eλ3 eλ4

p1 p2 p3 p4

p1eλ1 p2eλ2 p3eλ3 p4eλ4











ū =











1
1
−2
−2











derived from the boundary conditions of the problem (4.1). Having this exact solution we
can compute the discrepancy of the numerical to the explicit solution in various norms.

As in the previous analysis of Theorem 3.2 we first use a Shishkin mesh which only
accounts for the strong boundary layers for the computations. The number of mesh inter-
vals is denoted by N which gives us N −1 degrees of freedom. From this computations we
attained the results shown in Fig. 2.
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||u − uN ||0
||u − uN ||ε
||uN − uI ||ε
ln(N)/N
(ln(N)/N)2Figure 2: Error of the linear FEM on a one-sided Shishkin mesh (
.f. Fig. 1).

This numerical results confirm the theoretical result of an ǫ independent convergence
in the ǫ-weighted H1-norm. However they do not show the almost second order conver-
gence measured in the L2-norm one could expect knowing the superconvergence results
for a single equation. The L2-error rather exhibits a range of stagnating convergence in the
order of magnitude of the perturbation parameter.

Finally we compare the results from the previous calculations with the error attained
using a version of the Shishkin mesh where we refine in the region of the weak boundary
layers as well as in the region of the strong ones. Thus the mesh has a form shown in
Fig. 3.

σ0 = 2ǫ ln N/β σ1 = 1− 2ǫ ln N/β

u1

u2 Figure 3: Used two-sided Shishkin mesh.
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The results of this computations are presented in Fig. 4. As predicted we now get
almost second order convergence in the L2-norm. Furthermore the range of stagnating
convergence does not exist. But the absolute error measured in the ǫ-weighted H1-norm
is larger compared to the previous calculations. This is not surprising because in the first
calculations we have more nodes of the grid to resolve the strong layer and the smooth
region of the solution.

5. Summary and perspectives

Based on the asymptotic structure of the solution we solved system (1.5) with linear
finite elements on a Shishkin mesh. The one-sided mesh, only adapted to the strong layers
of the solution, results in an optimal error behavior in the energy norm but not in L2. For
obtaining optimal errors in L2 a fine mesh also in the weak layer region seems necessary.

It is possible to extend our results to systems of two equations with two different pa-
rameters. For systems of m> 2 equations of the form

−ǫu′′+ diag(ai)u
′+ Bu = f

our approach works if there exist numbers µ1, · · · ,µm with µi > 0, i ∈ {1, · · · , m} such that
the matrix









µ1B1∗
...

µmBm∗









(Bk∗ denotes the k-th row of B)

is positive definite.

However, our main interest in future is to investigate problem (1.1), (1.2) in the more
dimensional case in space and its discretization with stabilized finite element methods on
layer adapted meshes.
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A. Asymptotic expansion

In the following we construct an asymptotic expansion

u1 =

n
∑

l=0

ǫ lu1,l +

n
∑

l=0

ǫ l vl(ξ) +

n
∑

l=0

ǫ lwl(η) + R1,n, (A.1a)

u2 =

n
∑

l=0

ǫ lu2,l +

n
∑

l=0

ǫ l rl(ξ) +

n
∑

l=0

ǫ lsl(η) + R2,n (A.1b)

of the solution of system (1.5) using the local variables ξ ≔ x/ǫ, η ≔ (1 − x)/ǫ. The
construction can mainly be done the same way it is done for a single differential equation
(c.f. [9]), but the coupling of the two solutions u1 and u2 requires the consideration of
a boundary layer on either side of the domain. We claim that the differential equation
of (1.5) is fulfilled for

∑n

l=0 ǫ
lu1,l and
∑n

l=0 ǫ
lu2,l . Here we skip the boundary condition

at the right and left side in the first and second line of the system, respectively. Further-
more we demand that the corresponding homogeneous equation of (1.5) is fulfilled for
the boundary terms. Transformation of the resulting system to the local variables ξ and η
leads to the following equations:

a1u′1,0 + b11u1,0 + b12u2,0 = f1, u1,0(0) = 0,

−a2u′2,0 + b22u2,0 − b21u1,0 = f2, u2,0(1) = 0, (A.2a)

l ≥ 1:

a1u′1,l + b11u1,l + b12u2,l = u′′1,l−1, u1,l(0) = −vl(0),

−a2u′2,l + b22u2,l − b21u1,l = u′′2,l−1, u2,l(1) = −sl(1), (A.2b)

l ≥ 0:

− v′′l + ã1,0v′l = −
l
∑

j=1

�

ã1, j v
′
l− j + b̃11, j−1vl− j + b̃12, j−1rl− j

�

,

lim
ξ→∞

vl(ξ) = 0,

− r ′′l − ã1,0r ′l = −
l
∑

j=1

�

−ã2, j r
′
l− j + b̃22, j−1rl− j − b̃21, j−1vl− j

�

,

lim
ξ→∞

rl(ξ) = 0, rl(0) = −u2,l(0), (A.2c)
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l ≥ 0:

−w′′l − â1,0w′l = −
l
∑

j=1

�

−â1, jw
′
l− j + b̂11, j−1wl− j + b̂12, j−1sl− j

�

,

lim
η→∞wl(η) = 0, wl(0) = −u1,l(1),

− s′′l + â2,0s′l = −
l
∑

j=1

�

â2, js
′
l− j + b̂22, j−1sl− j − b̂21, j−1wl− j

�

,

lim
η→∞ sl(η) = 0, (A.2d)

where z̃i and ẑi denotes the i-th coefficient of the Taylor expansion of z(ǫξ) and z(1− ǫη)
at ξ = 0 and η = 0, respectively. Note the difference u1,l(0) = −vl(0), u2,l(1) = −sl(1)
from the standard expansion. This modification is necessary because the limitary condition
for ξ,η→∞ determines vn(0) and sn(1) completely. To prove this we need the following
theorems.

Theorem A.1. The first terms of boundary layer correction have the form

v0(ξ) = 0, w0(η) = −u1,0(1) e
−a1(1)η,

r0(ξ) = −u2,0(0) e
−a2(0)ξ, s0(η) = 0.

Therefore the solutions u1 and u2 have a strict boundary layer only at the right and left

boundary, respectively.

Proof. By solving the explicitly given boundary value problems (A.2c) and (A.2d). �

Theorem A.2. The terms of boundary layer correction have the form

vi(ξ) ∈ Pi−1(ξ) e
−a2(0)ξ, wi(η) ∈ Pi(η) e

−a1(1)η,

ri(ξ) ∈ Pi(ξ) e
−a2(0)ξ, si(η) ∈ Pi−1(η) e

−a1(1)η,

where Pn(x) denotes the set of polynomials in the unknown x of degree less than n+ 1.

Proof. By inductive solution of the ordinary boundary value problems for vi, wi , ri and
si. �

Combining the previous results we get

Ri,n(0) ∈ O (ǫn+1),

Ri,n(1) ∈ O (ǫn+1),

‖L(R1,n,R2,n)‖0 ≤ C ‖ǫn+1 + ǫne−αξ + ǫne−αη‖0 ∈ O (ǫn+1/2).

Thus we get by our a priori estimate (2.3) the information

‖Ri,n‖1 ∈ O (ǫn)

for i ∈ {1,2}. For the H2-norm we get

‖Ri,n‖2 ≤ ǫ−1C
�

‖L(R1,n,R2,n)‖0 + ‖Ri,1‖1
�

∈ O (ǫn−1). (A.3)
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