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Abstract. This paper is concerned with the numerical stability of implicit Runge-Kutta

methods for nonlinear neutral Volterra delay-integro-differential equations with con-

stant delay. Using a Halanay inequality generalized by Liz and Trofimchuk, we give

two sufficient conditions for the stability of the true solution to this class of equations.

Runge-Kutta methods with compound quadrature rule are considered. Nonlinear sta-

bility conditions for the proposed methods are derived. As an illustration of the ap-

plication of these investigations, the asymptotic stability of the presented methods for

Volterra delay-integro-differential equations are proved under some weaker conditions

than those in the literature. An extension of the stability results to such equations with

weakly singular kernel is also discussed.
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1. Introduction

Let 〈·, ·〉 and ‖ · ‖ denote a given inner product and the corresponding induced norm

in the complex N -dimensional space CN . In this paper we consider the stability of Runge-

Kutta methods (RKMs) for nonlinear neutral Volterra delay-integro-differential equations

(NVDIDEs) with constant delay τ > 0,

y ′(t) = f

�

t, y(t), y(t −τ),

∫ t

t−τ

K(t,θ , y(θ), y ′(θ))dθ

�

, t ≥ 0, (1.1)
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subject to

y(t) = φ(t), t ∈ [−τ, 0], (1.2)

where f : [0,∞)× CN × CN × CN → CN and K : [0,∞)× [−τ,∞)× CN × CN → CN are

continuous functions, φ is a given C1-function.

As special cases of Eq. (1.1), we have delay differential equations (DDEs)

y ′(t) = f (t, y(t), y(t −τ)), t ≥ 0, (1.3)

and Volterra delay-integro-differential equations (VDIDEs)

y ′(t) = f

�

t, y(t), y(t −τ),

∫ t

t−τ

K(t,θ , y(θ))dθ

�

, t ≥ 0. (1.4)

Delay differential equations with constant delays have been investigated extensively in

the past. For the literature concerned the stability of the true solution and the numerical

solution to DDEs, we refer the reader to [19, 27, 34], and the references in [5, 24, 46].

Numerical methods for solving VDIDEs have been also studied by many authors (see [3,

10,25] and references therein). Using the generalized Halanay inequality proved by Baker

and Tang in [2], Zhang and Vandewalle [43] obtained the stability results for the true

solution to

y ′(t) = f

�

t, y(t), G

�

t, y(t −τ),

∫ t

t−τ

K(t,θ , y(θ))dθ

��

, t ≥ 0. (1.5)

They also investigated the stability of the numerical solution of a discretized form of (1.5).

In [44, 45], they further considered the nonlinear stability of RKMs and general linear

methods (GLMs) for VDIDEs (1.4), respectively.
There is a growing interest in developing numerical methods for solving NVDIDEs. This

class of equations arises in many applications (see [10,23,39] and references therein) and
often occurs in two forms: the general nonlinear delay IDEs of neutral type

y ′(t) = f

 

t, y(t), y(t− τ(t)), y ′(t −τ(t)),

∫ t

t−τ(t)

K(t,θ , y(θ), y ′(θ))dθ

!

, t ≥ 0, (1.6)

and the neutral equations of the “Hale’s form”

d

d t



y(t)−

∫ t

t−τ(t)

K(t,θ , y(θ))dθ



= f
�

t, y(t), y(t−τ(t)), y ′(t − τ(t))
�

, t ≥ 0, (1.7)

where τ(t) ≤ t is a sufficiently smooth function. In [10] (see also [7, 13]), Brunner sys-

tematically discussed the existence and uniqueness of the solution to these two forms of

equations and the convergence of collocation methods for them. Note that as far back as

the 1980’s, Jackiewicz gave the convergence results of Adams methods [20] and quasi-

linear multi-step methods and variable step predictor-corrector methods [21] for solving
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more general neutral functional differential equations (NFDEs) which contains problem

(1.6) as a particular case. Brunner [7] and Enright and Hu [16] considered the conver-

gence of continuous RKMs for NVDIDEs

y ′(t) = f (t, y(t)) +

∫ t

t−τ

K(t,θ , y(θ), y ′(θ))dθ , t ≥ 0. (1.8)

Wang and Li studied the convergence of one-leg and Runge-Kutta methods for (1.1)–(1.2)

in [37] and [35] (see also [36]), respectively. In recent years, much attention has been

directed toward the stability analysis of numerical methods for NVDIDEs. Brunner and

Vermiglio [9] considered the stability of continuous RKMs for NVDIDEs of the “Hale’s

form”. Several researchers investigated the stability of numerical method for nonlin-

ear NVDIDEs where the kernel K(t,θ , y) does not depend on y ′ and its linear version

(see [40–42,47–49]).

However, few studies have been done on the stability of numerical methods for nonlin-

ear NVDIDEs (1.1)–(1.2) in which the kernel K(t,θ , y, y ′) also depends on y ′. The purpose

of this paper is to analyze the stability properties of the true solution and the numerical

solution to (1.1)–(1.2). To obtain the stability results of the true solution to (1.1)–(1.2),

we use the Halanay inequality proved by Liz and Trofimchuk [29] in Section 2. In Section

3, we consider to discretize Eqs. (1.1)–(1.2) by RKM with the compound quadrature rule

(CQ). The nonlinear stability of RKM with this class of quadrature technique is studied

in Section 4. In Section 5, some examples for the application of the theories obtained in

the present paper are considered. An extension of the stability results to weakly singular

NVDIDEs (1.1)–(1.2) is also discussed in this section. Finally, in Section 6 we provide some

numerical examples to illustrate our results.

2. Stability properties of the true solution

Before stating the main results on the stability of the true solution, we mention the

regularity of solution to (1.1)–(1.2). From the theoretical analysis in [11] (see also [10]),

we find that when f , K and φ are sufficiently smooth, the smoothing properties of the

solution to (1.1)–(1.2) is determined by the “DDE part”, and is not influenced by the

integral
∫ t

t−τ
K(t,θ , y(θ),φ′(θ))dθ . In fact, we can easily show that if f , K and φ in

(1.1)–(1.2) are C d−functions on their respective domains, then: (i) The (unique) solution

of the initial-value problem for (1.1)–(1.2) is (d+1)−times continuously differentiable on

each left-open macro-interval ((i−1)τ, iτ] i = 1,2, · · · , and has a bounded first derivative

on [0,∞); (ii) At t = iτ (i = 0,1, · · · , d) we have limt→iτ− y(i)(t) = limt→iτ+ y(i)(t), while

the (i + 1)st derivative of y is in general not continuous at t = iτ. The solution possesses

a continuous (d + 1)st derivative on [dτ,∞).
In this paper we restrict ourselves to discussion of problem (1.1) where f satisfies

a one-sided Lipschitz condition and some Lipschitz conditions. For brevity, the class of
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problems (1.1)–(1.2) with f and K satisfying

Re



f (t, y1,u, v)− f (t, y2,u, v), y1 − y2

�

≤ α‖y1 − y2‖
2, (2.1)





 f (t, y,u1, v1)− f (t, y,u2, v2)




≤ β‖u1 − u2‖+ γ‖v1 − v2‖, (2.2)




K(t,θ , y1, f (θ , y1,u, v))− K(t,θ , y2, f (θ , y2,u, v))






≤ LK‖y1 − y2‖, (t,θ) ∈ D, θ ≥ 0, (2.3)




K(t,θ , y,u1)− K(t,θ , y,u2)




≤ µ‖u1 − u2‖, (t,θ) ∈ D, (2.4)

is denoted by D(α,β ,γ, LK ,µ), where α,β ,γ, LK ,µ are real constants, t ∈ [0,+∞); D =

{(t,θ) : t ∈ [0,+∞),θ ∈ [t −τ, t]}; y, y1, y2,u,u1,u2, v, v1, v2 ∈ CN .

The class of problems (1.1)–(1.2) with f and K satisfying (2.1)–(2.2), (2.4) and





 f (t, y1,u, v)− f (t, y2,u, v)




≤ L y‖y1 − y2‖, (2.5)




K(t,θ , y1,u)− K(t,θ , y2,u)




 ≤ Lµ‖y1 − y2‖, (t,θ) ∈ D, (2.6)

is denoted by L (α,β ,γ, L y , Lµ,µ), where α,β ,γ, L y , Lµ,µ are real constants, t ∈ [0,+∞);
y, y1, y2,u, v ∈ CN .

Our assumptions that conditions (2.2) and (2.4)–(2.6) are satisfied ensure that system

(1.1)–(1.2) possesses a unique solution (see [17,23]). Although conditions (2.1)–(2.4) do

not ensure that system (1.1)–(1.2) possesses a unique solution, the existence of a unique

solution of (1.1)–(1.2) will be assumed.

Remark 2.1. (i) The class Dp,q for DDEs introduced by Huang et al. [19] can be viewed as

the class D(p,q, 0,0,0) for NVDIDEs.

(ii) The class RI(α,β ,σ,γ) for VDIDEs introduced by Zhang and Vandewalle [44] can

be viewed as the class D(α,β ,σ,γ, 0) for NVDIDEs.

(iii) Obviously, L (α,β ,γ, L y , Lµ,µ) is a sub-class of D(α,β ,γ, LK ,µ). The following

simple example illustrates that they are not identical. System

y ′(t) = −(et + 5)y(t) + y(t − 1)+ 0.1

�∫ t

t−1

sinθ
�

eθ y(θ) + y ′(θ)
�

dθ

�

, t ≥ 0, (2.7)

y(t) = φ(t), t ≤ 0 (2.8)

belongs to the class D(α,β ,γ, LK ,µ) with α = −6, β = 1, γ= 0.1, LK = −5, µ = 1 but not

in the class L (α,β ,γ, L y , Lµ,µ).

Before stating our main results in this section, we need the following Halanay inequal-

ity.

Lemma 2.1. ([29,38]) Consider inequalities

u′(t) ≤ −Au(t) + B max
θ∈[t−τ,t]

u(θ) + C max
θ∈[t−τ,t]

w(θ), t ≥ t0, (2.9)

w(t) ≤ G max
θ∈[t−τ,t]

u(θ) +H max
θ∈[t−τ,t]

w(θ), t ≥ t0, (2.10)
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where t0 is a constant. If A, B, C , G, H ≥ 0 and H < 1, then for every ε > 0, there exist

δ(ε)→ δ+ < 0, ε→ 0+, such that

u(t) ≤ (1+ ε) max
θ∈[t0−τ,t0]

u(θ)eδ(ε)(t−t0), t ≥ t0, (2.11)

w(t) ≤ (1+ ε) max
θ∈[t0−τ,t0]

w(θ)eδ(ε)(t−t0 ), t ≥ t0 (2.12)

for every nonnegative solution (u, w) : [t0 − τ,+∞)→ R2
+ of the inequality (2.9)–(2.10) if

and only if

−A+ B+
CG

1−H
< 0. (2.13)

Theorem 2.1. Suppose problem (1.1) belongs to the class D(α,β ,γ, LK ,µ) with

γτµ < 1, α+
β + γτLK

1− γτµ
< 0. (2.14)

Then we have

‖y(t)− z(t)‖ ≤ max
θ∈[0,τ]

‖y(θ)− z(θ)‖, t ≥ τ (2.15)

and

lim
t→+∞

‖y(t)− z(t)‖ = 0, (2.16)

where and in what follows, z(t) denotes a solution of the perturbed problem

z′(t) = f

�

t, z(t), z(t −τ),

∫ t

t−τ

K(t,θ , z(θ), z′(θ))dθ

�

, t ≥ 0, (2.17)

z(t) =ψ(t), t ∈ [−τ, 0]. (2.18)

Here the initial function ψ(t) is continuously differentiable.

Proof. For simplicity, let us introduce the notation Y (t) = ‖y(t)− z(t)‖ and

Φ(t) =
















f

�

t, z(t), y(t −τ),

∫ t

t−τ

K(t, s, y(s), y ′(s))ds

�

− f

�

t, z(t), z(t −τ),

∫ t

t−τ

K(t, s, z(s), z′(s))ds

�
















.

It follows that

Y ′(t) ≤ αY (t) +Φ(t), t ≥ 0. (2.19)
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It follows from (2.1)–(2.4) that

Φ(t)≤βY (t − τ) + γτ max
s∈[t−τ,t]

‖K(t, s, y(s), y ′(s))− K(t, s, z(s), z′(s))‖

≤βY (t − τ) + γτ max
s∈[t−τ,t]
















K

�

t, s, y(s), f

�

s, y(s), y(s− τ),

∫ s

s−τ

K(s, r, y(r), y ′(r))dr

��

−K

�

t, s, z(s), f

�

s, z(s), z(s− τ),

∫ s

s−τ

K(s, r, z(r), z′(r))dr

��
















≤βY (t − τ) + γτLK max
s∈[t−τ,t]

Y (s) + γτµ max
s∈[t−τ,t]

Φ(s)

≤[β + γτLK] max
s∈[t−τ,t]

Y (s) + γτµ max
s∈[t−τ,t]

Φ(s), t ≥ τ. (2.20)

Note that condition (2.14) implies α < 0. By virtue of Lemma 2.1, it is sufficient to prove

the theorem from (2.19)–(2.20).

Theorem 2.2. Suppose problem (1.1) belongs to the class L (α,β ,γ, L y , Lµ,µ) with

γτµ < 1, α+
β + γτ(Lµ+µL y)

1− γτµ
< 0. (2.21)

Then we have (2.16) and

‖y(t)− z(t)‖ ≤ max
θ∈[−τ,0]

‖φ(θ)−ψ(θ)‖, t ≥ 0. (2.22)

Proof. Define Ỹ (t) = ‖y ′(t)− z′(t)‖. Note that

Y ′(t) ≤αY (t) + βY (t −τ)+ γτLµ max
s∈[t−τ,t]

Y (s) + γτµ max
s∈[t−τ,t]

Ỹ (s), t ≥ 0,

Ỹ (t) ≤L y Y (t) + βY (t −τ)+ γτLµ max
s∈[t−τ,t]

Y (s) + γτµ max
s∈[t−τ,t]

Ỹ (s), t ≥ 0.

The proof of the theorem follows directly from the above facts. �

Remark 2.2. (i) Observe that (2.15) differ from (2.22) in their right-hand side. If we note

condition (2.3) and the proofs of Theorems 2.1 and 2.2, then we find that this is because

(1.1) holds only for t ≥ 0 and this fact is used to assume that condition (2.3) holds. If

we assume that (1.1) holds for t ≥ −τ, then (2.20) holds for t ≥ 0 and thus (2.22) holds

under the conditions of Theorem 2.1.

(ii) It should be pointed out that if the kernel K does not depend on y ′, that is, Eq.

(1.1) is non-neutral VDIDEs, then condition (2.14) is equivalent to condition (2.21) and

our results is identical to the results obtained in [44].

(iii) If K ≡ 0 in (1.1), Theorems 2.1 and 2.2 reduce to a well-known stability result for

DDEs: α+ β < 0 implies that the solution to (1.2)–(1.3) is asymptotically stable [34].

We conclude this section with three examples.
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Example 2.1. The above theorems can be applied to (1.8), the special but important class

of equations, see, e.g., [7,10,16]). When the functions f and K in (1.8) satisfy

Re



f (t, y1)− f (t, y2), y1 − y2

�

≤ α‖y1 − y2‖
2, (2.23)





K(t,θ , y1, f (θ , y1) + u)− K(t,θ , y2, f (θ , y2) + u)




≤ LK‖y1 − y2‖,

(t,θ) ∈ D, θ ≥ 0, (2.24)




K(t,θ , y,u1)− K(t,θ , y,u2)




 ≤ µ‖u1− u2‖, (t,θ) ∈ D, (2.25)

this class of equations belongs to class D(α, 0,1, LK ,µ). Thus, they satisfy stability proper-

ties (2.15)–(2.16) whenever

τµ < 1, α+
τLK

1−τµ
< 0.

When the functions f and K in (1.8) satisfy (2.23), (2.25) and

‖ f (t, y1)− f (t, y2)‖ ≤ L y‖y1 − y2‖, (2.26)

‖K(t,θ , y1 ,u)− K(t,θ , y2,u)‖ ≤ Lµ‖y1 − y2‖, (t,θ) ∈ D, (2.27)

this class of equations belongs to class L (α, 0,1, L y , Lµ,µ). Consequently, they satisfy

stability properties (2.16) and (2.22) whenever

τµ < 1, α+
τ(Lµ+µL y)

1−τµ
< 0.

Example 2.2. Consider the Hammerstein type of equation (cf. [10])

y ′(t) = f (t, y(t)) +

∫ t

t−τ

Kσ(t − θ)G(y
′(θ))dθ , t ≥ 0 (2.28)

subject to (1.2), where

Kσ(t − θ) =

¨

K0(t − θ), if σ = 0, where K0 is smooth,

(t − θ)σ, if 0< σ < 1.
(2.29)

On the basis of Theorem 2.2, we can assert that the solution to problem (2.28) with initial

condition (1.2) is asymptotically stable if conditions (2.23), (2.26),

‖G(u1)− G(u2)‖ ≤ µ̃‖u1 − u2‖, (2.30)

and

τµ < 1, α+
τµL y

1−τµ
< 0 (2.31)

are satisfied, where µ = µ̃ sup(t,θ )∈D Kσ(t − θ).
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Example 2.3. Condition (2.14) in Theorem 2.1 and condition (2.21) in Theorem 2.2 are

similar. The difference between the two conditions is that LK is replaced by Lµ + µL y .

However, in general, condition (2.14) is much weaker than condition (2.21) since LK ≤
Lµ +µL y . For example, consider the system

y ′(t) = L(t)y(t) +M(t)y(t −τ)

+ N(t)

�∫ t

t−τ

�

A(θ)y(θ) + B(θ)y ′(θ)
�

dθ

�

, t ≥ 0, (2.32a)

y(t) = φ(t), t ≤ 0, (2.32b)

where L(t), M(t), N(t),A(θ), B(θ) denote complex matrices functions. It is easy to verify

that it belongs to the class D(α,β ,γ, LK ,µ), where

α = sup
t≥0

µ[L(t)], β = sup
t≥0

‖M(t)‖, γ= sup
t≥0

‖N(t)‖,

LK = sup
θ≥0

‖A(θ) + B(θ)L(θ)‖, µ = sup
θ≥−τ
‖B(θ)‖,

and µ[·] stands for the logarithmic norm induced by 〈·, ·〉. It also belongs to the class

L (α,β ,γ, L y , Lµ,µ), where

L y = sup
t≥0

‖L(t)‖, Lµ = sup
θ≥−τ
‖A(θ)‖.

Obviously, LK ≤ Lµ+µL y , which means that condition (2.14) is much weaker than condi-

tion (2.21).

3. Runge-Kutta discretization

Now we approximate the solution of (1.1)–(1.2) numerically using a fixed time-stepping

RKM. Let (A, bT , c) denote a given s stage RKM with s × s matrix A = (ai j) and vectors

b = [b1, · · · , bs]
T , c = [c1, · · · , cs]

T . In this paper we will always assume that the method

is consistent, which implies that
∑s

i=1 bi = 1, and satisfies ci ∈ [0,1], i = 1,2, · · · , s. Let

h = τ/m > 0 be the fixed step-size, where integer m ≥ 1. Then the RKM for NVDIDEs

(1.1)–(1.2) has the form

Y
(n)

i
= yn + h

s
∑

j=1

ai j f (tn, j, Y
(n)

j
, Y
(n−m)

j
, K
(n)

j
), i = 1,2, · · · , s, (3.1)

yn+1 = yn + h

s
∑

j=1

b j f (tn, j , Y
(n)

j
, Y
(n−m)

j
, K
(n)

j
), n≥ 0. (3.2)

Here tn, j = tn + c jh, and yn approximates the true solution y(tn) at tn = nh, in particular,

y0 = φ(0). The argument Y
(n)

j
denotes an approximation to y(tn + c jh), and the argu-

ment K
(n)

j
denotes an approximation to

∫ tn, j

tn−m, j
K(t,θ , y(θ), y ′(θ))dθ that is obtained by
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the compound quadrature formula (CQ formula)

K
(n)

j
= h

m
∑

i=0

νiK
�

tn, j , tn−i, j , Y
(n−i)

j
, Ỹ
(n−i)

j

�

, (3.3)

where Ỹ
(n−i)

j
is an approximate value of y ′(tn−i + c jh) and is produced by

Ỹ
(n−i)

j
= f
�

tn−i, j , Y
(n−i)

j
, Y
(n−m−i)

j
, K
(n−i)

j

�

. (3.4)

When −m≤ n≤ −1, Y
(n)

j
and Ỹ

(n)

j
are given by

Y
(n)

j
= φ(tn + c jh), Ỹ

(n)

j
= φ′(tn + c jh). (3.5)

RKMs (3.1)–(3.2) with CQ formula (CQRKMs) has been applied to integro-differential

equations (IDEs) and VDIDEs by many authors [1,6,43,44]. The convergence of this class

of RKMs for NVDIDEs (1.1)–(1.2) has been reported by Wang and Li in [35]. So, in this

paper we consider only the stability of this class of RKMs for NVDIDEs (1.1)–(1.2).

We will assume throughout the paper that for implicit equations (3.1) there always

exists a unique solution [Y
(n)T

1
, Y
(n)T

2
, · · · , Y (n)Ts ]T ∈ CNs. In Section 6, we will discuss the

iterative scheme required to solve the nonlinear implicit equations (3.1).

The following definition can be found in [14].

Definition 3.1. Let k, l be real constants. A Runge-Kutta method (A, bT , c) is said to be (k, l)-

algebraically stable if there exists a diagonal non-negative matrix D = diag(d1, d2, · · · , ds)

such thatM = [Mi j] is non-negative definite, where

M =

�

k− 1− 2leT De eT D− bT − 2leT DA

De− b− 2lAT De DA+AT D− bbT − 2lAT DA

�

, (3.6)

and e = [1,1, · · · , 1]T . In particular, a (1,0)-algebraically stable method is called alge-

braically stable.

4. Stability of the numerical solution

In this section, we focus on the stability analysis of (k, l)- algebraically stable RKMs

with respect to the nonlinear problem classes D(α,β ,γ, LK ,µ) and L (α,β ,γ, L y , Lµ,µ).

Let yn ∈ CN and zn ∈ CN be the numerical solutions produced by the CQRKM (3.1)–(3.4)

applied to (1.1)–(1.2) and (2.17)–(2.18), respectively. Z
(n)

j
and K̃

(n)

j
denote the approx-

imations to z(tn + c jh) and
∫ tn, j

tn−m, j
K(t,θ , z(θ), z′(θ))dθ , respectively. It is convenient to

introduce the following notations:

ωn = yn − zn, W
(n)

j
= Y

(n)

j
− Z

(n)

j
, W̃

(n)

j
= Ỹ

(n)

j
− Z̃

(n)

j
,

Q
(n)

j
= h
h

f (tn, j, Y
(n)

j
, Y
(n−m)

j
, K
(n)

j
)− f (tn, j, Z

(n)

j
, Z
(n−m)

j
, K̃
(n)

j
)
i

, j = 1, · · · , s.
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Then it follows from (3.1)–(3.2) that

W
(n)

i
=ωn +

s
∑

j=1

ai jQ
(n)

j
, i = 1, · · · , s, (4.1)

ωn+1 =ωn +

s
∑

j=1

b jQ
(n)

j
. (4.2)

In what follows, the notation

ν =max

�

|ν0|+ |νm|, max
1≤i≤m−1

|νi|
�

is frequently used.

Lemma 4.1. Assume that a (k, l)-algebraically stable RKM (A, bT , c) is applied to the problem

(1.1)–(1.2) and its perturbed problem (2.17)–(2.18) which satisfy condition (2.1). Then

‖ωn+1‖
2 ≤ k‖ωn‖

2 + 2

s
∑

j=1

d j

h

(αh− l)‖W (n)

j
‖2 + h‖W (n)

j
‖Φ(n)

j

i

, (4.3)

where Φ
(n)

j
is defined by

Φ
(n)

j
=








 f (tn, j, Z
(n)

j
, Y
(n−m)

j
, K
(n)

j
)− f (tn, j , Z

(n)

j
, Z
(n−m)

j
, K̃
(n)

j
)








.

Proof. The (k, l)-algebraic stability of the method implies (see, for example, [14,26])

‖ωn+1‖
2 ≤ k‖ωn‖

2 + 2

s
∑

j=1

d jRe〈W (n)

j
,Q
(n)

j
− lW

(n)

j
〉. (4.4)

On the other hand, from (2.1), we have

Re〈W (n)

j
,Q
(n)

j
〉 ≤ hα‖W (n)

j
‖2 + h‖W (n)

j
‖Φ(n)

j
. (4.5)

Inserting (4.5) into (4.4), we have (4.3) and complete the proof of the lemma. �

4.1. Stability analysis for D(α,β ,γ, LK ,µ)

We first give a lemma which gives a upper bound for Φ
(n)

j
defined in Lemma 4.1.

Lemma 4.2. Assume that the problem (1.1)–(1.2) belongs to the class D(α,β ,γ, LK ,µ). Then

for any n ≥ m, there exist integers̟ ≥ 0, 0 < ri ≤ m (i = 1,2, · · · ,̟), such that one of the
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following inequalities holds:

Φ
(n)

j
≤ (γµντ)̟Φ(

n−
∑̟

i=1 ri)
j

+

̟−1
∑

i=0

(γµντ)i

 

β
















W

�

n−m−
∑i

q=0 rq

�

j
















+γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑i

q=0 rq

�

j
















!

, n−
∑̟

i=1

ri < m; (4.6)

Φ
(n)

j
≤
(γµντ)̟

1− γµντ

 

β
















W

�

n−m−
∑̟

q=0 rq

�

j
















+ γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑̟

q=0 rq

�

j
















!

+

̟−1
∑

i=0

(γµντ)i

 

β
















W

�

n−m−
∑i

q=0 rq

�

j
















+γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑i

q=0 rq

�

j
















!

, n−
∑̟

i=1

ri ≥ m, (4.7)

where r0 = 0. Here and in what follows, we shall always assume
∑i

r= j = 0 whenever i < j.

Proof. We consider two cases. First, for any 0 ≤ i ≤ n − m, if max0≤r≤mΦ
(n−r−i)

j
=

Φ
(n−i)

j
, we have

Φ
(n−i)

j
≤ β‖W (n−m−i)

j
‖+ γhLK

m
∑

r=0

|νr |‖W
(n−r−i)

j
‖+ γτνµΦ(n−i)

j
,

and therefore

Φ
(n−i)

j
≤

β

1− γνµτ
‖W (n−m−i)

j
‖+

γhLK

1− γνµτ

m
∑

r=0

|νr |‖W
(n−r−i)

j
‖. (4.8)

Second, if max0≤r≤mΦ
(n−r−i)

j
= Φ

(n−rq−i)

j
with 0< rq ≤ m, we have

Φ
(n−i)

j
≤ β‖W (n−m−i)

j
‖+ γhLK

m
∑

r=0

|νr |‖W
(n−r−i)

j
‖+ γτνµΦ

(n−rq−i)

j
. (4.9)

As a special case, for Φ
(n)

j
, we have (4.8) or (4.9) too. If (4.8) holds, we have (4.7) with

̟= 0; if (4.9) holds, by induction we can obtain (4.6) or (4.7). �

Theorem 4.1. Suppose the RKM (A, bT , c) is (k, l)-algebraically stable for a non-negative

diagonal matrix D = diag(d1, d2, · · · , ds) ∈ Rs×s, where 0 < k ≤ 1. Then, the numerical

solution produced by the CQRKM for the class D(α,β ,γ, LK ,µ) satisfies

‖ωn‖
2 ≤‖ωm‖

2 +

s
∑

j=1

d j

�

3τ(β + γτν LK)

1− γτµν
max
−m≤i<m

‖W (i)

j
‖2

+
τ

(1− γτµν)(β + γτν LK)
max

0≤i<m

�

Φ
(i)

j

�2
�

, n≥ m, (4.10)
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whenever

γτµν < 1,

�

α+
β + γτν LK

1− γτµν

�

h≤ l. (4.11)

Proof. We consider two cases.

Case 1. Inequality (4.6) holds. In this case, substituting (4.6) into (4.3) and using

Cauchy inequality, we get

‖ωn+1‖
2 ≤k‖ωn‖

2 +

s
∑

j=1

d j

�

2(αh− l)‖W (n)

j
‖2 +

h(β + γτν LK)

1− γτµν
‖W (n)

j
‖2

+ h

̟−1
∑

i=0

(γµντ)i






β
















W

�

n−m−
∑i

q=0 rq

�

j
















2

+γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑i

q=0 rq

�

j
















2












+
h(γµντ)̟

β + γτν LK

max
0≤i<m

�

Φ
(i)

j

�2

. (4.12)

Noting 0< k ≤ 1, by induction one further gives

‖ωn+1‖
2 ≤‖ωm‖

2 +

s
∑

j=1

d j





�

2αh+
h(β + γτν LK)

1− γτµν
− 2l

� n
∑

i=m

‖W (i)

j
‖2

+
τ

(β + γτν LK)(1− γτµν)
max

0≤i<m

�

Φ
(i)

j

�2

+
h

1− γµντ

 

β

n−m
∑

i=0








W
(i)

j










2

+ γτν LK

n
∑

i=−m








W
(i)

j










2
!

 . (4.13)

An application of condition (4.11) yields (4.10).

Case 2. Inequality (4.7) holds. In this case, noting that

(γτµν)̟

1− γτµν
+

̟−1
∑

i=0

(γτµν)i =
1

1− γτµν
, (4.14)

substitute (4.7) into (4.3) and use Cauchy inequality to give

‖ωn+1‖
2 ≤k‖ωn‖

2 +

s
∑

j=1

d j

�

2(αh− l)‖W (n)

j
‖2 +

h(β + γτν LK)

1− γτµν
‖W (n)

j
‖2

+ h
(γµντ)̟

1− γµντ





β
















W

�

n−m−
∑̟

q=0 rq

�

j
















2

+ γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑̟

q=0 rq

�

j
















2






+ h

̟−1
∑

i=0

(γµντ)i






β
















W

�

n−m−
∑i

q=0 rq

�

j
















2

+γhLK

m
∑

r=0

|νr |
















W

�

n−r−
∑i

q=0 rq

�

j
















2











. (4.15)
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Then an induction to (4.15) generates the following result

‖ωn+1‖
2 ≤ ‖ωm‖

2,

where we have used the conditions 0< k ≤ 1 and (4.11).

This means (4.10) holds for any n≥ m, which completes the proof of Theorem 4.1. �

Now we consider the asymptotic stability of CQRKMs and give the following theorem.

Theorem 4.2. Suppose the RKM (A, bT , c) is (k, l)-algebraically stable for a non-negative

diagonal matrix D = diag(d1, d2, · · · , ds) ∈ Rs×s, where 0 < k < 1. Then the numerical

solution produced by the CQRKM for the class D(α,β ,γ, LK ,µ) satisfies

lim
n→∞
‖yn − zn‖= 0, (4.16)

whenever

γτµν < 1,

�

α+
β + γτν LK

1− γτµν

�

h< l. (4.17)

Note that the asymptotic stability equality (4.16) can be regarded as numerical analogues of

(2.16) for the true solution to the problem (1.1)–(1.2).

Proof. Let us put

δ =

�

2α+
β + γτν LK

1− γτµν

�

h− 2l

and define the quantity ϑ as

ϑ =max







k,

�

(β + γτν LK)h

−δ(1− γτµν)

�
1

m







.

With 0 < k < 1 and (4.17), it can be deduced that 0 < ϑ < 1. Then it follows from (4.12)

that

‖ωn+1‖
2 ≤ϑn+1−m‖ωm‖

2 +

s
∑

j=1

d j

(

n
∑

i=m

ϑn−m−i

�

δϑm+
(β + γτν LK)h

1− γτµν

�

‖W (i)

j
‖2

+
β + γτν LK

1− γτµν

2m−1
∑

q=m

ϑn−q max
0≤i≤m−1

‖W (i)

j
‖2

+
τ

β + γτν LK

∑̟

i=0

(γτµν)iϑ̟−i max
0≤q<m

�

Φ
(q)

j

�2

)

.

Noting that in this case̟→ +∞ as n→+∞ and

δϑm+
(β + γτν LK)h

1− γτµν
≤ 0,

from d j ≥ 0 and 0 < ϑ < 1, we have (4.16). For the case that (4.15) holds, noting that

(4.14) holds for any̟ ≥ 0, similarly, we can obtain (4.16). This completes the proof. �
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Remark 4.1. The main difference between Theorems 4.1 and 4.2 lies in the strict inequal-

ities present in k < 1 and
�

α+
β + γτν LK

1− γτµν

�

h< l.

For algebraically stable RKMs, we have the following result.

Theorem 4.3. Suppose the RKM (A, bT , c) with det A 6= 0 is algebraically stable for a positive

diagonal matrix D > 0 and satisfies |1− bT A−1e| < 1. Then the numerical solution produced

by the CQRKM for the class D(α,β ,γ, LK ,µ) is asymptotically stable whenever

γτµν < 1, α+
β + γτν LK

1− γτµν
< 0. (4.18)

Proof. It follows from (4.13) or (4.15) that

lim
n→∞
‖W (n)

j
‖= 0, j = 1, · · · , s. (4.19)

On the other hand, det A 6= 0 implies A is non-singular. Set G = [gi j] = A−1. Then it follows

from (4.1)–(4.2) that

ωn+1 = (1− bT A−1e)ωn +

s
∑

i=1

s
∑

j=1

bi gi jW
(n)

j
.

Hence (4.16) is easily obtained from |1− bT A−1e| < 1 and (4.19). The proof of Theorem

4.3 is complete. �

4.2. Stability analysis for L (α,β ,γ, L y , Lµ,µ)

For the classL (α,β ,γ, L y , Lµ,µ), we can obtain the same results that we have obtained

for the class D(α,β ,γ, LK ,µ), except for the fact that the constant LK is to be replaced by

Lµ + µL y . However, since L (α,β ,γ, L y , Lµ,µ) is a sub-class of D(α,β ,γ, LK ,µ), we can

obtain some better results for L (α,β ,γ, L y , Lµ,µ).

First, it should be noted that in Theorem 4.1 we give the bound of ‖yn − zn‖ only for

n ≥ m. As mentioned in Section 2, conditions (2.5) and (2.6) allow us to give the bound

of ‖yn − zn‖ for any n≥ 0. The following theorem states the fact.

Theorem 4.4. Suppose the RKM (A, bT , c) is (k, l)-algebraically stable for a non-negative

diagonal matrix D = diag(d1, d2, · · · , ds) ∈ Rs×s, where 0 < k ≤ 1. Then, the numerical

solution produced by the CQRKM for the class L (α,β ,γ, L y , Lµ,µ) satisfies

‖ωn‖
2 ≤ C max

�

max
θ∈[−τ,0]

‖φ(θ)−ψ(θ)‖, max
θ∈[−τ,0]

‖φ′(θ)−ψ′(θ)‖
�

, (4.20)

whenever

γτµν < 1,

�

α+
β + γτν(Lµ +µL y)

1− γτµν

�

h≤ l, (4.21)
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where the constant C is defined by

C =

s

1+
[β + γτν(Lµ+µL y)]

2+τ(β + γτν Lµ + γτµν)
2

[β + γτν(Lµ +µL y)](1− γτµν)
dτ,

and d =
∑s

j=1 d j .

Proof. Note that for n−m< i ≤ n, we have

Φ
(n−i)

j
≤ β‖W (n−i−m)

j
‖+ γh

m
∑

r=0

|νr |
�

Lµ‖W
(n−i−r)

j
‖+µ‖W̃ (n−i−r)

j
‖
�

. (4.22)

Then as in the proof of Theorem 4.1, we can obtain

‖ωn+1‖
2 ≤ ‖ω0‖

2 +

s
∑

j=1

d j

¨

2αh+
[β + γτν(Lµ +µL y)]h

1− γτµν
− 2l

«

n
∑

i=0

‖W (i)

j
‖2

+
h

1− γτµν

s
∑

j=1

d j



β

n−m
∑

i=−m

‖W (i)

j
‖2 + γτν(Lµ+ µL y)

n
∑

i=−m

‖W (i)

j
‖2

+
τ(β + γτν Lµ + γτµν)

2

[β + γτν(Lµ +µL y)](1− γτµν)
max

�

max
−m≤i≤0

‖W (i)

j
‖2, max
−m≤i≤0

‖W̃ (i)

j
‖2
�
�

, (4.23)

and therefore the inequality (4.20) follows. This completes the proof of the theorem. �

Below, we will give another asymptotic stability results on CQRKM for the problem

class L (α,β ,γ, L y , Lµ,µ). The similar stability results on CQRKM for the problem class

D(α,β ,γ, LK ,µ) cannot be obtained at present.

Theorem 4.5. Suppose the RKM (A, bT , c) is (k, l)-algebraically stable for a positive diagonal

matrix D = diag(d1, d2, · · · , ds) ∈ Rs×s, where 0 < k ≤ 1. Then, the numerical solution

produced by the CQRKM for the class L (α,β ,γ, L y , Lµ,µ) satisfies (4.16) whenever

γτµν < 1,

�

α+
β + γτν(Lµ +µL y)

1− γτµν

�

h< l. (4.24)

Proof. Noting (4.24) and d j > 0, from (4.23), we have

lim
n→∞
‖W (n)

j
‖= 0, j = 1, · · · , s. (4.25)

On the other hand, using arguments similar to those in Theorem 4.3, we have two sim-

ilar inequalities to (4.6) and (4.7), except for the fact that LK is replaced by Lµ + µL y .

Considering m being a fixed integer and (4.25), we have

lim
n→∞

Φ
(n)

j
= 0, j = 1, · · · , s. (4.26)
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Recalling that

‖Q(n)
j
‖ ≤ h

�

L y‖W
(n)

j
‖+Φ(n)

j

�

(4.27)

and applying (4.25) and (4.27), we obtain

lim
n→∞
‖Q(n)

j
‖ = 0, j = 1, · · · , s. (4.28)

Therefore from (4.1) we can show that (4.16) holds. This completes the proof. �

5. Applications and extension

We illustrate the preceding theory by applying it to some concrete numerical methods

and to some concrete problems.

5.1. Applications to some classical RKMs

We begin with some general results on various common RKMs when the stability and

asymptotic stability results derived in above section are applied to them. Only need to note

that the s stage RKMs of type Gauss, Radau IA, Radau IIA and Lobatto IIIC are algebraically

stable and satisfy b j > 0 ( j = 1,2, · · · , s), it is easy to obtain the following theorem.

Theorem 5.1. Suppose the RKM (A, bT , c) is of type Gauss, Radau IA, Radau IIA or Lobatto

IIIC. Then, the corresponding CQRKM is stable for the class D(α,β ,γ, LK ,µ) with d j = b j

whenever condition

γτµν < 1, α+
β + γτν LK

1− γτµν
≤ 0 (5.1)

holds.

From [26], we can also see that all the s (s ≥ 1) stage Radau IA, Radau IIA and

s (s ≥ 2) stage Lobatto IIIC Runge-Kutta methods satisfy the assumptions of Theorem 4.5

with |1− bT A−1e| = 0. So, we have the following results.

Theorem 5.2. Suppose the s stage RKM (A, bT , c) is of type Radau IA (s ≥ 1), Radau IIA

(s ≥ 1) or Lobatto IIIC (s ≥ 2). Then, the corresponding CQRKM is asymptotically stable for

the class D(α,β ,γ, LK ,µ) with d j = b j whenever condition (4.18) holds.Table 1: Value ν for di�erent 
ompound quadrature rules.
CT rule CS rule CN rule CG rule

m is an integer m is an even integer m is a multiple of four m is an integer

ν = 1 ν =
4

3
ν =

64

45
ν =

13

12
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Comparison of conditions (2.14) and (4.18) suggests that the value ν plays key role in

preserving the stability of analytical solution for numerical methods. In Table 1, we give

a value for ν (compare Zhang and Vandewalle [45]) for the compound trapezoidal (CT)

rule, the compound Simpson (CS) rule, the compound Newton-Cotes (CN) rule and the

compound Gregory (CG) rule (cf. [6]).

From Table 1, we find that ν approximate to 1 for some common quadrature formulas,

especially, ν = 1 for the CT rule. This means that the Radau IA (s ≥ 1), Radau IIA (s ≥ 1)

and Lobatto IIIC (s ≥ 2) methods with the CT rule can completely preserve the asymptotic

stability of the underlying system.

Replacing LK by Lµ + µL y in the conditions of the above theorems, we can obtain

the analogues of Theorems 5.1–5.2 for the class L (α,β ,γ, L y , Lµ,µ). In addition, from

Theorem 4.5, we can know that the CQRKM extended by Gauss type RKM is asymptotically

stable for the class L (α,β ,γ, L y , Lµ,µ) whenever condition (4.18) where LK is replaced

by Lµ +µL y holds.

5.2. Application to VDIDEs

Applying our results obtained in Section 4 to VDIDEs (1.4) which can be viewed as a

particular case of NVDIDEs (1.1), we can obtain the corresponding results.

Slightly modifying the proof of Theorem 4.1 and noting µ = 0, we easily obtain the

following corollary.

Corollary 5.1. The CQRKM (3.1)–(3.2) is stable, i.e.,

‖yn − zn‖ ≤ C max
t∈[−τ,0]

‖φ(t)−ψ(t)‖, ∀ n≥ 0

holds for class D(α,β ,γ, LK , 0) with stability constant

C =
p

1+ dτ(1+τ)(β + γτLKν) (5.2)

under the assumptions:

the RKM (A, bT , c) is (k, l)-algebraically stable with 0< k ≤ 1; (5.3a)

h(α+ β + γLKτν)≤ l. (5.3b)

Theorem 4.2 leads directly to

Corollary 5.2. The CQRKM (3.1)–(3.2) is asymptotically stable, i.e., (4.16) holds, for class

D(α,β ,γ, LK , 0) under the assumptions:

the Runge-Kutta method (A, bT , c) is (k, l)-algebraically stable with 0< k < 1; (5.4a)

h(α+ β + γLKτν)< l. (5.4b)

Applying Theorem 4.3 we obtain the following corollary.
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Corollary 5.3. Suppose the RKM (A, bT , c) with detA 6= 0 is algebraically stable for a positive

diagonal matrix D > 0 and satisfies |1− bT A−1e| < 1. Then the CQRKM (3.1)–(3.2) for the

class D(α,β ,γ, LK , 0) is asymptotically stable whenever

α+ β + γτν LK < 0. (5.5)

VDIDEs (1.4) as a special case of NVDIDEs, some authors have obtained some stability

results of numerical solutions to this class of equations. For comparison purpose, we simply

state these stability results.

For the problem class D(α,β ,γ, LK , 0), Zhang and Vandewalle [44] proved that the

CQRKM (3.1)–(3.2) is asymptotically stable under the assumptions (5.4a) and

h[2(α+ β) + γ(1+ L2
K ν̄

2)]< 2l, (5.6)

where

ν̄ = h

s

(m+ 1)

m
∑

i=0

|νi|2+ ε, ε > 0 is a suffieciently small real number.

In [40], Yu and Li discussed the numerical stability of CQRKM for nonlinear NVDIDEs

where the kernel K(t,θ , y) doesn’t depend on y ′. It can be viewed as a particular case

of nonlinear NVDIDEs (1.6). As a corollary of the results obtained by them, it reports the

similar result to Corollary 5.3, except for the fact that the condition (5.5) is replaced by

the condition

α+ β + 2γτν̃ LK < 0, (5.7)

where ν̃ =max0≤i≤m νi.

In [28], Li investigated the contractivity and asymptotic stability of RKMs for more

general Volterra functional differential equations (VFDEs). Applying his results to VDIDEs,

he can obtain a result that an algebraically stable RKM (3.1)–(3.2) with CQ formula for

the class D(α,β ,γ, LK , 0) is asymptotically stable whenever

α+ q(β + γ)νmax{1,τŁK} < 0, (5.8)

where q ≥ 1 (see [28]).

Comparing our results with the results obtained by Zhang and Vandewalle [44], we find

that conditions (5.6) is, generally, stronger than condition (5.4b). Comparing our results

with the results obtained by Yu and Li [40] and Li [28], we find that conditions (5.7) and

(5.8) are stronger than condition (5.5). Alternatively, we obtain the asymptotic stability

results on RKMs with CQ formulae for nonlinear VDIDEs (1.4) under weaker conditions.

More importantly, from our results, we can assert that the s stage Runge-Kutta method

(A, bT , c) of type Radau IA (s ≥ 1), Radau IIA (s ≥ 1) or Lobatto IIIC (s ≥ 2) with the CT

rule can preserve the asymptotic stability of the true solution to nonlinear VDIDEs (1.4).

This result can not be obtained from the existed results in the literature.
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5.3. Extension to NVDIDEs with weakly singular kernel

The sufficient conditions for the asymptotic stability of the true and numerical solutions

are derived only for NVDIDEs with smooth kernel in the previous section. On the other

hand, many researchers have investigated the numerical solution of VIDEs with weakly

singular kernel (see, e.g., [8, 10, 12, 13, 22, 33]). The readers are referred to [10, 11]

and the references therein for the regularity of solution to this class of equations. When

the smooth kernel K(t,θ , y(θ), y ′(θ)) is replaced by the weakly singular kernel K̄σ(t −
θ)K(t,θ , y(θ), y ′(θ)), where

K̄σ(t − θ) = (t − θ)
−σ, 0< σ < 1, (5.9)

we find that the results obtained for NVDIDEs (1.1)–(1.2) with smooth kernel are easily

extended to NVDIDEs (1.1)–(1.2) with weakly singular kernel. In fact, we still have Theo-

rems 2.1 and 2.2 with τ replacing by τ1−σ/(1−σ). For the stability of numerical solution

to this class of equations, we can obtain the same results as those presented in previous

section. Of course, the weights νi now depend on σ. For example, the weights νi of the

product trapezoidal quadrature (PT) formula are defined by (see, e.g., [15])

νi =







hσ, i = 0,

hσ
�

(i + 1)2−σ − 2i2−σ + (i− 1)2−σ
�

, 0< i < m,

hσ
�

m1−σ(1−σ−m+ 1)− (m− 1)2−σ
�

, i = m,

(5.10)

where hσ = h−σ/[(1−σ)(2−σ)].

6. Numerical experiments

In this section, we report results of numerical experiments which confirm the theoret-

ical analysis for RKM presented in this paper. We also give an example to illustrate the

convergence of the methods which has been studied in [35] by the authors.

6.1. Solving the nonlinear equations

For solving the nonlinear equations (3.1), we consider the following iteration scheme

where on iteration N we have






Y
(n,N )
i

= yn + h
s
∑

j=1

ai j Ỹ
(n,N )
j

, i = 1, · · · , s,

Ỹ
(n,N )
j

= f
�

tn, j , Y
(n,l)

j
, Y
(n−m)

j
, K
(n,N −1)

j

�

.

(6.1)

Here, K
(n,N −1)

j
is defined by the following

K
(n,N −1)

j
= hν0K

�

tn, j, tn, j , Y
(n,N −1)

j
, Ỹ
(n,N −1)

j

�

+ h

m
∑

i=1

νiK
�

tn, j , tn−i, j , Y
(n−i)

j
, Ỹ
(n−i)

j

�

,
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es en produ
ed by PTRIIA2 and by PTGAUSS2 when applied to (6.2)-(6.3)-(6.4)and (6.2)-(6.3)-(6.5) with G(u) = 0.2u, where h= 0.1 and h= 0.01.
h t = 1 t = 10 t = 50 t = 100

PTRIIA2 .1 3.395191 · 10−3 8.633201 · 10−6 2.666452 · 10−17 1.091782 · 10−31

.01 3.347977 · 10−3 8.525687 · 10−6 2.626066 · 10−17 1.071583 · 10−31

PTGAUSS2 .1 3.396375 · 10−3 8.638383 · 10−6 2.670791 · 10−17 1.094963 · 10−31

.01 3.347996 · 10−3 8.525759 · 10−6 2.626118 · 10−17 1.071620 · 10−31

and Y
(n,0)

j
and Ỹ

(n,0)

j
are given initial values for iteration. Following the approach designed

by Enright and Hu [16] for continuous RKMs, we can easily prove that the iteration (6.1)

is convergent for sufficiently small h (see also [18]).

6.2. Example 1: Hammerstein-type NVDIDEs with weakly singular kernel

First, we apply CQRKMs to Hammerstein-type NVDIDEs with weakly singular kernel

y ′(t) = f (t, y(t)) +

∫ t

t−τ

K̄σ(t − θ)G(y
′(θ))dθ , t ≥ 0 (6.2)

subject to (1.2), where

f (t, y(t)) = −y(t), τ = 1, σ = 0.5, G(u) = 0.2u. (6.3)

On the basis of the discussion in Subsection 5.3, we can assert that the solution to problem

(6.2) with initial condition (1.2) is asymptotically stable.

Now we use 2-stage Radau IIA method with PT formula (5.10) (PTRIIA2) and 2-stage

Gauss method with PT formula (PTGAUSS2) to solve the above problem. Define the dif-

ferences of numerical solutions as en = |y1,n− y2,n|, where y1,n and y2,n are the numerical

solutions approximating to the solutions of problems (6.2)–(6.3) with two different initial

conditions

y(t) = sin t, t ∈ [−1,0] (6.4)

and

y(t) = t, t ∈ [−1,0], (6.5)

at t = tn, respectively. Table 2 shows the numerical results, where h = 0.1 and h = 0.01.

These numerical results confirm our theoretical analysis that 2-stage Radau IIA method

with PT rule (PTRIIA2) and 2-stage Gauss method with PT rule (PTGAUSS2) can preserve

the asymptotic stability of the underlying system.
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6.3. Example 2: A partial neutral functional differential equation

The next problem is defined for t ≥ 0 and x ∈ [0,1]:

∂

∂ t
u(x , t) =

1

π

∂ 2

∂ 2 x
u(x , t) + au(x , t − 1)

+ b

∫ t

t−1

e−s sin u(x , s) cos
∂

∂ s
u(x , s)ds+ g(x , t), (6.6a)

with the initial and boundary conditions

u(x , t) = (x − x2+ 1)e−t , x ∈ [0,1], t ∈ [−1,0], (6.6b)

u(0, t) = u(1, t) = e−t , t ≥ 0. (6.6c)

After application of the numerical method of lines, we obtain the following NVDIDEs of

the form:

u′i(t) =
1

π∆x2
[ui−1(t)− 2ui(t) + ui+1(t)] + aui(t − 1)

+ b

∫ t

t−1

e−s sin ui(s) cosu′i(s)ds+ gi(t), t ≥ 0, (6.7a)

u0(t) = uNx
(t) = e−t , t ≥ 0, (6.7b)

ui(t) = (i∆x − i2∆x2+ 1)e−t , i = 1, · · · , Nx − 1, t ∈ [−1,0], (6.7c)

where ∆x is the spatial step, Nx is a natural number such that Nx∆x = 1, x i = i∆x , i =

1, · · · , Nx − 1, and ui(t) = u(x i, t), gi(t) = g(x i, t). Thus, we have

α = −
4N2

x

π
sin2

π

2Nx

, β = |a|, γ= |b|,

LK = e+
4eN2

x

π
, µ = e, L y =

4N2
x

π
, Lµ = e.

Observe that LK , µ and Lµ will decrease with increasing values of t. As a result, the solution

to problem (6.7) is asymptotically stable. The purpose of this numerical experiment is to

illustrate the stability and convergence of CQRKMs.

First, we consider the stability of numerical methods. For this purpose, we set g(x , t)≡
0 and give the other initial condition

u(x , t) = (x − x2)e−t , x ∈ [0,1], t ∈ [−1,0]. (6.8)

After discretization this initial condition becomes

ui(t) = (i∆x − i2∆x2)e−t , i = 1, · · · , Nx − 1, t ∈ [−1,0]. (6.9)

We take ∆x = 0.1 for the numerical method of lines and use 2-stage Radau IIA

method with compound trapezoidal (CT) rule (CTRIIA2) for the numerical integration
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of the problem (6.7). For solving the nonlinear algebraical equations, we consider the it-

eration scheme (6.1) with N = 3, Y
(n,0)

j
= Y

(n−1,N )
j

and Ỹ
(n,0)

j
= Ỹ

(n−1,N )
j

. Define the

differences of numerical solutions as

En = max
1≤i≤Nx−1

|Un
1,i − Un

2,i|,

where Un
1,i and Un

2,i are the numerical solutions approximating to the solutions of problems

(6.7), and (6.7a), (6.7b) and (6.9), respectively. The numerical results of CTRIIA2 with

h = 0.1 and h = 0.01 when applied to problems (6.7), and (6.7a), (6.7b) and (6.9) with

a = −e−1 and b = 0.01 are listed in Table 3.Table 3: The di�eren
es En produ
ed by CTRIIA2 when applied to (6.7), and (6.7a), (6.7b), and (6.9)with a =−e−1 and b = 0.01, where h= 0.1 and h= 0.01.
h t = 0.1 t = 1 t = 5 t = 10

.1 9.275701 · 10−1 3.735039 · 10−1 6.314180 · 10−3 4.254367 · 10−5

.01 9.800226 · 10−1 3.545434 · 10−1 6.627136 · 10−3 4.465401 · 10−5

In summary, we can conclude that under these sufficient conditions given in this paper

CQRKMs are stable and asymptotically stable.

Now we consider the convergence of the numerical method. In the numerical experi-

ment, the function g(x , t) is selected in such a way that the true solution is

u(x , t) = (x − x2+ 1)e−t .

Let

ε(T ) = max
1≤i≤Nx−1

|Ui(T )− u(x i, T )|

denote the error of a method when applied to problem (6.7), where Ui(T ) denotes the

numerical solution which is produced by CTRIIA2 approximating u(x i, T ). Table 4 shows

the errors at T = 10. These numerical results illustrate the convergence of CQRKMs for

NVDIDEs.Table 4: The errors ε(T) produ
ed by CTRIIA2 when applied to (6.7) with a = −e−1 and b = 0.01,where h= 1/m and T = 10.
m = 10 m= 20 m= 40 m= 80

1.295734× 10−9 1.654411× 10−10 2.090210× 10−11 2.628293× 10−12

7. Concluding remarks

We have given some sufficient conditions for the stability and asymptotic stability of

the true solution to nonlinear NVDIDEs (1.1)–(1.2). This analysis is based on a Halanay

inequality generalized by Liz and Trofimchuk [29] (see also [38]). The main purpose of
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this paper has been to obtain a comprehensive theory of the stability of RKM with the

compound quadrature formulae for nonlinear NVDIDEs (1.1)–(1.2). The main results of

the paper are given in Section 4. An extension of the stability results to NVDIDEs with

weakly singular kernel was also discussed in this paper.

We have noted that the sufficient conditions for the stability of the numerical solution

are slightly stronger than the sufficient conditions for the stability of the true solution.

The difference is that there is a factor ν , which results from the compound quadrature

formulae, in the sufficient conditions for the numerical stability. We also noted that ν

approximate to 1 for some common quadrature formulas, especially, ν = 1 for the CT rule,

and that the Radau IA (s ≥ 1), Radau IIA (s ≥ 1) and Lobatto IIIC (s ≥ 2) methods with

the CT rule can completely preserve the asymptotic stability of the underlying system.

We remark that we have only considered the stability of the true solution and the

numerical solution. The blowup properties of nonlinear Volterra equations have been in-

vestigated by many authors (see the recent survey papers by Bandle and Brunner [4] and

Roberts [32]). Recently, Ma et al. [30] and Ma and Jiang [31] examined numerically the

blowup solution of VIDEs and time fractional differential equations, which is equivalent to

the Volterra integral equation with weakly singular kernel, by moving mesh method, re-

spectively. To the best our knowledge, however, the blowup theory for nonlinear NVDIDEs

is completely unknown. The blowup solution of nonlinear NVDIDEs is an interesting topic

and will be our future work.

Acknowledgments This work was supported by NSF of China (Grant No. 11001033),

Natural Science Foundation of Hunan Province (Grant No. 10JJ4003), Chinese Society for

Electrical Engineering, and Graduates’ innovation fund of HUST (No. HF-08-02-2011-011).

The authors would like to thank the anonymous referees for the important comments that

lead to a greatly improved paper; especially thank the referees for bringing us to interest

in VDIDEs with weakly singular kernel and the blowup properties of VDIDEs.

References

[1] C. T. H. BAKER AND N. J. FORD, Stability properties of a scheme for the approximate solution of

a delay integro-differential equation, Appl. Numer. Math., 9 (1992), pp. 357–370.

[2] C. T. H. BAKER AND A. TANG, Generalized Halanay inequalities for Volterra functional differential

equations and discretized versions, In Corduneanu, C., and Sandberg, I. W. (ed.), Volterra

Equations and Applications, Gordon and Breach, Amsterdam, (2000), pp. 39–55.

[3] C. T. H. BAKER, A perspective on the numerical treatment of Volterra equations, J. Comput. Appl.

Math., 125 (2000), pp. 217–249.

[4] C. BANDLE AND H. BRUNNER, Blowup in diffusion equations: a survey, J. Comput. Appl. Math.,

97 (1998), pp. 3–22.

[5] A. BELLEN AND M. ZENNARO, Numerical methods for delay differential equations, Oxford Uni-

versity Press, Oxford, 2003.

[6] H. BRUNNER AND P. J. VAN DER HOUWEN, The numerical solution of Volterra Equations, CWI

Monograph, Amsterdam, 1986.

[7] H. BRUNNER, The numerical solutions of neutral Volterra integro-differential equations with

delay arguments, Ann. Numer. Math., 1 (1994), pp. 309–322.



560 W. Wang and D. Li

[8] H. BRUNNER, A. PEDAS AND G. VAINIKKO, Piecewise polynomal collocations methods for linear

Volterra integro-differential equations with weakly singular kernel, SIAM J. Numer. Math., 39

(2001), pp. 957–982.

[9] H. BRUNNER AND R. VERMIGLIO, Stability of solutions of neutral functional integro-differential

equations and their discretiztion, Computing, 71 (2003), pp. 229–245.

[10] H. BRUNNER, Collocation methods for Volterra integral and related functional differential equa-

tions, Cambridge University Press, Cambridge, 2004.

[11] H. BRUNNER AND J. T. MA, On the regularity of solutions to Volterra functional integro-

differential equations with weakly singular kernels, J. Integral Equations Appl., 18 (2006),

pp. 143–167.

[12] H. BRUNNER AND D. SCHOTZAU, hp−discontinuous Galerkin time-stepping for Volterra integrod-

ifferential equations, SIAM J. Numer. Math., 44 (2006), pp. 224–245.

[13] H. BRUNNER, High-order collocation methods for singular Volterra functional equations of neu-

tral type, Appl. Numer. Math., 57 (2007), pp. 533–548.

[14] K. BURRAGE AND J. C. BUTCHER, Non-linear stability of a general class of differential equation

methods, BIT, 20 (1980), pp. 185–203.

[15] W. H. DENG, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput.

Phys., 227 (2007), pp. 1510-1522.

[16] W. H. ENRIGHT AND M. HU, Continuous Runge-Kutta methods for neutral Volterra integro-

differential equations with delay, Appl. Numer. Math., 24 (1997), pp. 175–190.

[17] M. I. GIL’, Stability of finite and infinite dimensional systems, Kluwer Academic Publishers,

Boston, 1998.

[18] E. HAIRER AND G. WANNER, Solving ordinary differential equations II: stiff and differential alge-

braic problems, Springer-Verlag, Berlin, 1991.

[19] C. M. HUANG, S. F. LI, H. Y. FU AND G. N. CHEN, Stability and error analysis of one-leg methods

for nonlinear delay differential equations, J. Comput. Appl. Math., 103 (1999), pp. 263–279.

[20] Z. JACKIEWICZ, Adams methods for neutral functional differential equations, Numer. Math., 39

(1982), pp. 221–230.

[21] Z. JACKIEWICZ, Qualsilinear multistep methods and variable step predictor-corrector methods for

neutral functional differential equations, SIAM J. Numer. Anal., 23 (1986), pp. 423–452.

[22] P. KANGRO AND I. PARTS, Superconvergence in the maximum norm of a class of piecewise poly-

nomial collocation methods for solving linear weakly singular Volterra integro-differential equa-

tions, J. Integral Equations Appl., 15 (2003), pp. 403–427.

[23] V. B. KOLMANOVSKII AND A. MYSHKIS, Introduction to the theory and applications of functional

differential equations, Kluwer Academy, Dordrecht, 1999.

[24] J. X. KUANG AND Y. H. CONG, Stability of numerical methods for delay differential equations,

Science Press, Beijing, 2005.

[25] T. KOTO, Stability of Runge-Kutta methods for delay integro-differential equations, J. Comput.

Appl. Math., 145 (2002), pp. 483–492.

[26] S. F. LI, Theory of computational methods for stiff differential equations, Hunan Science and

Technology Publisher, Changsha, 1997.

[27] S. F. LI, Stability analysis of solutions to nonlinear stiff Volterra functional differential equations

in Banach spaces, Sci. China Ser A, 48 (2005), pp. 372–387.

[28] S. F. LI, High order contractive Runge-Kutta methods for Volterra functional differential equa-

tions, SIAM J. Numer. Anal., 47 (2010), pp. 4290–4325.

[29] E. LIZ AND S. TROFIMCHUK, Existence and stability of almost periodic solutions for quasilinear

delay systems and the Halanay inequality, J. Math. Ana. Appl., 248 (2000), pp. 625–644.

[30] J. T. MA, Y. J. JIANG AND K. L. XIANG, Numerical simulation of blowup in nonlocal reaction-



Runge-Kutta Methods for Neutral Volterra Delay-Integro-Differential Equations 561

diffusion equations using a moving mesh method, J. Comput. Appl. Math., 230 (2009), pp.

8–21.

[31] J. T. MA AND Y. J. JIANG, Moving collocation methods for time fractional differential equations

and simulation of blowup, Sci. China Ser A, 54 (2011), pp. 611-622.

[32] C. A. ROBERTS, Recent results on blow-up and quenching for nonlinear Volterra equations, J.

Comput. Appl. Math., 205 (2007), pp. 736–743.

[33] T. TANG, Superconvergence of numerical solutions to weakly singular Volterra integro-differential

equations, Numer. Math., 61 (1992), pp. 373–382.

[34] L. TORELLI, Stability of numerical methods for delay differential equations, J. Comput. Appl.

Math., 25 (1989), pp. 15–26.

[35] W. S. WANG AND S. F. LI, Convergence of Runge-Kutta methods for neutral Volterra delay-integro-

differential equations, Front. Math. China, 4 (2009), pp. 195–216.

[36] W. S. WANG, Numerical analysis of nonlinear neutral functional differential equations, Ph. D.

Thesis, Xiangtan: Xiangtan Univ., 2008.

[37] W. S. WANG AND S. F. LI, Convergence of one-leg methods for nonlinear neutral delay integro-

differential equations, Sci. China Ser A, 52 (2009), pp. 1685–1698.

[38] W. S. WANG, A generalized Halanay inequality for stability of nonlinear neutral functional equa-

tions, J. Inequal. Appl., (2010) doi: 10.1155/2010/475019.

[39] J. H. WU, Theory and applications of partial functional differential equations, Springer-Verlag,

New York, 1996.

[40] Y. X. YU AND S. F. LI, Stability analysis of Runge-Kutta methods for nonlinear neutral delay

integro-differential equations, Sci. China Ser A, 50 (2006), pp. 464–474.

[41] Y. X. YU, L. P. WEN AND S. F. LI, Nonlinear stability of Runge-Kutta methods for neutral delay

integro-differential equations, Appl. Math. Comput., 191 (2007), pp. 543–549.

[42] Y. X. YU, Stability analysis of numerical methods for several classes of Volterra functional differ-

ential equations, Ph. D. Thesis, Xiangtan: Xiangtan Univ., 2006.

[43] C. J. ZHANG AND S. VANDEWALLE, Stability analysis of Volterra delay-integro-differential equa-

tions and their backward differentiation time discretization, J. Comput. Appl. Math., 164–165

(2004), pp.797–814.

[44] C. J. ZHANG AND S. VANDEWALLE, Stability analysis of Runge-Kutta methods for nonlinear

Volterra delay-integro-differential equations, IMA J. Numer. Anal., 24 (2004), pp. 193–214.

[45] C. J. ZHANG AND S. VANDEWALLE, General linear methods for Volterra integro- differential equa-

tions with memory, SIAM J. Sci. Comput., 27 (2006), pp. 2010–2031.

[46] C. J. ZHANG AND S. Z. ZHOU, The asymptotic stability of theoretical and numerical solutions for

systems of neutral multidelay-differential equations, Sci. China (Ser. A) 41 (1998), pp. 1151–

1157.

[47] C. J. ZHANG AND S. F. LI, Dissipativity and exponential asymptotic stability of the solutions

for nonlinear neutral functional differential equations, Appl. Math. Comput. 119 (2001), pp.

109–115.

[48] C. J. ZHANG AND Y. Y. HE, The extended one-leg methods for nonlinear neutral delay-integro-

differential equations, Appl. Numer. Math. 59 (2009), pp. 1409–1418.

[49] J. J. ZHAO, Y. XU AND M. Z. LIU, Stability analysis of numerical methods for linear neutral

Volterra delay-integro-differential equations, Appl. Math. Comput., 167 (2005), pp. 1062–

1079.


